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Abstract: Online gradient method has been widely used as a learning algorithm for

training feedforward neural networks. Penalty is often introduced into the training

procedure to improve the generalization performance and to decrease the magnitude

of network weights. In this paper, some weight boundedness and deterministic con-

vergence theorems are proved for the online gradient method with penalty for BP

neural network with a hidden layer, assuming that the training samples are supplied

with the network in a fixed order within each epoch. The monotonicity of the error

function with penalty is also guaranteed in the training iteration. Simulation results

for a 3-bits parity problem are presented to support our theoretical results.
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1 Introduction

Online gradient method (OGM for short) is a popular and commonly used learning algo-

rithm for training the weights of BP networks (see [1]–[5]). Penalty methods are often

introduced into the training procedure and have proved efficient to improve the generaliza-

tion performance and to decrease the complexity of neural networks (see [6]–[12]). Here the

generalization performance refers to the capacity of a neural network to give correct outputs

for untrained data. A simple and commonly used penalty added to the conventional error

function is the squared penalty, a term proportional to the magnitude of the network weights
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(see [2] and [3]). Applied to the weight updating rule of batch gradient descent algorithm,

the influence of penalty on the training can be seen clearly:

∆w(n) = −η
∂E(w)

∂w(n)
− λw(n) (1.1)

where w, ∆w(n), E(w), η and λ represent the vector of all weights, the modification of

w at the n-th iteration, the conventional error function, the learning rate and the penalty

parameter, respectively. As shown in (1.1), in addition to the update by the gradient

algorithm, the weight is decreased by λ times of its old value. Consequently, the weights

with small magnitudes are encouraged to decrease to zero and those with large magnitudes

are constrained from growing too large during the training process. This will force the

network response to be smoother and less likely to overfit, leading to good generalization

(see [6], [7] and [11]). Many experiments have shown that as well as being beneficial from

a generalization capacity prospective, such a term provides a way to control the magnitude

of the weights during the training procedure in literature (see [6] and [10]–[12]). But there

remains a lack of theoretical assurance on this experimental observation, especially for online

cases.

For simplicity of analysis, the input sample ξj is provided to the network in a fixed

order in each training epoch. We shall show that the online gradient method with penalty

and fixed inputs (OGM-PF) is deterministically convergent. A boundedness theorem is

established for the network weights connecting the input and hidden layers, which is also a

desired outcome of adding penalty. Another key point of our proofs lies in the monotonicity

of the error function with such a penalty term during the training iteration.

In this paper, ‖ · ‖ stands for the Euclidean norm and Ci stand for suitable positive

constants which are independent of the iteration step n.

The rest of this paper is organized as follows. OGM-PF is described in detail in Section

2. The main theorems are presented in Section 3. In Section 4, the algorithm OGM-PF is

applied to a 3-bits parity problem to illustrate our theoretical findings. Some lemmas and

detailed proofs of the theorems are gathered as an Appendix.

2 Online Gradient Method with Penalty

Consider a three-layer BP network consisting of p input units, q hidden units and one output

unit. Let w0 = (w01, · · · , w0q) be the weights between the hidden units and the output unit,

and wi = (wi1, · · · , wip) be the weights between the input units and the hidden unit i (i =

1, 2, · · · , q). To simplify the presentation, we write all the weight parameters in a compact

form, i.e., W = (w0, w1, · · · , wq) ∈ R
q+pq. And we define a matrix V = (wT

1 , · · · , w
T
q )T ∈

R
q×p and a vector function G(x) = (g(x1), · · · , g(xq)) for x = (x1, · · · , xq) ∈ R

q. Assume

that {ξj , Oj}J
j=1 is the given set of training samples and g : R → R is a transfer function

for both hidden and output layers. Then for each input ξ ∈ R
p, the actual output vector

of the hidden layer is G(V ξ) and the final output of the network is ζ = g(w0 · G(V ξ)). A
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conventional square error function is given by

Ẽ(W ) =
1

2

J
∑

j=1

(

Oj − g(w0 ·G(V ξj))
)2
. (2.1)

By adding a penalty term, the total error function takes the form (see [3])

E(W ) = Ẽ(W ) + λ

q
∑

i=0

‖wi‖
2

≡
J

∑

j=1

gj

(

w0 ·G(V ξj)
)

+ λ

q
∑

i=0

‖wi‖
2. (2.2)

Differentiating E(W ) with respect to W gives

EW (W ) =
(

Ew0
(W ), Ew1

(W ), · · · , Ewq
(W )

)T
, (2.3)

where

Ew0
(W ) =

J
∑

j=1

g′j
(

w0 ·G(V ξj)
)

G(V ξj) + 2λw0,

Ewi
(W ) =

J
∑

j=1

g′j
(

w0 ·G(V ξj)
)

w0ig
′(wi · ξ

j)ξj + 2λwi, i = 1, 2, · · · , q.

The online gradient algorithm updates the weights after the presentation of each training

sample ξj . As done in [13], we can choose the training samples in a fixed order and the

online gradient method with penalty (OGM-PF) can be described as follows:

WnJ+j = WnJ+j−1 + ∆n
j W

nJ+j−1, (2.4)

where

∆n
j w0 = −ηn

[

g′j(w0 ·G(V ξj))G(V ξj) +
2λ

J
w0

]

,

∆n
jwi = −ηn

[

g′j(w0 ·G(V ξj))w0ig
′(wi · ξ

j)ξj +
2λ

J
wi

]

.

Here ηn is the learning rate in the n-th training epoch. From an initial value η0 ∈ (0, 1], it

changes its value after each epoch of training according to (see [13] and [14])
1

ηn

=
1

ηn−1
+ β, n = 1, 2, · · · , (2.5)

where β > 0 is a constant to be specified in assumption (A3) below.

3 Main Theorems

The following assumptions are needed.

(A1) |g(t)|, |g′(t)| and |g′′(t)| are uniformly bounded for t ∈ R.

(A2) ‖wk
0‖ (k = 0, 1, · · · ) are uniformly bounded.

(A3) Inequality (5.12) is valid, and η0 and β satisfy 0 < η0 <
1

β0
and β0 ≤ β <

1

η0
, where

β0 is a previously chosen constant.

(A4) There exists a closed bounded region Φ ⊂ R
q+pq such that all the weights {W k} ⊂ Φ,

and the set

Φ0 = {W ∈ Φ : EW (W ) = 0}

contains only finite points.
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Remark 3.1 We note that from (2.2) and (A1), the functions |gj(t)|, |g
′
j(t)| and |g′′j (t)|

are also uniformly bounded for all t and j.

Theorem 3.1 (Monotonicity) Let the error function E(W ) be given in (2.2), the learning

rates {ηn} be determined by (2.5), W 0 be an arbitrary initial value, and the weights {W k}

be generated by the algorithm OGM-PF (2.4). If assumptions (A1)–(A3) are valid, then

E
(

W (n+1)J
)

≤ E
(

WnJ
)

, n = 0, 1, · · · . (3.1)

Theorem 3.2 (Boundedness) Under the same assumptions of Theorem 3.1, the weight

sequences {wk
i }

∞
k=0 (i = 1, 2, · · · , q) connecting the input and hidden layers is uniformly

bounded.

Theorem 3.3 (Convergence) Let the error function E(W ) be defined in (2.2) and the

weights {W k} be updated by the algorithm OGM-F (2.4). If assumptions (A1)–(A3) are

satisfied, then there holds the following weak convergence result:

lim
k→∞

‖EW (W k)‖ = 0. (3.2)

Furthermore, if assumption (A4) is also valid, we have the strong convergence: There exists

W ∗ ∈ Φ0 such that

lim
k→∞

W k = W ∗. (3.3)

4 Numerical Experiment

To demonstrate the convergence behavior of the online gradient method with penalty used

in this paper, a benchmark problem−parity problem is simulated. The parity problem is a

well-known difficult problem that has often been used for testing the performance of network

training algorithm.

The input set consists of 2n patterns in n-dimensional space and each pattern is an n-bit

binary vector. The target value Oj is equal to 1 if the number of 1 in the pattern is odd,

otherwise it is equal to 0. For simplicity, in this experiment we use the 3-bit parity problem

which can be solved by a three-layer network with the structure 3-3-1. The transfer function

for both the hidden layer and output layer is chosen to be logsig( · ). This test is carried

out by setting the initial learning rate η0 and the penalty parameter λ with different values,

varying from 0.9 to 0.5, and 0.01 to 0.001, respectively. For every combination of different

η0 and λ, the training starts with the same initial weights.

Since the changes of total error (see (2.2)) and network weights become quite tiny when

the number of iteration exceeds 200, and their convergence performances are similar, we just

lay out the observation with η0 = 0.8 in the first 200 epoches.

As shown in Fig. 4.1, the total error with penalty decreases monotonically and the

corresponding gradient tends to zero as the number of iteration increases. The restraint of

the penalty term on the magnitude of the weights is shown in Fig. 4.2. Without penalty,

the weight becomes larger and larger during the training iteration, while the magnitude of

the weights is effectively reduced and finally tends to keep steady after adding the penalty.
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Table 4.1 summarizes the results obtained at the 200-th iteration by taking different penalty

parameters, from which we see that the larger λ is, the smaller the weight becomes. Hence,

the penalty approach provides a mechanism to effectively control the magnitude of the

weights.

Fig. 4.1 Total error and norm of gradient with penalty

Fig. 4.2 Effect of λ on error and weight

Table 4.1 Effect of λ on error and weight

η0 = 0.8 Square error Total error ‖W‖

λ = 0 0.005816 0.00581 18.33437

λ = 0.001 0.03360 0.12896 13.81066

λ = 0.003 0.22003 0.26617 5.54667

λ = 0.005 0.24999 0.25235 0.97141

λ = 0.006 0.24999 0.25228 0.87349

λ = 0.007 0.25000 0.25220 0.79435

λ = 0.008 0.25000 0.25212 0.72878

λ = 0.009 0.250009 0.25204 0.67341

λ = 0.01 0.25000 0.25195 0.62597
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5 Appendix

We introduce the following notations to simplify arguments:

r
n,j
i = ∆n

jw
nJ+j−1
i − ∆n

j w
nJ
i , (5.1)

Gn,j = G(V nξj), ψn,l,j = GnJ+l−1,j −GnJ,j , (5.2)

d
n,j
i = w

nJ+j−1
i − wnJ

i , Dn,j = WnJ+j−1 −WnJ . (5.3)

Lemma 5.1 Let {ηn} be given by (2.5). Then the following estimates hold:

0 < ηn < ηn−1 ≤ 1, n = 1, 2, · · · , (5.4)

ηn <
ρ

n
, ρ =

1

β
, n = 1, 2, · · · , (5.5)

ηn >
τ

n
, τ =

η0

1 + η0β
, n = 1, 2, · · · . (5.6)

Proof. This lemma can be proved by using (2.5) and η0 ∈ (0, 1].

Next, we present a few more lemmas. Their proofs are omitted to save the space. Proofs

for similar results can be found in [13] and [14].

Lemma 5.2 Let assumptions (A1) and (A2) be valid. There are Ci > 0 such that

‖G(x)‖ ≤ C1, x ∈ R
q, (5.7)

‖ψn,l,j‖ ≤ C2

(

q
∑

i=1

∥

∥

l−1
∑

k=1

∆n
kw

nJ
i

∥

∥ +

q
∑

i=1

l−1
∑

k=1

‖rn,k
i ‖

)

, (5.8)

q
∑

i=0

J
∑

j=1

‖rn,j
i ‖ ≤ C3ηn

q
∑

i=0

J
∑

j=1

‖∆n
jw

nJ
i ‖. (5.9)

Lemma 5.3 There exists a positive constant γ independent of n such that

E
(

W (n+1)J
)

≤ E
(

WnJ
)

−
1

ηn

q
∑

i=0

∥

∥

J
∑

j=1

∆n
j w

nJ
i

∥

∥

2
+ γ

q
∑

i=0

J
∑

j=1

∥

∥∆n
jw

nJ
i

∥

∥

2
. (5.10)

In virtue of (5.10), Theorem 3.1 can be proved if for any nonnegative integer n there

holds

1

ηn

q
∑

i=0

∥

∥

J
∑

j=1

∆n
j w

nJ
i

∥

∥

2
≥ γ

q
∑

i=0

J
∑

j=1

∥

∥∆n
jw

nJ
i

∥

∥

2
. (5.11)

For n = 0, if the left side of (5.11) is zero, then

‖EW (W 0)‖ = 0.

Hence, we have already reached a local minimum of the error function, and the iteration

can be terminated. Otherwise,

1

η0

q
∑

i=0

∥

∥

J
∑

j=1

∆0
jw

0
i

∥

∥

2
≥ γ

q
∑

i=0

J
∑

j=1

∥

∥∆0
jw

0
i

∥

∥

2
(5.12)

will be satisfied for all small enough η0. In this case, we can prove (5.11) by applying an

induction on n, resulting in the next lemma.
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Lemma 5.4 Let assumptions (A1) and (A2) be satisfied and {ηn} be updated by (2.5).

Then there exists a constant β0 such that if the initial learning rate η0 and the constant β

in (2.5) satisfy Assumption (A3), then (5.11) holds for all n.

The next two lemmas are necessary to our convergence result. Their proofs are omitted

since they are quite similar to those of Lemma 3.5 in [14] and Theorem 14.1.5 in [15] (also

in [16]), respectively.

Lemma 5.5 Suppose that the series

∞
∑

n=1

a2
n

n
<∞, that an > 0 for n = 1, 2, · · · , and that

there exists a constant µ > 0 such that |an+1 − an| <
µ

n
, n = 1, 2, · · · . Then lim

n→∞
an = 0.

Lemma 5.6 Let F : Ω ⊂ R
n → R

m (n,m ≥ 1) be continuous (Ω ⊂ R
n is a closed

bounded region) and Ω0 = {x ∈ Ω : F (x) = 0} be finite. Suppose that the sequence {xk} ⊂ Ω

is such that

(1) lim
k→∞

F (xk) = 0;

(2) lim
k→∞

‖xk+1 − xk‖ = 0.

Then, there exists x∗ ∈ Ω0 such that lim
k→∞

xk = x∗.

Now we are ready to prove Theorems 3.1–3.3.

Proof of Theorem 3.1 The monotonicity theorem can be drawn directly from (5.12),

Lemma 5.3 and Lemma 5.4.

Proof of Theorem 3.2 In light of (2.2) and (3.1), there holds for all n = 0, 1, · · · and

i = 1, 2, · · · , q that
∥

∥wnJ
i

∥

∥ ≤

√

1

λ
E(W 0) ≡M0. (5.13)

A combination of (A1), (A2), (5.4) and (5.13) gives
∥

∥wnJ+1
i

∥

∥ ≤M0 +
(

C4 +
2λ

J
M0

)

≡M1, (5.14)

where

C4 = sup
t∈R,1≤j≤J

|g′j(t)| sup
t∈R

|g′(t)| sup
k≥0

‖wk
0‖ max

1≤j≤J
‖ξj‖.

Similarly, we have
∥

∥wnJ+2
i

∥

∥ ≤M1 +
(

C4 +
2λ

J
M1

)

≡M2 (5.15)

and there are positive integers Mj (3 ≤ j ≤ J) such that
∥

∥w
nJ+j
i

∥

∥ ≤Mj, n = 0, 1, · · · ; i = 1, 2, · · · , q. (5.16)

On setting M = max{M0,M1, · · · ,MJ}, (5.13)−(5.16) state that for all n, i and j
∥

∥w
nJ+j
i

∥

∥ ≤M. (5.17)

The upper bound M is obviously independent of n, i and j, which indicates the boundedness

of {wk
i }

∞
k=0 (i = 1, · · · , q) and {V k}∞k=0.

Proof of Theorem 3.3 Set

σn =
1

ηn

q
∑

i=0

‖

J
∑

j=1

∆n
jw

nJ
i ‖2 − γ

q
∑

i=0

J
∑

j=1

‖∆n
jw

nJ
i ‖2.
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It follows from (5.12) and Lemma 5.4 that σn ≥ 0 for all n = 0, 1, · · · . By virtue of (5.10)

we can write

E
(

W (n+1)J
)

≤ E
(

W J
)

−
n

∑

k=1

σk. (5.18)

Letting n→ ∞ gives
∞
∑

n=1

σn ≤ E
(

W J
)

<∞. (5.19)

Use assumptions (A1), (A2), (5.5) and Theorem 3.2 to show
∞
∑

n=1

(

γ

q
∑

i=0

J
∑

j=1

∥

∥∆n
j w

nJ
i

∥

∥

2
)

< ρ2C5

∞
∑

n=1

1

n2
<∞. (5.20)

This together with (5.19) and (5.6) leads to
∞
∑

n=1

1

n

∥

∥EW (WnJ )
∥

∥

2
<

1

τ

∞
∑

n=1

( 1

ηn

q
∑

i=0

∥

∥

J
∑

j=1

∆n
jw

nJ
i

∥

∥

2
)

<∞. (5.21)

In light of (A1), (A2), (2.4), (5.5) and Theorem 3.2, there is C6 > 0 such that
q

∑

i=0

∥

∥d
n,J+1
i

∥

∥ ≤

q
∑

i=0

J
∑

j=1

∥

∥∆n
jw

nJ+j−1
i

∥

∥ <
C6

n
. (5.22)

Applying the mean value theorem to each g′j(t) and g′(t), we obtain from assumptions (A1),

(A2) and Inequality (5.22) that
∣

∣

∣

∥

∥EW (W (n+1)J)
∥

∥ −
∥

∥EW (WnJ )
∥

∥

∣

∣

∣
<
C7

n
. (5.23)

A combination of (5.21), (5.23) and Lemma 5.5 leads to

lim
n→∞

∥

∥EW (WnJ )
∥

∥ = 0. (5.24)

Similarly, as (5.23), there is C8 > 0 such that for all j = 1, 2, · · · , J − 1,
∥

∥EW (WnJ+j) − EW (WnJ)
∥

∥ <
C8

n
. (5.25)

Accordingly, we can state that

lim
n→∞

∥

∥EW (WnJ+j)
∥

∥ = 0, j = 1, 2, · · · , J − 1. (5.26)

Let us put (5.24) and (5.26) together and express them in a compact form, i.e.,

lim
k→∞

∥

∥EW (W k)
∥

∥ = 0. (5.27)

The proof of the strong convergence can be done as that of Theorem 3 in [17], and the

detail is omitted.
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