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Abstract: In this paper, a system of reaction-diffusion equations arising in eco-

epidemiological systems is investigated. The equations model a situation in which a

predator species and a prey species inhabit the same bounded region and the predator

only eats the prey with transmissible diseases. Local stability of the constant positive

solution is considered. A number of existence and non-existence results about the non-

constant steady states of a reaction diffusion system are given. It is proved that if

the diffusion coefficient of the prey with disease is treated as a bifurcation parameter,

non-constant positive steady-state solutions may bifurcate from the constant steady-

state solution under some conditions.
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1 Introduction

Mathematical ecology and mathematical epidemiology are major fields of study. Since trans-

missible disease in ecological situation cannot be ignored, it is very important from both the

ecological and the mathematical points of view to study ecological systems subject to epi-

demiological factors. A number of studies have been performed in this direction; see [1]–[9]

and the references therein. Combining a typical SI model with an open system of variable

size and a general predator-prey model, Bairagi et al. proposed a eco-epidemiological model

in [10] as follows:






























ut = ru
(

1 −
u + v

k

)

− m1uv,

vt = m1uv −
m2vw

a + v
− m3v,

wt =
m4vw

a + v
− m5w,

u(0) > 0, v(0) > 0, w(0) > 0,

(1.1)
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where u, v and w are the densities of susceptible prey, infected prey and predator, respec-

tively; r, k, mi, i = 1, 2, · · · , 5 are positive constants; m1 is the rate of transmission; m2 is

the search rate; m3 is the death rate of infected prey; m4 represents the conversion factor;

m5 is the total death of predator population and a is the half saturation coefficient.

This model implies that the prey is divided into two disjoint classes, susceptible prey u

and infected prey v. Only susceptible prey has capability of reproducing, but the infected

prey still contributes with u to population growth towards the carrying capacity k. Disease

transmission follows the simple law of mass action. The disease is spread among the prey

population only. The infected population do not recover or become immune. It is assumed

that predator consume only infected preys at the rates m2v/(a + v). For more detailed

biological meaning the reader may consult [10].

As we know, most of the eco-epidemiological models are ODE systems. If we take into

account the distribution of the species in spatial locations within a fixed bounded domain

Ω ∈ R
N with smooth boundary ∂Ω and both species diffuse, i.e., move from points of high

to points of low population density, then (1.1) may be rewritten as


















































ut = d1∆u + ru
(

1 −
u + v

k

)

− m1uv, x ∈ Ω , t > 0,

vt = d2∆v + m1uv −
m2vw

a + v
− m3v, x ∈ Ω , t > 0,

wt = d3∆w +
m4vw

a + v
− m5w, x ∈ Ω , t > 0,

∂nu = ∂nv = ∂nw = 0, x ∈ ∂Ω , t > 0,

u(x, 0) ≥ 0, v(x, 0) ≥ 0, w(x, 0) ≥ 0, x ∈ Ω ,

(1.2)

where ∂n is the outward directional derivative normal to ∂Ω and the positive constants d1,

d2 and d3 are the diffusion rates. The initial data u(x, 0), v(x, 0) and w(x, 0) are continuous

functions on Ω̄ . The homogeneous Neumann boundary condition means that (1.2) is self-

contained and has no population flux across the boundary ∂Ω .

The positive steady state solutions of (1.2) satisfy the following elliptic system:










































d1∆u + ru
(

1 −
u + v

k

)

− m1uv = 0, x ∈ Ω ,

d2∆v + m1uv −
m2vw

a + v
− m3v = 0, x ∈ Ω ,

d3∆w +
m4vw

a + v
− m5w = 0, x ∈ Ω ,

∂u

∂n
=

∂v

∂n
=

∂w

∂n
= 0, x ∈ ∂Ω .

(1.3)

For the simplicity of notation, we denote

Λ = (r, k, m1, m2, m3, m4, m5), U = (u, v, w).

We note that (1.2) has a unique nonnegative global solution U which can be proved by using

the method of upper and lower solutions. In addition, if u(x, 0) 6≡ 0, v(x, 0) 6≡ 0, w(x, 0) 6≡ 0,

then the solution is positive, i.e., u > 0, v > 0, w > 0 on Ω̄ for all t > 0. The equation (1.2)
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and hence (1.3) has a constant positive solution U0 = (u0, v0, w0), where

u0 = k −
m5a(r + km1)

r(m4 − m5)
, v0 =

m5a

m4 − m5
, w0 =

1

m2
(a + v0)(m1u0 − m3), (1.4)

provided

m1k > m3, m4 > m5 +
m1m5a(r + km1)

r(m1k − m3)
. (1.5)

Hereafter, we always suppose that (1.5) holds if there is no special demonstrativeness.

There are many works on the existence of positive steady states of ecological models.

For predator-prey models, see [11]–[15] and the references therein. The general form of a

weakly-coupled parabolic equation

∂tui = di∆ui + uiMi(u1, u2, · · · , un) in Ω × (0, T )

was discussed by Brown[16], where the asymptotic stability of critical points was given.

The main aim of this paper is to study the local stability of positive constant steady

solution as well as the non-existence of non-constant positive steady state and bifurcation

of non-constant solutions of (1.3).

The structure of the paper is as follows. In Section 2, dissipation of (1.2) is considered.

Stability of the positive constant solution of ODE system (1.1) is studied in Section 3. In

Section 4, we give a priori estimates for the positive solutions of (1.3) by using maximum

principle and a Harnack-type inequality. In Section 5, non-existence of non-constant positive

solutions is proved if the diffusion coefficient of w is large enough. Finally, in Section 6,

bifurcation of non-constant solutions of (1.3) is studied with respect to the parameter d2.

In the sequel, unless otherwise stated, all solutions considered will be classical solutions.

2 Dissipation

In this section, we study dissipation of (1.2). We first estimate the L1(Ω̄) norm of the non-

negative solutions of (1.2), and then transform L1 estimates to Lp estimates for sufficiently

large p. This approach has been used by many authors, as in [17] and [18]. First, we notice

that

u(x, t) ≤ max{max
Ω̄

u(x, 0), k}

by the comparison principle.

Lemma 2.1 Let

b = m2/m4, c = min{m3, m5}.

For any positive solution of (1.2), there exists a positive M such that

‖u‖L1 + ‖v‖L1 + b‖w‖L1

≤ e−ct

∫

Ω

(u(x, 0) + v(x, 0) + bw(x, 0))dx +
(r + c)2k

4r
|Ω |(1 − e−ct)

≤ M. (2.1)

Furthermore, for each q > 1, there exists a positive constant

C = C(q, d1, d2, d3, Ω)
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such that














‖u‖Lq ≤ C(‖u‖L1 + ‖v‖L1 + b‖w‖L1),

‖v‖Lq ≤ C(‖u‖L1 + ‖v‖L1 + b‖w‖L1),

‖w‖Lq ≤ C(‖u‖L1 + ‖v‖L1 + b‖w‖L1).

(2.2)

Proof. Multiplying b to the third equation of (1.2), and integrating over Ω , we obtain

d

dt

∫

Ω

(u + v + bw) ≤

∫

Ω

(ru −
r

k
u2 − m3v − bm5w)

≤ − c

∫

Ω

(u + v + bw) +
k(r + c)2

4r
|Ω |.

Integrating the inequality, we have
∫

Ω

(u + v + bw) ≤ e−ct

∫

Ω

(u(x, 0) + v(x, 0) + bw(x, 0)) +
k(r + c)2

4rc
|Ω |(1 − e−ct),

which implies that

‖u‖L1 + ‖v‖L1 + b‖w‖L1 ≤ M

for sufficiently large M .

Assuming that (2.2) holds for some q ≥ 1 (it holds for q = 1 obviously from the above

proof), we are to prove that it holds for exponent 2q. Multiplying the first three equations

of (1.2) by u2q−1, v2q−1 and w2q−1 respectively, integrating over Ω , and then summing the

above results, we have

1

2q

d

dt

∫

Ω

(u2q + v2q + w2q) ≤ −
2q − 1

q2

{

d1

∫

Ω

|∇uq|2 + d2

∫

Ω

|∇vq|2 + d3

∫

Ω

|∇wq|2
}

+

∫

Ω

(ru2q + m1v
2qu + m4w

2q),

namely,

d

dt

∫

Ω

(u2q + v2q + w2q) ≤ −
d(4q − 2)

q

( ∫

Ω

|∇uq|2 +

∫

Ω

|∇vq|2 +

∫

Ω

|∇wq |2
)

+ 2qD

∫

Ω

(u2p + v2p + w2p), (2.3)

where d = min{d1, d2, d3} and D is a positive constant independent of the initial value

when t is large enough. Using (2.3) and the Nirenberg-Gagliardo inequality and Young’s

inequality, we see that (see [18] or [19])
∫

Ω

u2q ≤ ǫ

[∫

Ω

|∇uq|2 +

( ∫

Ω

uq

)2]

+ D(ǫ)

( ∫

Ω

uq

)p

(2.4)

for some positive constants p, where D(ǫ) is a constant depending on ǫ. Choosing

ǫ = d(4q − 2)/q(2qD + 1),

from (2.3) and (2.4), we get that there are positive constants l1 and l2 such that
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d

dt

∫

Ω

(u2q + v2q + w2q) ≤ −

( ∫

Ω

u2q +

∫

Ω

v2q +

∫

Ω

w2q

)

+ l1

(( ∫

Ω

uq

)2

+

( ∫

Ω

vq

)2

+

( ∫

Ω

wq

)2)

+ l2

(( ∫

Ω

uq

)p

+

( ∫

Ω

vq

)p

+

( ∫

Ω

wq

)p)

. (2.5)

Integrating the above inequality, the asserted estimates now follow by applying the induction

hypotheses.

Theorem 2.1 For any positive solution of (1.2), there exist positive constants K1 and

K2 such that

lim sup
t→∞

u(x, t) ≤ k, lim sup
t→∞

v(x, t) ≤ K1, lim sup
t→∞

w(x, t) ≤ K2 on Ω̄ . (2.6)

Proof. Since u satisfies






















∂u

∂t
− d2u ≤ ru

(

1 −
u

k

)

, x ∈ Ω , t > 0,

∂nu = 0, x ∈ ∂Ω , t > 0,

u(x, 0) ≥ 0, x ∈ Ω ,

the first inequality in (2.6) follows by the comparison principle.

Let

D(A1) := {v( · , t) ∈ C1(Ω̄) ∩ C2(Ω)| ∂nv( · , t) = 0 on ∂Ω , t ≥ 0}.

For v ∈ D(A1) we define

A1v = −d2∆v + m3v,

and for

w ∈ D(A2) := {w( · , t) ∈ C1(Ω̄) ∩ C2(Ω)| ∂nw( · , t) = 0 on ∂Ω , t ≥ 0}

define

A2w = −d3∆w + m5w.

We can regard the problem (1.2) in the larger space Y = Lp(Ω), p > N/2 in the sense of

[17]. Then Reσ(Ai) > δ > 0 for some constant δ, e−Ait is an analytic semigroup on Y , and


















v(x, t) = e−A1tv(x, 0) +

∫ t

0

e−(t−τ)A1

(

m1u(x, τ)v(x, τ) −
m2v(x, τ)w(x, τ)

a + v(x, τ)

)

dτ,

w(x, t) = e−A2tw(x, 0) +

∫ t

0

e−(t−τ)A2
m4v(x, τ)w(x, τ)

a + v(x, τ)
dτ.

(2.7)

The semigroup of operator e−Ait maps Y into the space Y α = D(Aα
i ) with the graph norm

‖v‖Y α := ‖Aα
i v‖Lp ,

where Aα
i is the fractional power of Ai. We choose p so that N/2p < α < 1 and note the

imbedding

Y α →֒ Cν , 0 ≤ ν < 2α − N/p (2.8)
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(see [17] Th 1.6.1). Multiplying both sides of (2.7) by Aα
i , we have

‖v‖Y α = ‖Aα
1 v‖Lp

≤ ‖Aα
1 e−A1tv(x, 0)‖Lp +

∫ t

0

‖Aα
1 e−(t−τ)A1‖

∥

∥

∥
m1uv −

m2vw

a + v

∥

∥

∥

Lp
dτ

≤ Cαt−αe−δt‖v(x, 0)‖Lp + CαG1(‖u‖Lp
+ ‖v‖Lp

+ ‖w‖Lp
)

∫ t

0

(t − τ)−αe−δ(t−τ)dτ,

‖w‖Y α = ‖Aα
2 w‖Lp

≤ ‖Aα
2 e−A2tw(x, 0)‖Lp +

∫ t

0

‖Aα
2 e−(t−τ)A2‖

∥

∥

∥

m4v(x, τ)w(x, τ)

a + v(x, τ)

∥

∥

∥

Lp
dτ

≤ Cαt−αe−δt‖w(x, 0)‖Lp + CαG2(‖u‖Lp
+ ‖v‖Lp

+ ‖w‖Lp
)

∫ t

0

(t − τ)−αe−δ(t−τ)dτ.

From (2.8) and Lemma 2.1, we complete the proof.

3 Stability of (u0, v0, w0): ODE system (1.1)

In this section, we consider the stability of the positive steady-state (u0 , v0, w0) of (1.1).

Let (u(t), v(t), w(t)) be a positive solution of (1.1). It is easy to see that u(t), v(t) and

w(t) are bounded (see Lemma 1 in [10]).

The linearized problem of (1.1) at (u0, v0, w0) takes the form

d

dt









u

v

w









= B









u

v

w









+ O









z

z

z









,

where

z = (u − u0)
2 + (v − v0)

2 + (w − w0)
2

and

B =



















−
ru0

k
−

(

r

k
+ m1

)

u0 0

m1v0
m2w0v0

(a + v0)2
−

m2m5

m4

0
m4aw0

(a + v0)2
0



















:=









a11 a12 0

a21 a22 a23

0 a32 0









.

Theorem 3.1 If

max

{

m1m5k

r
, m5 +

m1m5a(r + km1)

r(m1k − m3)

}

< m4 ≤
rm1(k + m2

5) − m3m5(r + m5)

r2 + rm1m5 − m3m5
,

then the constant positive steady state solution U0 of (1.1) is locally asymptotically stable.

Proof. The characteristic polynomial of B can be written as

ρ(λ) = λ3 + B1λ
2 + B2λ + B3
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with






















B1 = −a11 − a22 =

(

r

k
−

m1m5

m4

)

u0 +
m1m5

m4
,

B2 = a11a22 − a23a32 − a12a21,

B3 = a11a23a32 > 0.

Under the conditions of the theorem, we have

B1 > 0, B3 > 0.

Through a series of calculation, we have

B1B2 − B3 = −(a11 + a22)(a11a22 − a23a32 − a12a21) − a11a23a32 =: M.

We prove M > 0 under the conditions of the theorem. Notice that

M = −
r2m2u

2
0v0w0

k2(a + v0)2
+

rm2
2u0v

2
0w2

0

k(a + v0)4
−

m2
2m5av0w

2
0

(a + v0)4

+
r

k

(rm1

k
+ m2

1

)

u2
0v0 −

m2u0v
2
0w0

(a + v0)2

(rm1

k
+ m2

1

)

= −
r2m5

k2m4
(m1u0 − m3)u

2
0 +

rm2
5

km2
4

(m1u0 − m3)
2u0

−
m3

5a

m2
4v0

(m1u0 − m3)
2 +

r

k

(rm1

k
+ m2

1

)

u2
0v0

−
m1m5

m4

(m1r

k
+ m2

1

)

u2
0v0 +

m3m5

m4

(rm1

k
+ m2

1

)

u0v0

=
( r

k
−

m1m5

m4

)(rm1

k
+ m2

1

)

u2
0v0 +

m2
5a

m4v0

( r

k
−

m1m5

m4

)

(m1u0 − m3)u0

+
m3m5

m4

(rm1

k
+ m2

1

)

u0v0

+

{

rm5

km4

(m1m5

m4
−

r

k

)

u2
0 −

(rm3m
2
5

km2
4

+
rm1m

2
5(m4 − m5)

km2
4

)

u0

+
m3m

2
5(m4 − m5)

m2
4

}

(m1u0 − m3).

The first three terms in the right hand side of the above expression are positive if
r

k
−

m1m5

m4
> 0.

M is positive if the expression within the curly bracket is positive. This expression can be

put in the form Au2
0 + Bu0 + C, where

A =
rm5

km4

(m1m5

m4
−

r

k

)

,

B = −
(rm3m

2
5

km2
4

+
rm1m

2
5(m4 − m5)

km2
4

)

,

C =
m3m

2
5(m4 − m5)

m2
4

.

We note that A < 0, B < 0, C > 0, and thus, a sufficient condition for the positivity of this

expression is Ak2 + Bk + C ≧ 0 since u0 < k, which implies

m4 ≤
rm1(k + m2

5) − m3m5(r + m5)

r2 + rm1m5 − m3m5
.
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Thus, M > 0 when

m4 ≤
rm1(k + m2

5) − m3m5(r + m5)

r2 + rm1m5 − m3m5
.

It follows from the Routh-Hurwitz criterion that the three roots λ1, λ2, λ3 of ρ(λ) = 0

all have negative real parts. This implies that U0 is locally asymptotically stable.

4 A Priori Estimates

In this section, the main purpose is to give a priori upper bound and Harnack Inequality for

positive solutions of (1.3). To this aim, we first recall the following well known results:

Lemma 4.1 (Maximum principle) If u ∈ C2(Ω̄) satisfies ∂nu = 0 on ∂Ω and x0 ∈ Ω̄ is

a point where u achieves its maximum, then −∆u(x0) ≥ 0.

Lemma 4.2 (Harnack Inequality) Let c ∈ C(Ω̄) and w ∈ C2(Ω) ∩ C1(Ω̄) be a positive

classical solution to ∆w(x)+ c(x)w(x) = 0 in Ω subject to the zero flux boundary condition.

Then there exists a positive constant C = C(Ω , ‖c‖∞) such that max
Ω̄

w ≤ Cmin
Ω̄

w.

The first lemma can be found in [20] and the second is due to Lin et al.[21]. Our main

result in this section is the following.

Theorem 4.1 For any positive solution U of (1.3), we have

sup
Ω̄

u(x) ≤ k, sup
Ω̄

v(x) ≤
d1k

d2
+ k, sup

Ω̄

w(x) ≤
m4k(d1 + d2)

d3m2
+

m1m4k
2(d1 + d2)

d2m2m5
.

(4.1)

Proof. Let x0 ∈ Ω̄ be such that

u(x0) = max
Ω̄

u(x).

Then by Lemma 4.1 and the positivity of u, v and w, one can obtain

ru(x0)
(

1 −
u(x0) + v(x0)

k

)

− m1v(x0)u(x0) ≥ 0,

which in turn implies

u(x0) = max
Ω̄

u(x) ≤ k.

Let

y = d1u + d2v.

Then we can deduce that






−∆y = ru
(

1 −
u + v

k

)

−
m2vw

a + v
− m3v, x ∈ Ω ,

∂ny = 0, x ∈ ∂Ω .

Let x1 ∈ Ω̄ be a point such that

y(x1) = max
Ω̄

y(x).



NO. 1 LI J. J. et al. ANALYSIS OF A PREY-PREDATOR MODEL WITH DISEASE IN PREY 35

By the application of the maximum principle, it yields v(x1) ≤ k. Consequently,

d2 max
Ω̄

v(x) ≤ max
Ω̄

y(x)

= y(x1)

= d1u(x1) + d2v(x1)

≤ k(d1 + d2),

and hence

sup
Ω̄

v(x) ≤
d1k

d2
+ k.

Let

z = d2m4v + d3m2w.

We can prove the last inequality of the theorem similarly.

Theorem 4.2 Suppose that Λ is fixed. Let 0 < d ≤ min{d1, d2, d3} be a constant. Then

there exist positive constants C1(d), C2(d, d1) and C3(d, d1) depending on Λ and Ω, such

that for any positive solution U of (1.3) the following Harnack-type inequalities holds:

max
Ω̄

u(x)

min
Ω̄

u(x)
≤ C1(d),

max
Ω̄

v(x)

min
Ω̄

v(x)
≤ C2(d, d1),

max
Ω̄

w(x)

min
Ω̄

w(x)
≤ C3(d). (4.2)

Proof. Note that u satisfies

∆u + u
rk − ru − rv − m1kv

d1k
for x ∈ Ω

and
∂u

∂n
= 0 for x ∈ ∂Ω .

We see from Theorem 4.1 that
∥

∥

∥

rk − ru − rv − m1kv

d1k

∥

∥

∥

∞
≤

1

d1

[

2r +
d1r

d2
+ r +

m1d1k

d2
+ m1k

]

≤ C(d).

Hence it follows from Lemma 4.2 that there exists a positive constant C1(d) such that

max
Ω̄

u(x) ≤ C1(d)min
Ω̄

u(x).

The inequalities for v and w can be proved similarly.

5 Non-existence of Non-constant Positive Steady States

In this section, we give some sufficient conditions for the non-existence of non-constant

positive solutions to (1.3). Let U be a positive solution to (1.3) and Ũ be the average of U

in Ω . Multiplying the first three equations of (1.3) by A(u−ũ)/u and (v−ṽ)/v and (w−w̃)/w

respectively, where A = m1k/(r + m1k), and integrating the results over Ω , one can obtain
∫

Ω

Ad1
ũ

u2
|∇u|2 = A

∫

Ω

(u − ũ)
(

r −
ru + rv

k
− m1v

)

= A

∫

Ω

(u − ũ)
(rũ + rṽ

k
+ m1ṽ −

ru + rv

k
− m1v

)
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= A

∫

Ω

{

−
r

k
(u − ũ)2 −

( r

k
+ m1

)

(u − ũ)(v − ṽ)
}

,

∫

Ω

d2
ṽ

v2
|∇v|2 =

∫

Ω

(v − ṽ)
(

m1u −
m2w

a + v
− m3

)

=

∫

Ω

(v − ṽ)
(

m1u −
m2w

a + v
− m1ũ +

m2w̃

a + ṽ

)

=

∫

Ω

{

m1(u − ũ)(v − ṽ) −
m2

a + v
(v − ṽ)(w − w̃) +

m2w̃(v − ṽ)2

(a + v)(a + ṽ)

}

and
∫

Ω

d3
w̃

w2
|∇w|2 =

∫

Ω

(w − w̃)
( m4v

a + v
− m5

)

=

∫

Ω

(w − w̃)
( m4v

a + v
−

m4ṽ

a + ṽ

)

=

∫

Ω

m4a

(a + v)(a + ṽ)
(v − ṽ)(w − w̃).

So we have

A

∫

Ω

d1
ũ

u2
|∇u|2 +

∫

Ω

d2
ṽ

v2
|∇v|2 +

∫

Ω

d3
w̃

w2
|∇w|2

=

∫

Ω

{

−
m1r

r + m1k
(u − ũ)2 +

( m4a

(a + v)(a + ṽ)
−

m2

a + v

)

(v − ṽ)(w − w̃)

+
m2w̃

(a + v)(a + ṽ)
(v − ṽ)2

}

.

Furthermore, it follows from Theorem 4.1 and 4.2 that

ṽ

v2
≥

( min
Ω̄

v(x)

max
Ω̄

v(x)

)2
1

ṽ
≥ C2(d, d1),

w̃

w2
≥

( min
Ω̄

w(x)

max
Ω̄

w(x)

)2
1

w̃
≥ C3(d, d1, d2). (5.1)

Using Poincaré’s inequality
∫

Ω

(f − f̃)2 ≤
1

λ

∫

Ω

| ∇f |2

and Young’s inequality, we can obtain
∫

Ω

Ad1λC1(d)(u − ũ)2 +

∫

Ω

d2λC2(d, d1)(v − ṽ)2 +

∫

Ω

d3λC3(d, d1, d2)(w − w̃)2

≤

∫

Ω

{

−
m1r

r + m1k
(u − ũ)2 + ε(v − ṽ)2 + C(ε)(w − w̃)2

}

. (5.2)

Taking ε small enough, we have U = Ũ when d3 large enough by (5.2). So we have the

following theorem:

Theorem 5.1 Let d be a constant such that 0 < d ≤ min{d1, d2, d3}. There exist

positive constant Cd3
= Cd3

(Λ, d, d1, d2) such that the system (1.3) has no non-constant

solution provided that d3 ≥ Cd3
.

6 Bifurcation

In this section, we discuss the bifurcation of non-constant positive solutions of (1.3). Let

the parameters Λ, d1, d3 > 0 be fixed. And consider d2 > 0 as the bifurcation parameter.
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We say that (d̂2, U0) ∈ (0,∞)×X is a bifurcation point of (1.3) if for any δ ∈ (0, d̂2), there

exists d2 ∈ [d̂2 − δ, d̂2 + δ] such that (1.3) has a non-constant positive solution. Otherwise,

we say that (d2, U0) is a regular point.

Let 0 = µ0 < µ1 < µ2 < µ3 < · · · be the eigenvalues of the operator −∆ on Ω with the

homogeneous Neumann boundary condition, and set

X = {(u, v, w) ∈ [C1(Ω̄)]3| ∂nu = ∂nv = ∂nw = 0 on ∂Ω},

Bδ = {U ∈ X | ‖U‖X < δ with δ > 0},

E(µ) = {ϕ | −∆ϕ = µϕ in Ω , ∂nϕ = 0 on ∂Ω with µ ∈ R
1}.

Let {ϕij}
dim{E(µi)}
j=1 be an orthonormal basis of E(µi) and

Xij = {Cϕij | C ∈ R
3}.

Then

X =
∞

⊕

i=0

Xi,

where

Xi =

dim{E(µi)}
⊕

j=1

Xij .

Let

D =









d1 0 0

0 d2 0

0 0 d3









, F (U) =



















ru
(

1 −
u + v

k

)

− m1uv

v
(

m1u −
m2w

a + v
− m3

)

w
( m4v

a + v
− m5

)



















.

Then we can rewrite (1.3) as






−∆U = D−1F (U), x ∈ Ω ,

∂nU = 0, x ∈ ∂Ω ,
(6.1)

or equivalently,

G(d2, U) = U − (I − ∆)−1{D−1F (U) + U} = 0 on X, (6.2)

where (I−∆)−1 is the inverse of I−∆ with the homogeneous Neumann boundary condition.

By direct computation, we have

GU (d2, U0) = I − (I − ∆)−1{D−1FU (U0) + I}. (6.3)

Obviously, for each i ∈ {0, 1, 2, 3, · · · }, Xi is invariant under the operator GU (d2, U0),

and λ is an eigenvalue of GU (d2, U0) on Xi if and only if λ is an eigenvalue of the matrix

Ai = I −
1

1 + µi

{D−1FU (U0) + I} =
1

1 + µi

{µiI − D−1FU (U0)}.

Define

N (d2) = {µ > 0 | detH(d2; µ) = 0 for d2 > 0},

where

H(d2; µ) = {µI − D−1FU (U0)}.
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A direct calculation gives

detH(d2; µ) = µ3 + µ2

(

ru0

d1k
−

m2w0v0

d2(a + v0)2

)

+ µ

(

m2m5aw0

d2d3(a + v0)2
+

m1u0v0

d1d2

(

r

k
+ m1

)

−
rm2u0v0w0

d1d2k(a + v0)2

)

+
rm2m5au0v0w0

d1d2d3k(a + v0)2
. (6.4)

Using Sp to denote the positive spectrum of −∆ on Ω with the homogeneous Neumann

boundary condition, that is, Sp = {µ1, µ2, µ3, · · · }, we have the following local bifurcation

theorem:

Theorem 6.1 Suppose that Λ satisfies (1.5). Let d̂2 > 0 and consider the point (d̂2, U0).

(i) If Sp ∩ N (d̂2) = ∅, then (d̂2, U0) is a regular point of (1.3);

(ii) Suppose that Sp ∩ N (d̂2) 6= ∅ and the positive root of detH(d̂2; µ) = 0 is simple. If
∑

µj∈N (d̂2)

dimE(µj) is odd, then (d̂2, U0) is a bifurcation point of (1.3).

Proof. Let V (x) = U(x) − U0. Then Problem (1.3) is equivalent to






−∆V = D−1F (U0 + V ), x ∈ Ω ,

∂nV = 0, x ∈ ∂Ω ,

which, in turn, is equivalent to

G(d2, V ) = V − (I − ∆)−1{D−1F (U0 + V ) + V } = 0 on X.

By direct computation, one can obtain

GV (d2, 0) = I − (I − ∆)−1{D−1FU (U0) + I}.

(i) If Sp∩N (d̂2) = ∅, then detH(d̂2, µi) 6= 0 for all i ∈ {0, 1, 2, 3, · · · } by (5.4). Hence,

0 is not an eigenvalue of GV (d̂2, 0). This implies that GV (d̂2, 0) is a homeomorphism from

X to itself. The implicit function theorem shows that for all d2 close to d̂2, V = 0 is the

only solution to G(d2, V ) = 0 in a small neighborhood of the origin, that is, (d̂2, U0) is a

regular point of (1.3).

(ii) Suppose Sp ∩ N (d̂2) 6= ∅. By a direct computation, the eigenvalue λ of H(d̂2; µi) is

given by

λ3 + A1λ
2 + A2λ + A3 = 0 (6.5)

with














































































A1 = −

(

3µi −
m2v0w0

d̂2(a + v0)2
+

ru0

kd1

)

,

A2 = 3µ2
i + 2

(

ru0

kd1
−

m2w0v0

d̂2(a + v0)2

)

µi

−
rm2w0v0u0

kd1d̂2(a + v0)2
+

m2m5aw0

d̂2d3(a + v0)2
+

m1u0v0

d1d̂2

(

r

k
+ m1

)

,

A3 = −µ3
i −

(

ru0

kd1
−

m2w0v0

d̂2(a + v0)2

)

µ2
i

−

(

m2m5aw0

d̂2d3(a + v0)2
+

m1u0v0

d1d̂2

(

r

k
+ m1

)

−
rm2w0v0u0

kd1d̂2(a + v0)2

)

µi −
rm2m5au0w0

kd1d̂2d3(a + v0)2
.
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It is easy to show that 0 is a simple eigenvalue of H(d̂2, µj) for any j satisfying µj ∈

Sp ∩ N (d̂2) by (6.5). Now, suppose on the contrary that the assertion of the theorem were

false. Then there would exist a d̂2 > 0 such that the following are true:

(a) Sp ∩ N (d̂2) 6= ∅ and
∑

µj∈N (d̂2)

dimE(µj) is odd, where µj ∈ Sp ∩N (d̂2);

(b) There exists a δ ∈ (0, d̂2) such that for every d2 ∈ [d̂2 − δ, d̂2 + δ], V = 0 is the only

solution to G(d2, V (x)) = 0 in a neighborhood Bδ of the origin.

Since G(d2; · ) is a compact perturbation of the identity function, in view of (b), the

Leray–Schauder degree deg(G(d2; · ), Bδ, 0) is well defined and does not depend on d2 ∈

[d̂2 − δ, d̂2 + δ]. In addition, for those d2 ∈ [d̂2 − δ, d̂2 + δ], where GV (d2, 0) is invertible,

deg(G(d2; · ), Bδ, 0) = (−1)ν(d2), where ν(d2) is the total number of negative eigenvalues

of GV (d2, 0).

Let H̃(d2; µ) = d1d2d3 detH(d2; µ). For µj ∈ Sp ∩ N (d̂2), we have

H̃(d̂2; µj) = 0.

A direct computation yields
∂

∂d2
H̃(d̂2; µj) = d1d3µ

3
j +

d3ru0

k
µ2

j > 0.

We may choose δ small enough so that
∂

∂d2
H̃(d2; µj) > 0, µj ∈ Sp ∩N (d̂2), d2 ∈ [d̂2 − δ, d̂2 + δ].

Therefore

H̃(d̂2 − δ; µj)H̃(d̂2 + δ; µj) < 0,

and in turn,

H(d̂2 − δ; µj)H(d̂2 + δ; µj) < 0, µj ∈ Sp ∩ N (d̂2). (6.6)

Since Sp does not have any accumulation point, by taking δ sufficiently small, we may

assume that

Sp ∩ N(d2) = ∅, ∀ d2 ∈ [d̂2 − δ, d̂2) ∪ (d̂2, d̂2 + δ].

Therefore, GV (d2, 0) is invertible for all d2 ∈ [d̂2 − δ, d̂2) ∪ (d̂2, d̂2 + δ].

Note that X =
∞

⊕

i=1

Xi, where Xi is the eigenspace corresponding to µi. Also, for each

i ∈ {0, 1, 2, 3, · · · } and d2 ∈ [d̂2−δ, d̂2 +δ], Xi is invariant for the operator GV (d2, 0) and

the number of negative eigenvalues of GV (d2, 0) on Xi is the same as that of the matrix Ai

or H(d2; µi). For every i, if µi 6∈ N (d̂2), then the number of eigenvalues with negative real

parts of GV (d2, 0) on Xi is independent of d2 ∈ [d̂2 − δ, d̂2 + δ]; whereas if µj ∈ N (d̂2) then

the difference between the number of eigenvalues with negative real parts of GV (d2, 0) on

Xj for d2 = d̂2 − δ and d2 = d̂2 + δ is 1 by (6.6). From the simpleness of the positive root

of H(d̂2; µ) = 0, we have

|ν(d̂2 − δ) − ν(d̂2 + δ)| =
∑

µj∈N (d̂2)

dimE(µj),

which is odd. Therefore,

deg(G(d̂2 − δ; · ), Bδ, 0) 6= deg(G(d̂2 + δ; · ), Bδ, 0),
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and we have a contradiction. This contradiction shows that (d̂2, U0) is a bifurcation point

of (1.3).

Remark 6.1 From Theorems 3.1 and 6.1, we can conclude that diffusion-driven insta-

bility occurs when the diffusion coefficients is in a suitable range.
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