An Algorithm for Reducibility of 3-arrangements*

Gao Rui-mei and Pei Dong-he
(School of Mathematics and Statistics, Northeast Normal University, Changchun, 130024)

Communicated by Du Xian-kun

Abstract

We consider a central hyperplane arrangement in a three-dimensional vector space. The definition of characteristic form to a hyperplane arrangement is given and we could make use of characteristic form to judge the reducibility of this arrangement. In addition, the relationship between the reducibility and freeness of a hyperplane arrangement is given.

Key words: hyperplane arrangement, reducibility, freeness
2000 MR subject classification: 52C35, 32S22
Document code: A
Article ID: 1674-5647(2010)03-0???-07

1 Introduction

In this paper, we study the reducibility and freeness of central arrangements in a threedimensional vector space. In [1] and [2], the authors gave the necessary and sufficient conditions of the reducibility of an arrangement \mathcal{A}. They connected the reducibility with one degree-branch of $D(\mathcal{A})$ and Beta invariant $\beta(\mathcal{A})$ (see [3]) respectively. However, it is needed a great quantity of calculation to judge the reducibility of \mathcal{A}. We give a simple method to judge the reducibility of an arrangement \mathcal{A}, which needs only the characteristic form of \mathcal{A}.

The freeness is an important property of an arrangement. Recently, there are many papers studying the freeness of arrangements. For example, Ziegler ${ }^{[4]}$ and Yuzvinsky ${ }^{[5]}$ gave some necessary and sufficient conditions of freeness. In addition, some conclusions on freeness of arrangements in a vector space of dimension three or higher were given in [6] and [7]. We study the freeness of arrangements from another angle of view, and the relationship between reducibility and freeness of a hyperplane arrangement is given in this paper.

The notions and symbols in this paper are the same as in [8] and [9].

[^0]
2 Basic Notions

Let \mathbb{K} be a field and V be a vector space of dimension l on \mathbb{K}. A hyperplane H in V is an affine subspace of dimension $(l-1)$. A hyperplane arrangement \mathcal{A} is a finite set of hyperplanes in V. If \mathcal{A} consists of n hyperplanes, we write that

$$
|\mathcal{A}|=n
$$

We call polynomial

$$
Q(\mathcal{A})=\prod_{H \in \mathcal{A}} \alpha_{H} \quad\left(\operatorname{ker} \alpha_{H}=H\right)
$$

the defining polynomial of \mathcal{A}. If

$$
\bigcap_{H \in \mathcal{A}} H \neq \emptyset
$$

then we call \mathcal{A} central, otherwise, we call \mathcal{A} non-central. The dimension of $\mathcal{A}, \operatorname{dim} \mathcal{A}$, is defined to be

$$
\operatorname{dim} \mathcal{A}=l .
$$

Let W be the space spanned by the normals to the hyperplanes in \mathcal{A}, and the rank of \mathcal{A}, $\operatorname{rank}(\mathcal{A})$, be the dimension of W. We say that \mathcal{A} is essential if

$$
\operatorname{rank}(\mathcal{A})=\operatorname{dim}(\mathcal{A})
$$

Let

$$
L=L(\mathcal{A})
$$

be the set of nonempty intersections of elements of \mathcal{A}.
Let $\left(\mathcal{A}_{1}, V_{1}\right)$ and $\left(\mathcal{A}_{2}, V_{2}\right)$ be two arrangements and

$$
V=V_{1} \oplus V_{2}
$$

Define the product arrangement $\left(\mathcal{A}_{1} \times \mathcal{A}_{2}, V\right)$ by

$$
\mathcal{A}_{1} \times \mathcal{A}_{2}=\left\{H_{1} \oplus V_{2} \mid H_{1} \in \mathcal{A}_{1}\right\} \cup\left\{V_{1} \oplus H_{2} \mid H_{2} \in \mathcal{A}_{2}\right\} .
$$

Call the arrangement (\mathcal{A}, V) reducible if after a change of coordinates, we get

$$
\mathcal{A}=\mathcal{A}_{1} \times \mathcal{A}_{2}
$$

otherwise, call \mathcal{A} irreducible.
Let

$$
S=S\left(V^{*}\right)
$$

be the symmetric algebra of the dual space V^{*} of V. If x_{1}, \cdots, x_{l} is a basis for V^{*}, then

$$
S \simeq \mathbb{K}\left[x_{1}, \cdots, x_{l}\right]
$$

Let

$$
\operatorname{Der}_{\mathbb{K}}(S)=\{\theta: S \rightarrow S \mid \theta(f g)=f \theta(g)+g \theta(f), f, g \in S\} .
$$

Let S_{p} denote the \mathbb{K}-vector subspace of S consisting of 0 and the homogeneous polynomials of degree p for $p \geq 0$. A nonzero element $\theta \in \operatorname{Der}_{\mathbb{K}}(S)$ is homogeneous of polynomial degree p if

$$
\theta=\sum_{k=1}^{l} f_{k} \frac{\partial}{\partial x_{k}} \in \operatorname{Der}_{\mathbb{K}}(S),
$$

and $f_{k} \in S_{p}$ for $1 \leq k \leq l$. In this case we write

$$
\operatorname{pdeg} \theta=p
$$

Let

$$
D(\mathcal{A})=\left\{\theta \in \operatorname{Der}_{\mathbb{K}}(S) \mid \theta(Q(\mathcal{A})) \in Q(\mathcal{A}) S\right\}
$$

We call \mathcal{A} a free arrangement if $D(\mathcal{A})$ is a free module over S. Let \mathcal{A} be a free arrangement and let $\left\{\theta_{1}, \cdots, \theta_{l}\right\}$ be a homogeneous basis for $D(\mathcal{A})$. We call $\operatorname{pdeg} \theta_{1}, \cdots, \operatorname{pdeg} \theta_{l}$ the exponents of \mathcal{A} and write

$$
\exp \mathcal{A}=\left\{\operatorname{pdeg} \theta_{1}, \cdots, \operatorname{pdeg} \theta_{l}\right\}
$$

Then we know that

$$
\sum_{i=1}^{l} \operatorname{pdeg} \theta_{i}=|\mathcal{A}|
$$

3 Main Results

Since every non-essential arrangement can be considered as the product arrangement of its essentialization and an empty arrangement, we assume that \mathcal{A} is an essential arrangement in this paper.

Definition 3.1 Let \mathcal{A} be an arrangement with $|\mathcal{A}|=n$. Let

$$
\begin{aligned}
& S=\{\mathcal{B} \mid \mathcal{B} \text { is the maximal subset of } \mathcal{A} \text { with } \operatorname{rank}(\mathcal{B})=2\} \\
& k_{i}=\#\{\mathcal{B} \in S \mid \# \mathcal{B}=i+1\}
\end{aligned}
$$

where $\# \mathcal{B}$ stands for the number of elements in \mathcal{B}. It follows from the definitions of S and k_{i} that $k_{i}=0$ when $i \leq 0$ and $i \geq n$. We call set $\left(2^{k_{1}}, \cdots, n^{k_{n-1}}\right)$ the characteristic form of \mathcal{A}.

Example 3.1 Let \mathcal{A} be the arrangement defined by

$$
Q(\mathcal{A})=x y z(x+y)
$$

The characteristic form of \mathcal{A} is $\left(2^{3}, 3^{1}\right)$.
If the characteristic form of \mathcal{A} is $\left(2^{k_{1}}, \cdots, n^{k_{n-1}}\right)$, it is clear that the following equality holds:

$$
\binom{n}{2}=k_{1}\binom{2}{2}+\cdots+k_{n-1}\binom{n}{2} .
$$

The above equality can be used to examine whether a given characteristic form is right or not.

Lemma 3.1 ${ }^{[2]}$ The arrangement \mathcal{A} is reducible if and only if $\beta(\mathcal{A})=0$, where

$$
\beta(\mathcal{A})=\left.(-1)^{\operatorname{rank}(\mathcal{A})-1} \frac{\mathrm{~d} \chi(\mathcal{A}, t)}{\mathrm{d} t}\right|_{t=1}
$$

is the Beta invariant of \mathcal{A} and $\chi(\mathcal{A}, t)$ is the characteristic polynomial of \mathcal{A}.

Theorem 3.1 Let \mathcal{A} be an arrangement with $|\mathcal{A}|=n$. If the characteristic form of \mathcal{A} is $\left(2^{k_{1}}, \cdots, n^{k_{n-1}}\right)$, then \mathcal{A} is reducible if and only if

$$
\sum_{i=1}^{n-1} i k_{i}=2 n-3
$$

Proof. It follows from Lemma 3.1 that \mathcal{A} is reducible if and only if

$$
\left.\frac{\mathrm{d} \chi(\mathcal{A}, t)}{\mathrm{d} t}\right|_{t=1}=0
$$

Since $|\mathcal{A}|=n$, by the definition of the characteristic polynomial, we assume that

$$
\chi(\mathcal{A}, t)=t^{3}-n t^{2}+a_{1} t-a_{0}
$$

where $a_{0}, a_{1} \in \mathbb{N}$. Then

$$
\left.\frac{\mathrm{d} \chi(\mathcal{A}, t)}{\mathrm{d} t}\right|_{t=1}=3-2 n+a_{1}=0
$$

that is,

$$
a_{1}=2 n-3
$$

In addition, if $\mathcal{B} \in S$ and $\# \mathcal{B}=i$, then, for $x=\bigcap_{H \in \mathcal{B}} H$, we know that

$$
\mu(x)=-\sum_{z<x} \mu(z)=-(1-i)=i-1
$$

where μ is the Möbius function of $L(\mathcal{A})$. So

$$
a_{1}=\sum_{\substack{x \in L(\mathcal{A}) \\
\operatorname{dim} x=1}} \mu(x)=\sum_{\substack{\begin{subarray}{c}{\mathcal{B} \\
\mathcal{B} \in S} }}\end{subarray}} \mu(x)=\sum_{\substack{\# \mathcal{B}=i \\
\mathcal{B} \in S}}(i-1)\left(k_{i-1}\right)=\sum_{i=1}^{n-1} i k_{i} .
$$

Hence, we have

$$
a_{1}=\sum_{i=1}^{n-1} i k_{i}=2 n-3
$$

It follows from Definition 3.1 that we may give the characteristic form of an arbitrary arrangement \mathcal{A} only by the defining polynomial $Q(\mathcal{A})$, and after that we could judge the reducibility of \mathcal{A} quickly by the equality in Theorem 3.1.

Example 3.2 Let \mathcal{A} be the arrangement defined by

$$
Q(\mathcal{A})=(x+y+z)(x+2 y+3 z)(2 x-y-z)(x+2 y+2 z)
$$

The characteristic form of \mathcal{A} is $\left(2^{3}, 3^{1}\right)$. Then \mathcal{A} is reducible by a direct examination.
Corollary 3.1 Let \mathcal{A} be an arrangement with $|\mathcal{A}|=n$. If the characteristic form of \mathcal{A} is $\left(2^{k_{1}}, \ldots, n^{k_{n-1}}\right)$, then \mathcal{A} is factored if and only if $(n+1)^{2}-4\left(\sum_{i=1}^{n-1} i k_{i}+1\right)$ is a square of an integer. We say that the arrangement \mathcal{A} is factored if the characteristic polynomial $\chi(\mathcal{A}, t)$ has a complete factorization over \mathbb{Z}.

Proof. Since \mathcal{A} is a central arrangement, we have

$$
\chi(\mathcal{A}, 1)=\sum_{x \in L(\mathcal{A})} \mu(x)=\sum_{\hat{0} \leq x \leq \hat{1}} \mu(x)=0
$$

that is, $(t-1)$ is a factor of $\chi(\mathcal{A}, t)$. We may let

$$
\chi(\mathcal{A}, t)=t^{3}-n t^{2}+a_{1} t-\left(1-n+a_{1}\right)=(t-1)\left[t^{2}+(1-n) t+\left(1-n+a_{1}\right)\right] .
$$

Then we know that \mathcal{A} is factored if and only if $t^{2}+(1-n) t+\left(1-n+a_{1}\right)$ has a complete factorization over \mathbb{Z}, that is,

$$
(1-n)^{2}-4\left(1-n+a_{1}\right)=(n+1)^{2}-4\left(a_{1}+1\right)=(n+1)^{2}-4\left(\sum_{i=1}^{n-1} i k_{i}+1\right)
$$

is a square of an integer.
Next, we use the following results on freeness. For the detailed proofs, please see [8].
Lemma 3.2 ${ }^{[8]}$ Let $\left(\mathcal{A}_{1}, V_{1}\right)$ and $\left(\mathcal{A}_{2}, V_{2}\right)$ be two arrangements. The product arrangement $\left(\mathcal{A}_{1} \times \mathcal{A}_{2}, V_{1} \oplus V_{2}\right)$ is free if and only if both $\left(\mathcal{A}_{1}, V_{1}\right)$ and $\left(\mathcal{A}_{2}, V_{2}\right)$ are free. In this case,

$$
\exp \left(\mathcal{A}_{1} \times \mathcal{A}_{2}\right)=\left\{\exp \mathcal{A}_{1}, \exp \mathcal{A}_{2}\right\}
$$

Lemma 3.3 ${ }^{[8]}$ If \mathcal{A} is a free arrangement with

$$
\exp \mathcal{A}=\left\{b_{1}, \cdots, b_{l}\right\}
$$

then

$$
\chi(\mathcal{A}, t)=\prod_{i=1}^{l}\left(t-b_{i}\right)
$$

The following theorem gives the relationship between reducibility and freeness of \mathcal{A}.
Theorem 3.2 Let \mathcal{A} be an arrangement with $|\mathcal{A}|=n$. Then \mathcal{A} is reducible if and only if \mathcal{A} is free and

$$
\exp \mathcal{A}=\{1,1, n-2\}
$$

Proof. If \mathcal{A} is reducible, then there exist two non-empty arrangements \mathcal{A}_{1} and \mathcal{A}_{2}, and after a change of coordinates, we have

$$
\mathcal{A}=\mathcal{A}_{1} \times \mathcal{A}_{2}
$$

Since

$$
\operatorname{dim} \mathcal{A}=3
$$

we may assume that

$$
\operatorname{dim} \mathcal{A}_{1}=1, \quad \operatorname{dim} \mathcal{A}_{2}=2
$$

Since \mathcal{A} is central, we have

$$
\left|\mathcal{A}_{1}\right|=1
$$

Thus $\theta=x \frac{\partial}{\partial x}$ is the basis of $D\left(\mathcal{A}_{1}\right)$, and then $D\left(\mathcal{A}_{1}\right)$ is a free module, so \mathcal{A}_{1} is free and

$$
\exp \mathcal{A}_{1}=\{1\}
$$

Recall that all 2-arrangements are free. Thus \mathcal{A}_{2} is free and

$$
\exp \mathcal{A}_{2}=\left\{1,\left|\mathcal{A}_{2}\right|-1\right\}=\{1, n-2\}
$$

It follows from Lemma 3.2 that \mathcal{A} is free and

$$
\exp \mathcal{A}=\left\{\exp \mathcal{A}_{1}, \exp \mathcal{A}_{2}\right\}=\{1,1, n-2\}
$$

Conversely, if \mathcal{A} is free and

$$
\exp \mathcal{A}=\{1,1, n-2\}
$$

then by Lemma 3.3,

$$
\chi(\mathcal{A}, t)=(t-1)^{2}(t-n+2)=t^{3}-n t^{2}+(2 n-3) t-(n-2)
$$

and we have

$$
a_{1}=2 n-3 .
$$

Thus \mathcal{A} is reducible by Theorem 3.1.

4 Applications

There is another use of the characteristic form of an arrangement \mathcal{A}. It can be used to judge the freeness of some arrangements quickly. By Lemma 3.3, if the characteristic polynomial of \mathcal{A} cannot factor completely over \mathbb{Z}, then \mathcal{A} is not free. Then by Corollary 3.1, if $(n+1)^{2}-4\left(\sum_{i=1}^{n-1} i k_{i}+1\right)$ is not a square of an integer, then \mathcal{A} is not free. We make use of the above result to judge the freeness of the following arrangements.

Example 4.1 Let \mathcal{A} be the arrangement defined by

$$
Q(\mathcal{A})=x y z(x+y-z)
$$

The characteristic form of \mathcal{A} is $\left(2^{6}\right)$. Then

$$
(|\mathcal{A}|+1)^{2}-4\left(\sum_{i=1}^{n-1} i k_{i}+1\right)=-3
$$

is not a square of an integer, and thus \mathcal{A} is not free.
Lemma 4.1 ${ }^{[8]} \quad$ Suppose \mathcal{A} is not empty. Let $\left(\mathcal{A}, \mathcal{A}^{\prime}, \mathcal{A}^{\prime \prime}\right)$ be a triple, where

$$
\mathcal{A}^{\prime}=\mathcal{A}-\left\{H_{0}\right\}, \quad \mathcal{A}^{\prime \prime}=\left\{H_{0} \cap H \neq \emptyset \mid H \in \mathcal{A}^{\prime}\right\},
$$

and $H_{0} \in \mathcal{A}$ is a distinguished hyperplane. Any two of the following statements imply the third:
(1) \mathcal{A} is free with $\exp \mathcal{A}=\left\{b_{1}, \cdots, b_{l-1}, b_{l}\right\}$;
(2) \mathcal{A}^{\prime} is free with $\exp \mathcal{A}^{\prime}=\left\{b_{1}, \cdots, b_{l-1}, b_{l}-1\right\}$;
(3) $\mathcal{A}^{\prime \prime}$ is free with $\exp \mathcal{A}^{\prime \prime}=\left\{b_{1}, \cdots, b_{l-1}\right\}$.

Example 4.2 Let \mathcal{A} be the arrangement defined by

$$
Q(\mathcal{A})=x y z(x+y)(x+y-z)
$$

Choose

$$
H_{0}=\operatorname{ker} z
$$

Then

$$
Q\left(\mathcal{A}^{\prime}\right)=x y(x+y)(x+y-z)
$$

and the characteristic form of \mathcal{A}^{\prime} is $\left(2^{3}, 3^{1}\right)$. By Theorem 3.1, \mathcal{A}^{\prime} is reducible, and then by Theorem 3.2, \mathcal{A}^{\prime} is free with

$$
\exp \mathcal{A}^{\prime}=\{1,1,2\}
$$

Since

$$
\operatorname{dim}\left(\mathcal{A}^{\prime \prime}\right)=2, \quad\left|\mathcal{A}^{\prime \prime}\right|=3
$$

$\mathcal{A}^{\prime \prime}$ is free with

$$
\exp \mathcal{A}^{\prime \prime}=\{1,2\}
$$

By Lemma 4.1, \mathcal{A} is free with

$$
\exp \mathcal{A}=\{1,2,2\}
$$

References

[1] Jiang, G. F. and Yu, J. M., Reducibility of hyperplane arrangements, Sci. China Ser. A, 50(2007), 689-697.
[2] Crapo, H., A higher invariant for matroids, J. Combin. Theory, 2(1967), 406-417.
[3] Schechtman, V., Terao, H. and Varchenko, A., Local systems over complements of hyperplanes and the Kac-Kazhdan conditions for singular vector, J. Pure Appl. Algebra, 100(1995), 93-102.
[4] Ziegler, G. M., Multiarrangements of hyperplanes and their freeness, singularities (Iowa City, IA, 1986), 345-359, Contemp. Math., 90, Amer. Math. Soc., Providence, RI, 1989.
[5] Yuzvinsky, S., The first two obstructions to the freeness of arrangements, Trans. Amer. Math. Soc., 335(1993), 231-244.
[6] Yoshinaga, M., On the freeness of 3-arrangements, Bull. London Math. Soc., 37(2005), 126-134.
[7] Yoshinaga, M., Characterization of a free arrangement and conjecture of Edelman and Reiner, Invent. Math., 157(2004), 449-454.
[8] Orlik, P. and Terao, H., Arrangements of Hyperplanes, Spring-Verlag, Berlin-Herdelberg, 1992.
[9] Stanley, R. P., An introduction to hyperplane arrangements, in: Geometric Combinatorics, Vol. 13 of IAS/Park City Math. Ser., Amer. Math. Soc., Providence, RI, 2007, pp.389-496.

[^0]: *Received date: Sept. 27, 2009.
 Foundation item: The NSF (10871035) of China.

