A Riesz Product Type Measure on the Cantor Group*

Shi Qi-yan
(Department of Mathematics, Fuzhou University, Fuzhou, 350108)
Communicated by Ji You-qing

Abstract

A Riesz type product as $$
P_{n}=\prod_{j=1}^{n}\left(1+a \omega_{j}+b \omega_{j+1}\right)
$$ is studied, where a, b are two real numbers with $|a|+|b|<1$, and $\left\{\omega_{j}\right\}$ are independent random variables taking values in $\{-1,1\}$ with equal probability. Let $\mathrm{d} \omega$ be the normalized Haar measure on the Cantor group $\Omega=\{-1,1\}^{N}$. The sequence of probability measures $\left\{\frac{P_{n} \mathrm{~d} \omega}{E\left(P_{n}\right)}\right\}$ is showed to converge weakly to a unique continuous measure on Ω, and the obtained measure is singular with respect to $\mathrm{d} \omega$. Key words: Riesz product, Cantor group, weak topology, singularity of measure 2000 MR subject classification: 42A55, 28A33 Document code: A Article ID: 1674-5647(2010)01-0007-10

1 Introduction

The Riesz product is a kind of lacunary series of trigonometric. It is an important topic in the field of harmonic analysis. The classical Riesz product measure is first introduced on the circle group $T=R / Z$ by Riesz, and later generalized by Zygmund ${ }^{[1]}$ as the weak limit of finite Riesz products

$$
\prod_{1}^{N}\left(1+a_{n} \cos \left(2 \pi \lambda_{n} t\right)\right)
$$

as N tends to infinity, where a_{n} 's are bounded by 1 and the integers λ_{n} 's are lacunary in the sense $\lambda_{n+1} / \lambda_{n} \geq 3$. In other words, there is a Radon measure μ such that

$$
\lim _{N \rightarrow \infty} \int_{T} f(t) \prod_{1}^{N}\left(1+a_{n} \cos \left(2 \pi \lambda_{n} t\right)\right) \mathrm{d} t=\int_{T} f(t) \mathrm{d} \mu(t), \quad \forall f \in C(T)
$$

Moreover, this measure is continuous, that is,

$$
\mu(\{t\})=0, \quad \forall t \in T
$$

[^0]Later, Hewitt and Zuckerman ${ }^{[2]}$ defined Riesz products on a general non-discrete compact abelian group. A short description of their approach is as follows.

Let G be a nondiscrete compact abelian group with discrete dual group Γ, Λ be a subset of Γ, and $W(\Lambda)$ be the set of all elements $\gamma \in \Gamma$ in the form of

$$
\begin{equation*}
\gamma=\lambda_{1}^{\epsilon_{1}} \lambda_{2}^{\epsilon_{2}} \cdots \lambda_{n}^{\epsilon_{n}} \tag{1.1}
\end{equation*}
$$

where $\epsilon_{k} \in\{-1,1\}$ and λ_{k} are distinct elements of Λ. Suppose that Λ satisfies the requirement that each element of $W(\Lambda)$ has a unique representation of the form (1.1) up to the order of the factors, and let α be any complex function on Λ bounded by 1 . For any finite set $\Phi \subset \Lambda$, define a Riesz product on G as follows:

$$
P(\Phi, \alpha)=\prod\{1+\operatorname{Re}[\alpha(\lambda) \lambda]: \lambda \in \Phi\}
$$

Hewitt and Zuckerman ${ }^{[2]}$ showed that there exists a unique continuous probability measure $\mu_{\alpha, \lambda}$ on G which is the weak limit of $P(\Phi, \alpha) \mathrm{d} m$ in the topology of $M(G)$, where $M(G)$ is the convolution algebra of all Radon measures on G and m is the normalized Haar measure on G. A famous theorem of Kakutani ${ }^{[3]}$ says that $\mu_{\alpha, \lambda}$ is either absolutely continuous or singular with respect to the Lebesgue-Haar measure on G, according to whether $\alpha \in l^{2}(\Lambda)$ or not.

The Riesz product is proved to be a source of powerful idea that can be used to produce concrete examples of measures with desired properties, such as singularity and multifractal structure. For the latter topic, refer to Peyriere ${ }^{[4]}$ and Fan ${ }^{[5]}$.

In this paper, we study a Riesz product type measure on the Cantor group. Throughout this paper, let

$$
\Omega=\prod_{1}^{\infty} \Omega_{j}=\{-1,1\}^{N}
$$

be the cartesian product with all factors equal to

$$
\Omega_{j}=\{-1,1\}, \quad \forall j \geq 1
$$

and write its elements

$$
\varepsilon=\left(\varepsilon_{n}\right)_{n \in \mathbf{N}}
$$

or

$$
\varepsilon=\varepsilon_{1} \varepsilon_{2} \cdots
$$

Ω is well known as an abelian group under the operation of pointwise product. With the discrete topology on each factor, the product topology on Ω makes it a compact abelian group, the so-called Cantor group. This topology can also be induced by a metric that the distance between two elements $\varepsilon=\left(\varepsilon_{n}\right)_{n \in \mathbf{N}}, \delta=\left(\delta_{n}\right)_{n \in \mathbf{N}}$ in Ω equals to

$$
2^{-\inf \left\{n: \varepsilon_{i}=\delta_{i}, 0 \leq i \leq n, \varepsilon_{n+1} \neq \delta_{n+1}\right\}}
$$

Denote the projection $\omega_{n}: \Omega \rightarrow\{-1,1\}$ by

$$
\omega_{n}(\varepsilon)=\varepsilon_{n}
$$

Elements in the dual group Γ of Ω, which are continuous group homomorphisms from Ω into the multiplicative group of complex numbers of modulus 1 , are provided by the projection functions. Precisely, let

$$
\mathcal{R}=\left\{\omega_{n}: n \in \mathbf{N}\right\} \subset \Gamma
$$

Then each nontrivial element of Γ can be uniquely written as

$$
\omega_{j_{1}} \omega_{j_{2}} \cdots \omega_{j_{k}}, \quad 1 \leq j_{1}<j_{2}<\cdots<j_{k}<\infty
$$

Note that for the normalized Haar measure m on $\Omega,\left\{\omega_{j}\right\}$ may be viewed as independent random variables taking values in $\{-1,1\}$ with equal probability. We write $\mathrm{d} m$ as $\mathrm{d} \omega$, and the Haar measure on $\Omega_{j}=\{-1,1\}$ by $\mathrm{d} \omega_{j}$ in the sequel.

Let $M(\Omega)$ be the convolution algebra of all Radon measure on Ω. As usual, we define the Fourier transform of $\mu \in M(\Omega)$ by

$$
\hat{\mu}(\gamma)=\int_{\Omega} \gamma \mathrm{d} \mu, \quad \gamma \in \Gamma
$$

The following result due to Lévy is needed in the next section.
Theorem 1.1 Let G be a nondiscrete metrizable compact abelian group with discrete dual group Γ and let $\left\{\mu_{n}\right\}$ be a sequence of probability measures on G. If $\hat{\mu}_{n}$ converges everywhere in Γ and defines a limit function f, then μ_{n} converges weakly to a probability measure μ on G, and $f=\hat{\mu}$.

The classical Riesz product measure on Ω is of the form

$$
\begin{equation*}
\prod_{j \geq 1}\left(1+a_{j} \omega_{j}\right) \mathrm{d} \omega, \quad a_{j} \in \mathbf{R},\left|a_{j}\right|<1 \tag{1.2}
\end{equation*}
$$

As we have known, it is a continuous probability measure, and is either absolutely continuous or singular with respect to the normalized Haar measure m on Ω according to whether $\left\{a_{j}\right\}$ is square summable or not. Moreover, if a_{j} are all constants, the dimension and multifractal structure of μ are completely known (see [6]). Now it is natural to consider the following products:

$$
\begin{equation*}
P_{n}=\prod_{j=1}^{n}\left(1+a_{j} \omega_{j}+b_{j} \omega_{j+1}\right), \quad n \geq 1 \tag{1.3}
\end{equation*}
$$

where a_{j}, b_{j} are real numbers and

$$
\left|a_{j}\right|+\left|b_{j}\right|<1, \quad \forall j \geq 1
$$

They are generalization of classical Riesz product measure on Ω and give birth to essentially different properties compared with the classical ones.

In the present we consider the case that a_{j}, b_{j} are constants. The article is arranged as follows: in Section 2, we show that $\left\{\frac{P_{n} \mathrm{~d} \omega}{E\left(P_{n}\right)}\right\}$ converges to a certain probability measure in the weak topology of $M(\Omega)$, and that the measure is continuous. Singularity with respect to the normalized Haar measure on Ω is studied in Section 3. A brief discussion is given in Section 4.

2 A Measure

Consider the finite products on Ω

$$
\begin{equation*}
P_{n}=\prod_{j=1}^{n}\left(1+a \omega_{j}+b \omega_{j+1}\right), \quad n \geq 1 \tag{2.1}
\end{equation*}
$$

where a, b are two real numbers with

$$
|a|+|b|<1
$$

Denote

$$
p_{n}=E\left(P_{n}\right)=\int_{\Omega} P_{n} \mathrm{~d} \omega .
$$

We wish to prove that the sequence of probability measures $\left\{\mu_{n}=\frac{P_{n}}{p_{n}} \mathrm{~d} \omega\right\}$ converges to a measure in the weak topology of $M(\Omega)$.

For $1 \leq k \leq n$, let

$$
P_{k, n}=\prod_{j=k}^{n}\left(1+a \omega_{j}+b \omega_{j+1}\right)
$$

Then

$$
\begin{equation*}
\int_{\Omega_{k}} \cdots \int_{\Omega_{1}} P_{n} \mathrm{~d} \omega_{1} \cdots \mathrm{~d} \omega_{k}=\left(u_{k}+v_{k} \omega_{k+1}\right) P_{k+1, n}, \quad 1 \leq k \leq n-1 \tag{2.2}
\end{equation*}
$$

where u_{k}, v_{k} are real numbers independent of ω, and satisfy the following relations:

$$
\begin{equation*}
u_{k+1}=u_{k}+a v_{k}, \quad v_{k+1}=b u_{k}, \quad u_{1}=1, \quad v_{1}=b \tag{2.3}
\end{equation*}
$$

To see this, first we have

$$
\int_{\Omega_{1}} P_{n} \mathrm{~d} \omega_{1}=\int_{\Omega_{1}}\left(1+a \omega_{1}+b \omega_{2}\right) P_{2, n} \mathrm{~d} \omega_{1}=\left(1+b \omega_{2}\right) P_{2, n}
$$

If (2.2) holds for $k \leq n-2$, then

$$
\begin{aligned}
& \int_{\Omega_{k+1}} \cdots \int_{\Omega_{1}} P_{n} \mathrm{~d} \omega_{1} \cdots \mathrm{~d} \omega_{k+1} \\
= & \int_{\Omega_{k+1}}\left(u_{k}+v_{k} \omega_{k+1}\right)\left(1+a \omega_{k+1}+b \omega_{k+2}\right) P_{k+2, n} \mathrm{~d} \omega_{k+1} \\
= & {\left[\left(u_{k}+a v_{k}\right)+b u_{k} \omega_{k+2}\right] P_{k+2, n}, }
\end{aligned}
$$

by induction we have (2.2).
(2.3) is equivalent to

$$
\begin{equation*}
u_{k+1}=u_{k}+a b u_{k-1}, \quad u_{1}=1, \quad u_{2}=1+a b \tag{2.4}
\end{equation*}
$$

and thus

$$
\begin{equation*}
u_{k}=\lambda^{k} \cdot \frac{1-t^{k+1}}{1-t} \tag{2.5}
\end{equation*}
$$

where

$$
\begin{equation*}
\lambda=\frac{1}{2}(1+\sqrt{1+4 a b}), \quad \lambda^{\prime}=\frac{1}{2}(1-\sqrt{1+4 a b}), \quad t=\frac{\lambda^{\prime}}{\lambda} . \tag{2.6}
\end{equation*}
$$

Furthermore,

$$
\begin{equation*}
p_{k}=u_{k}=\lambda^{k} \cdot \frac{1-t^{k+1}}{1-t}, \tag{2.7}
\end{equation*}
$$

which follows from that

$$
\begin{aligned}
p_{k} & =\int_{\Omega} P_{k} \mathrm{~d} \omega \\
& =\int_{\Omega_{k+1}} \cdots \int_{\Omega_{1}} P_{k} \mathrm{~d} \omega_{1} \cdots \mathrm{~d} \omega_{k+1} \\
& =\int_{\Omega_{k+1}} \int_{\Omega_{k}}\left(u_{k-1}+v_{k-1} \omega_{k}\right) P_{k, k} \mathrm{~d} \omega_{k} \mathrm{~d} \omega_{k+1} \\
& =\int_{\Omega_{k+1}} \int_{\Omega_{k}}\left(u_{k-1}+v_{k-1} \omega_{k}\right)\left(1+a \omega_{k}+b \omega_{k+1}\right) \mathrm{d} \omega_{k} \mathrm{~d} \omega_{k+1} \\
& =u_{k-1}+a v_{k-1} \\
& =u_{k} .
\end{aligned}
$$

For convenience, we denote

$$
p_{0}=1, \quad p_{-1}=0
$$

which can be seen from the formula (2.7), though they are not defined in the beginning of this section.

Lemma 2.1 For $1 \leq k \leq n$, we have
(i) $E\left(P_{k, n}\right)=p_{n-k+1}$;
(ii) $E\left(\omega_{k+1} P_{k}\right)=b p_{k-1}$;
(iii) $E\left(\omega_{k} P_{k, n}\right)=a p_{n-k}$;
(iv) $E\left(\omega_{k} \omega_{n+1} P_{n}\right)=b E\left(\omega_{k} P_{n-1}\right)$;
(v) $E\left(\omega_{k} P_{n}\right)=\frac{\lambda^{n-1}}{(1-t)^{2}}\left[a+b-b t^{k-1}-a t^{k}-a t^{n-k+1}-b t^{n-k+2}+(a+b) t^{n+1}\right]$.

Proof. (i)-(iv) These four formulas are easy to be established.
(v) For convenience, we denote

$$
P_{n+1, n}=1 .
$$

By (i)-(iii) we have

$$
\begin{aligned}
E\left(\omega_{k} P_{n}\right) & =E\left(\omega_{k} P_{k-1}\left(1+a \omega_{k}+b \omega_{k+1}\right) P_{k+1, n}\right) \\
& =E\left(\omega_{k} P_{k-1}\right) E\left(P_{k+1, n}\right)+a E\left(P_{k-1}\right) E\left(P_{k+1, n}\right)+b E\left(\omega_{k} P_{k-1}\right) E\left(\omega_{k+1} P_{k+1, n}\right) \\
& =b p_{k-2} p_{n-k}+a p_{k-1} p_{n-k}+a b^{2} p_{k-2} p_{n-k-1} .
\end{aligned}
$$

Substituting (2.7) into the right hand side of the above equation and using the equation

$$
\lambda^{2}=\lambda+a b,
$$

we have the desired result.
By this lemma, we have
Proposition $2.1\left\{\mu_{n}=\frac{P_{n}}{p_{n}} \mathrm{~d} \omega\right\}$ converges to a probability measure μ in the weak topology of $M(\Omega)$.

Proof. We prove that $\hat{\mu}_{n}$ converges everywhere in Γ and then apply Lévy theorem. Noticing that

$$
|t|<1, \quad \frac{p_{n-k}}{p_{n}} \rightarrow \frac{1}{\lambda^{k}}
$$

and

$$
\frac{1}{p_{n}} E\left(\omega_{k} P_{k, n}\right) \rightarrow \frac{a}{\lambda^{k}} \quad(\text { as } n \rightarrow \infty)
$$

we have

$$
\hat{\mu}_{n}\left(\omega_{1}\right)=\int_{\Omega} \omega_{1} \mathrm{~d} \mu_{n}=\frac{1}{p_{n}} \int_{\Omega} \omega_{1} P_{1, n} \mathrm{~d} \omega \rightarrow \frac{a}{\lambda} \quad(\text { as } n \rightarrow \infty) .
$$

For $j \geq 2$,

$$
\begin{aligned}
\hat{\mu}_{n}\left(\omega_{j}\right) & =\int_{\Omega} \omega_{j} \mathrm{~d} \mu_{n} \\
& =\frac{1}{p_{n}} \int_{\Omega} \omega_{j} P_{n} \mathrm{~d} \omega \\
& =\frac{1}{p_{n}} \int_{\Omega} P_{j-1} \omega_{j}\left(1+a \omega_{j}+b \omega_{j+1}\right) P_{j+1, n} \mathrm{~d} \omega \\
& =\frac{1}{p_{n}} \int_{\Omega} P_{j-1}\left(a+\omega_{j}+b \omega_{j} \omega_{j+1}\right) P_{j+1, n} \mathrm{~d} \omega \\
& =\frac{1}{p_{n}}\left[a p_{j-1} p_{n-j}+E\left(P_{j-1} \omega_{j}\right) p_{n-j}+b E\left(P_{j-1} \omega_{j}\right) E\left(\omega_{j+1} P_{j+1, n}\right)\right] \\
& \rightarrow \frac{1}{\lambda(1-t)}\left(a+b-b t^{j-1}-a t^{j}\right) \quad(\text { as } n \rightarrow \infty)
\end{aligned}
$$

For $1 \leq i<j$,

$$
\begin{aligned}
\hat{\mu}_{n}\left(\omega_{i} \omega_{j}\right)= & \frac{1}{p_{n}} \int_{\Omega} \omega_{i} \omega_{j} P_{n} \mathrm{~d} \omega \\
= & \frac{1}{p_{n}} \int_{\Omega} \omega_{i} \omega_{j} P_{j-1}\left(1+a \omega_{j}+b \omega_{j+1}\right) P_{j+1, n} \mathrm{~d} \omega \\
= & \frac{1}{p_{n}}\left\{p_{n-j} E\left(\omega_{i} \omega_{j} P_{j-1}\right)+a p_{n-j} E\left(\omega_{i} P_{j-1}\right)+b E\left(\omega_{i} \omega_{j} P_{j-1}\right) E\left(\omega_{j+1} P_{j+1, n}\right)\right\} \\
\rightarrow & \frac{1}{\lambda^{2}(1-t)^{2}}\left\{(a+b)^{2}-\left(a b+b^{2}\right) t^{i-1}-\left(a^{2}+a b\right) t^{i}-a b t^{j-i-1}\right. \\
& \left.-\left(a^{2}+b^{2}\right) t^{j-i}-a b t^{j-i+1}+\left(a b+b^{2}\right) t^{j-1}+\left(a^{2}+a b\right) t^{j}\right\} \quad(\text { as } n \rightarrow \infty)
\end{aligned}
$$

And similarly, for $1 \leq j_{1}<j_{2}<\cdots<j_{k}$,

$$
\begin{aligned}
& \hat{\mu}_{n}\left(\omega_{j_{1}} \omega_{j_{2}} \cdots \omega_{j_{k}}\right) \\
= & \frac{1}{p_{n}} \int_{\Omega} \omega_{j_{1}} \omega_{j_{2}} \cdots \omega_{j_{k}} P_{n} \mathrm{~d} \omega \\
= & \frac{1}{p_{n}} \int_{\Omega} P_{j_{k}-1} \omega_{j_{1}} \omega_{j_{2}} \cdots \omega_{j_{k}}\left(1+a \omega_{j_{k}}+b \omega_{j_{k}+1}\right) P_{j_{k}+1, n} \mathrm{~d} \omega \\
= & \frac{1}{p_{n}}\left[p_{n-j_{k}}\left(E\left(\omega_{j_{1}} \cdots \omega_{j_{k}} P_{j_{k}-1}\right)+a E\left(\omega_{j_{1}} \cdots \omega_{j_{k-1}} P_{j_{k}-1}\right)\right)\right. \\
& \left.+b E\left(\omega_{j_{1}} \cdots \omega_{j_{k}} P_{j_{k}-1}\right) E\left(\omega_{j_{k}+1} P_{j_{k}+1, n}\right)\right] \\
\rightarrow & \frac{1}{\lambda^{j_{k}}}\left[E\left(\omega_{j_{1}} \cdots \omega_{j_{k}} P_{j_{k}-1}\right)+a E\left(\omega_{j_{1}} \cdots \omega_{j_{k-1}} P_{j_{k}-1}\right)+\frac{a b}{\lambda} E\left(\omega_{j_{1}} \cdots \omega_{j_{k}} P_{j_{k}-1}\right)\right]
\end{aligned}
$$

$$
=\frac{1}{\lambda^{j_{k}}}\left[\lambda E\left(\omega_{j_{1}} \cdots \omega_{j_{k}} P_{j_{k}-1}\right)+a E\left(\omega_{j_{1}} \cdots \omega_{j_{k-1}} P_{j_{k}-1}\right)\right] \quad(\text { as } n \rightarrow \infty)
$$

Thus, we have proved that $\hat{\mu}_{n}$ converges everywhere and defines a limit function f in Γ. By Theorem 1.1,

$$
f=\hat{\mu}
$$

for some probability measure $\mu \in M(\Omega)$, and

$$
\mu_{n} \xrightarrow{w} \mu .
$$

Moreover, we have the following result.

Proposition $2.2 \quad \mu$ is a continuous measure.

Proof. Notice that μ is continuous if and only if

$$
\mu(\{\varepsilon\})=0, \quad \forall \varepsilon \in \Omega
$$

if and only if

$$
\mu\left(\Omega_{\left.\varepsilon\right|_{n}}\right) \rightarrow 0 \quad \text { as } n \rightarrow \infty, \forall \varepsilon \in \Omega
$$

where

$$
\left.\varepsilon\right|_{n}=\varepsilon_{1} \varepsilon_{2} \cdots \varepsilon_{n}
$$

for any $\varepsilon=\varepsilon_{1} \varepsilon_{2} \cdots \in \Omega$, and

$$
\left.\Omega\right|_{u_{1} u_{2} \cdots u_{n}}=\left\{\varepsilon=\varepsilon_{1} \varepsilon_{2} \cdots \in \Omega: \varepsilon_{1}=u_{1}, \varepsilon_{2}=u_{2}, \cdots, \varepsilon_{n}=u_{n}\right\} .
$$

Since $\Omega_{\left.\varepsilon\right|_{n}}$ is open and closed in Ω, we have

$$
\begin{aligned}
\mu\left(\Omega_{\left.\varepsilon\right|_{n}}\right) & =\lim _{m \rightarrow \infty} \mu_{m}\left(\Omega_{\left.\varepsilon\right|_{n}}\right) \\
& =\lim _{m \rightarrow \infty} \int_{\Omega_{\left.\varepsilon\right|_{n}}} \frac{P_{m}}{p_{m}} \mathrm{~d} \omega \\
& =\lim _{m \rightarrow \infty} \int_{\Omega_{\left.\varepsilon\right|_{n}}} \frac{P_{n-1} P_{n, m}}{p_{m}} \mathrm{~d} \omega \\
& =\lim _{m \rightarrow \infty} \frac{1}{p_{m}} \prod_{j=1}^{n-1}\left(1+a \varepsilon_{j}+b \varepsilon_{j+1}\right) \int_{\Omega_{\left.\varepsilon\right|_{n}}}\left(1+a \omega_{n}+b \omega_{n+1}\right) P_{n+1, m} \mathrm{~d} \omega \\
& =\frac{1}{2^{n}} \prod_{j=1}^{n-1}\left(1+a \varepsilon_{j}+b \varepsilon_{j+1}\right) \lim _{m \rightarrow \infty} \frac{1}{p_{m}}\left[\left(1+a \varepsilon_{n}\right) p_{m-n}+b E\left(\omega_{n+1} P_{n+1, m}\right)\right] \\
& =\frac{1}{(2 \lambda)^{n}}\left(\lambda+a \varepsilon_{n}\right) \prod_{j=1}^{n-1}\left(1+a \varepsilon_{j}+b \varepsilon_{j+1}\right)
\end{aligned}
$$

We only consider the case of $a b \neq 0$ because, in the case a or b is zero the corresponding measure is continuous, which has been discussed in Section 1.

If a, b have the same signs. Since

$$
|a|+|b|<1<\lambda
$$

the right hand side in (2.8) tends to 0 as $n \rightarrow \infty$.

If a, b have the different signs, without loss of generality, we assume that

$$
|a| \geq|b| .
$$

Then

$$
\max \left\{\prod_{j=1}^{n-1}\left(1+a \varepsilon_{j}+b \varepsilon_{j+1}\right): \varepsilon \in \Omega\right\}=(1+|a|-|b|)^{n-2}(1+|a|+|b|)
$$

But

$$
1+|a|-|b|<1+\sqrt{1-4|a b|}=2 \lambda,
$$

and thus the right hand side in (2.8) also tends to 0 as $n \rightarrow \infty$. This completes the proof.

3 Singularity

In this section, we show that μ defined in the previous section is singular with respect to the normalized Haar measure m on Ω in case $a+b \neq 0$.

Set

$$
\begin{equation*}
g_{0}=1, \quad g_{1}=\omega_{1}-\frac{a}{\lambda}, \quad g_{j}=\omega_{j}-t \omega_{j-1}-\frac{a+b}{\lambda} \quad(j=2,3, \cdots) \tag{3.1}
\end{equation*}
$$

Lemma 3.1 $\left\{g_{j}\right\}_{j \geq 0}$ forms an orthogonal system in $L^{2}(\mu)$, and

$$
\begin{equation*}
\int_{\Omega}\left|g_{j}\right|^{2} \mathrm{~d} \mu \leq M, \quad j=0,1,2, \cdots \tag{3.2}
\end{equation*}
$$

for some constant $M>0$.

Proof. By the calculation in Proposition 2.1, we have

$$
\begin{aligned}
\hat{\mu}\left(\omega_{1}\right)= & \frac{a}{\lambda} \\
\hat{\mu}\left(\omega_{j}\right)= & \frac{1}{\lambda(1-t)}\left\{a+b-b t^{j-1}-a t^{j}\right\} \quad(j \geq 2), \\
\hat{\mu}\left(\omega_{i} \omega_{j}\right)= & \frac{1}{\lambda^{2}(1-t)^{2}}\left\{(a+b)^{2}-\left(a b+b^{2}\right) t^{i-1}-\left(a^{2}+a b\right) t^{i}-a b t^{j-i-1}\right. \\
& \left.-\left(a^{2}+b^{2}\right) t^{j-i}-a b t^{j-i+1}+\left(a b+b^{2}\right) t^{j-1}+\left(a^{2}+a b\right) t^{j}\right\}
\end{aligned}
$$

for $1 \leq i \leq j$.
By the above formulas, a straightforward calculation gives

$$
\int_{\Omega} g_{i} g_{j} \mathrm{~d} \mu=0, \quad i, j \geq 0, i \neq j
$$

which indicates that $\left\{g_{j}\right\}_{j \geq 0}$ forms an orthogonal system in $L^{2}(\mu)$.
Now we prove (3.2). Since

$$
\begin{gathered}
\int_{\Omega}\left|g_{0}\right|^{2} \mathrm{~d} \mu=1 \\
\int_{\Omega}\left|g_{1}\right|^{2} \mathrm{~d} \mu=1-\frac{a^{2}}{\lambda^{2}} \leq 1
\end{gathered}
$$

$$
\begin{aligned}
\int_{\Omega}\left|g_{j}\right|^{2} \mathrm{~d} \mu & =\int_{\Omega}\left(\omega_{j}-t \omega_{j-1}\right)^{2} \mathrm{~d} \mu-\left(\frac{a+b}{\lambda}\right)^{2} \\
& =1+t^{2}-\left(\frac{a+b}{\lambda}\right)^{2}-2 t \hat{\mu}\left(\omega_{j-1} \omega_{j}\right) \\
& \rightarrow 1+t^{2}-\left(\frac{a+b}{\lambda}\right)^{2}-\frac{2 t}{\lambda^{2}(1-t)}\left[a^{2}+b^{2}+a b(1+t)\right] \quad(\text { as } j \rightarrow \infty) \\
& =\frac{1+t}{\lambda^{2}(1-t)}(\sqrt{1+4 a b}+a+b)(\sqrt{1+4 a b}-a-b) \\
& >0, \quad j=2,3, \cdots,
\end{aligned}
$$

we have

$$
\int_{\Omega}\left|g_{j}\right|^{2} \mathrm{~d} \mu \leq M, \quad j=0,1,2, \cdots
$$

for some $M>0$.
Proposition 3.1 If $a+b \neq 0$, the measures μ and the normalized Haar measure m on Ω are mutually singular.

Proof. Let $\left\{c_{j}\right\}_{j \geq 1}$ be a sequence in l^{2}, but not in l^{1}; for example, take $c_{j}=\frac{1}{j}$. Then the series $\sum_{j \geq 1} c_{j} g_{j}$ converges in $L^{2}(\mu)$. We also have $\left\{d_{j}=c_{j}-\frac{\lambda^{\prime}}{\lambda} c_{j+1}\right\}_{j \geq 1} \in l^{2}$ since l^{2} is a vector space, whence the series $\sum_{j \geq 1} d_{j} \omega_{j}$ converges in $L^{2}(m)$. So we can choose a subsequence of positive integers $\left\{N_{k}\right\}$ such that $\sum_{1 \leq j \leq N_{k}} c_{j} g_{j}$ converges for μ-a.e. $\varepsilon \in \Omega$ and $\sum_{1 \leq j \leq N_{k}} d_{j} \omega_{j}$ converges for m-a.e. $\varepsilon \in \Omega$, respectively, as k tends to infinity. If μ and m are not mutually singular, then there exists $\varepsilon \in \Omega$ such that these two series converge at the same time. But

$$
\sum_{1 \leq j \leq N_{k}} c_{j} g_{j}-\sum_{1 \leq j \leq N_{k}} d_{j} \omega_{j}=\frac{b c_{1}}{\lambda}+t c_{N_{k}+1} \omega_{N_{k}}-\frac{a+b}{\lambda} \sum_{1 \leq j \leq N_{k}} c_{j}
$$

which implies that the limit $\lim _{k \rightarrow \infty} \sum_{1 \leq j \leq N_{k}} c_{j}$ exists and is finite, a contradiction.

4 Discussions

(i) By formula (2.8) we know that μ is a quasi-Bernoulli measure on Ω. The fractal analysis and the validity of multifractal formalism of such a measure were studied extensively by Brown et al. ${ }^{[7]}$.
(ii) Our approach may be applied to the products

$$
P_{n}=\prod_{j=1}^{n}\left(1+a \omega_{j}+b \omega_{j+1}+c \omega_{j+2}\right)
$$

which can have even more items in the bracket, where a, b, c are real numbers with

$$
|a|+|b|+|c|<1 .
$$

(iii) For the general case of

$$
P_{n}=\prod_{j=1}^{n}\left(1+a_{j} \omega_{j}+b_{j} \omega_{j+1}\right),
$$

where $\left\{a_{j}\right\},\left\{b_{j}\right\}$ are two sequences of real numbers with $\left|a_{j}\right|+\left|b_{j}\right|<1$ and additional conditions such as periodicity, uniformly distribution, etc., does $\left\{\mu_{n}=\frac{P_{n}}{p_{n}} \mathrm{~d} \omega\right\}$ also converge to certain measures in the weak topology of $M(\Omega)$? If these measures exist, what properties do they possess? These are left to be discussed in future publications.

References

[1] Zygmund, A., Trigonometric Series, Vols. I, II, Cambridge University Press, Cambridge, 1959.
[2] Hewitt, E. and Zuckerman, H., Singular measures with absolutely continuous convolution aquares, Proc. Cambridge. Philos. Soc., 62(1966), 399-420.
[3] Kakutani, S., On equivalence of infinite product measures, Ann. Math., 49(1948), 214-224.
[4] Peyriere, J., Etude de quelques proprietes des produits de Riesz, Ann. Inst. Fourier (Grenoble), 25(1975), 127-169.
[5] Fan, A. H., Quelques proprietes des produits de Riesz, Bull. Sci. Math., 117(1993), 421-439.
[6] Shi, Q., Riesz Product Type Measures on the Cantor Group, Lecture Notes of Seminario Interdisciplinare di Matematica IV, S.I.M. Dep. Mat. Univ. Basilicata, Potenza, 2005, 73-77.
[7] Brown, G., Michon, G. and Peyriere, J., On the multifractal analysis of measures, J. Statist. Phys., 66(1992), 775-790.

[^0]: *Received date: Nov. 6, 2007.

