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Abstract: We consider a central hyperplane arrangement in a three-dimensional

vector space. The definition of characteristic form to a hyperplane arrangement is

given and we could make use of characteristic form to judge the reducibility of this

arrangement. In addition, the relationship between the reducibility and freeness of a

hyperplane arrangement is given.
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1 Introduction

In this paper, we study the reducibility and freeness of central arrangements in a three-

dimensional vector space. In [1] and [2], the authors gave the necessary and sufficient

conditions of the reducibility of an arrangement A. They connected the reducibility with

one degree-branch of D(A) and Beta invariant β(A) (see [3]) respectively. However, it is

needed a great quantity of calculation to judge the reducibility of A. We give a simple

method to judge the reducibility of an arrangement A, which needs only the characteristic

form of A.

The freeness is an important property of an arrangement. Recently, there are many

papers studying the freeness of arrangements. For example, Ziegler[4] and Yuzvinsky[5]

gave some necessary and sufficient conditions of freeness. In addition, some conclusions on

freeness of arrangements in a vector space of dimension three or higher were given in [6] and

[7]. We study the freeness of arrangements from another angle of view, and the relationship

between reducibility and freeness of a hyperplane arrangement is given in this paper.

The notions and symbols in this paper are the same as in [8] and [9].
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2 Basic Notions

Let K be a field and V be a vector space of dimension l on K. A hyperplane H in V

is an affine subspace of dimension (l − 1). A hyperplane arrangement A is a finite set of

hyperplanes in V . If A consists of n hyperplanes, we write that

|A| = n.

We call polynomial

Q(A) =
∏

H∈A

αH (kerαH = H)

the defining polynomial of A. If
⋂

H∈A

H 6= ∅,

then we call A central, otherwise, we call A non-central. The dimension of A, dimA, is

defined to be

dimA = l.

Let W be the space spanned by the normals to the hyperplanes in A, and the rank of A,

rank(A), be the dimension of W . We say that A is essential if

rank(A) = dim(A).

Let

L = L(A)

be the set of nonempty intersections of elements of A.

Let (A1, V1) and (A2, V2) be two arrangements and

V = V1 ⊕ V2.

Define the product arrangement (A1 ×A2, V ) by

A1 ×A2 = {H1 ⊕ V2 | H1 ∈ A1} ∪ {V1 ⊕ H2 | H2 ∈ A2}.

Call the arrangement (A, V ) reducible if after a change of coordinates, we get

A = A1 ×A2,

otherwise, call A irreducible.

Let

S = S(V ∗)

be the symmetric algebra of the dual space V ∗ of V . If x1, · · · , xl is a basis for V ∗, then

S ≃ K[x1, · · · , xl].

Let

DerK(S) = {θ : S → S | θ(fg) = fθ(g) + gθ(f), f, g ∈ S}.

Let Sp denote the K-vector subspace of S consisting of 0 and the homogeneous polynomials

of degree p for p ≥ 0. A nonzero element θ ∈ DerK(S) is homogeneous of polynomial degree

p if

θ =

l
∑

k=1

fk

∂

∂xk

∈ DerK(S),
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and fk ∈ Sp for 1 ≤ k ≤ l. In this case we write

pdegθ = p.

Let

D(A) = {θ ∈ DerK(S) | θ(Q(A)) ∈ Q(A)S}.

We call A a free arrangement if D(A) is a free module over S. Let A be a free arrangement

and let {θ1, · · · , θl} be a homogeneous basis for D(A). We call pdegθ1, · · · , pdegθl the

exponents of A and write

expA = {pdegθ1, · · · , pdegθl}.

Then we know that
l

∑

i=1

pdegθi = |A|.

3 Main Results

Since every non-essential arrangement can be considered as the product arrangement of its

essentialization and an empty arrangement, we assume that A is an essential arrangement

in this paper.

Definition 3.1 Let A be an arrangement with |A| = n. Let

S = {B | B is the maximal subset of A with rank(B) = 2},

ki = #{B ∈ S | #B = i + 1},

where #B stands for the number of elements in B. It follows from the definitions of S and

ki that ki = 0 when i ≤ 0 and i ≥ n. We call set (2k1 , · · · , nkn−1) the characteristic form

of A.

Example 3.1 Let A be the arrangement defined by

Q(A) = xyz(x + y).

The characteristic form of A is (23, 31).

If the characteristic form of A is (2k1 , · · · , nkn−1), it is clear that the following equality

holds:
(

n

2

)

= k1

(

2

2

)

+ · · · + kn−1

(

n

2

)

.

The above equality can be used to examine whether a given characteristic form is right

or not.

Lemma 3.1[2] The arrangement A is reducible if and only if β(A) = 0, where

β(A) = (−1)rank(A)−1 dχ(A, t)

dt

∣

∣

∣

∣

t=1

is the Beta invariant of A and χ(A, t) is the characteristic polynomial of A.
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Theorem 3.1 Let A be an arrangement with |A| = n. If the characteristic form of A is

(2k1 , · · · , nkn−1), then A is reducible if and only if
n−1
∑

i=1

iki = 2n − 3.

Proof. It follows from Lemma 3.1 that A is reducible if and only if
dχ(A, t)

dt

∣

∣

∣

∣

t=1

= 0.

Since |A| = n, by the definition of the characteristic polynomial, we assume that

χ(A, t) = t3 − nt2 + a1t − a0,

where a0, a1 ∈ N. Then
dχ(A, t)

dt

∣

∣

∣

∣

t=1

= 3 − 2n + a1 = 0,

that is,

a1 = 2n − 3.

In addition, if B ∈ S and #B = i, then, for x =
⋂

H∈B

H , we know that

µ(x) = −
∑

z<x

µ(z) = −(1 − i) = i − 1,

where µ is the Möbius function of L(A). So

a1 =
∑

x∈L(A)
dim x=1

µ(x) =
∑

∩B=x
B∈S

µ(x) =
∑

#B=i
B∈S

(i − 1)(ki−1) =

n−1
∑

i=1

iki.

Hence, we have

a1 =

n−1
∑

i=1

iki = 2n − 3.

It follows from Definition 3.1 that we may give the characteristic form of an arbitrary

arrangement A only by the defining polynomial Q(A), and after that we could judge the

reducibility of A quickly by the equality in Theorem 3.1.

Example 3.2 Let A be the arrangement defined by

Q(A) = (x + y + z)(x + 2y + 3z)(2x − y − z)(x + 2y + 2z).

The characteristic form of A is (23, 31). Then A is reducible by a direct examination.

Corollary 3.1 Let A be an arrangement with |A| = n. If the characteristic form of A

is (2k1 , . . . , nkn−1), then A is factored if and only if (n + 1)2 − 4
( n−1

∑

i=1

iki + 1
)

is a square

of an integer. We say that the arrangement A is factored if the characteristic polynomial

χ(A, t) has a complete factorization over Z.

Proof. Since A is a central arrangement, we have

χ(A, 1) =
∑

x∈L(A)

µ(x) =
∑

0̂≤x≤1̂

µ(x) = 0,
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that is, (t − 1) is a factor of χ(A, t). We may let

χ(A, t) = t3 − nt2 + a1t − (1 − n + a1) = (t − 1)[t2 + (1 − n)t + (1 − n + a1)].

Then we know that A is factored if and only if t2 + (1 − n)t + (1 − n + a1) has a complete

factorization over Z, that is,

(1 − n)2 − 4(1 − n + a1) = (n + 1)2 − 4(a1 + 1) = (n + 1)2 − 4
(

n−1
∑

i=1

iki + 1
)

is a square of an integer.

Next, we use the following results on freeness. For the detailed proofs, please see [8].

Lemma 3.2[8] Let (A1, V1) and (A2, V2) be two arrangements. The product arrangement

(A1 ×A2, V1 ⊕ V2) is free if and only if both (A1, V1) and (A2, V2) are free. In this case,

exp(A1 ×A2) = {expA1, expA2}.

Lemma 3.3[8] If A is a free arrangement with

expA = {b1, · · · , bl},

then

χ(A, t) =

l
∏

i=1

(t − bi).

The following theorem gives the relationship between reducibility and freeness of A.

Theorem 3.2 Let A be an arrangement with |A| = n. Then A is reducible if and only if

A is free and

expA = {1, 1, n − 2}.

Proof. If A is reducible, then there exist two non-empty arrangements A1 and A2, and

after a change of coordinates, we have

A = A1 ×A2.

Since

dimA = 3,

we may assume that

dimA1 = 1, dimA2 = 2.

Since A is central, we have

|A1| = 1.

Thus θ = x
∂

∂x
is the basis of D(A1), and then D(A1) is a free module, so A1 is free and

expA1 = {1}.

Recall that all 2-arrangements are free. Thus A2 is free and

expA2 = {1, |A2| − 1} = {1, n − 2}.

It follows from Lemma 3.2 that A is free and

expA = {expA1, expA2} = {1, 1, n − 2}.
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Conversely, if A is free and

expA = {1, 1, n − 2},

then by Lemma 3.3,

χ(A, t) = (t − 1)
2
(t − n + 2) = t3 − nt2 + (2n − 3)t − (n − 2),

and we have

a1 = 2n − 3.

Thus A is reducible by Theorem 3.1.

4 Applications

There is another use of the characteristic form of an arrangement A. It can be used to

judge the freeness of some arrangements quickly. By Lemma 3.3, if the characteristic poly-

nomial of A cannot factor completely over Z, then A is not free. Then by Corollary 3.1, if

(n + 1)2 − 4
( n−1

∑

i=1

iki + 1
)

is not a square of an integer, then A is not free. We make use of

the above result to judge the freeness of the following arrangements.

Example 4.1 Let A be the arrangement defined by

Q(A) = xyz(x + y − z).

The characteristic form of A is (26). Then

(|A| + 1)2 − 4
(

n−1
∑

i=1

iki + 1
)

= −3

is not a square of an integer, and thus A is not free.

Lemma 4.1[8] Suppose A is not empty. Let (A, A′, A′′) be a triple, where

A′ = A− {H0}, A′′ = {H0 ∩ H 6= ∅ | H ∈ A′},

and H0 ∈ A is a distinguished hyperplane. Any two of the following statements imply the

third:

(1) A is free with expA = {b1, · · · , bl−1, bl};

(2) A′ is free with expA′ = {b1, · · · , bl−1, bl − 1};

(3) A′′ is free with expA′′ = {b1, · · · , bl−1}.

Example 4.2 Let A be the arrangement defined by

Q(A) = xyz(x + y)(x + y − z).

Choose

H0 = ker z.

Then

Q(A′) = xy(x + y)(x + y − z),

and the characteristic form of A′ is (23, 31). By Theorem 3.1, A′ is reducible, and then by

Theorem 3.2, A′ is free with

expA′ = {1, 1, 2}.
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Since

dim(A′′) = 2, |A′′| = 3,

A′′ is free with

expA′′ = {1, 2}.

By Lemma 4.1, A is free with

expA = {1, 2, 2}.
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