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1 Introduction

Empirical Bayes (EB) approach has been studied extensively by the researchers, and the

readers are referred to literature [1]–[8].

Data with error of measurement take place in many fields, including biology, ecology,

geology and medicine (see [9]–[10]). Up to now, empirical Bayes test problem for the pa-

rameter of distribution with error of measurement has not been studied by any researcher.

Rayleigh distribution plays an important role in reliability analysis. In this paper, we dis-

cuss the empirical Bayes test for the parameter of Rayleigh distribution with error data of

measurement.

Let X have a conditional density function

f(x | θ) =
x

θ2
e−

x2

2θ2 , (1.1)

where θ is an unknown parameter. Denote the sample space by x ∈ Ω = {x | x > 0} and
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parameter space by Θ = {θ | θ > 0}. In this paper, we discuss the one-sided test problem

H0 : θ ≤ θ0 ⇐⇒ H1 : θ > θ0, (1.2)

where θ0 is a given positive constant.

To construct EB test function, we have firstly loss functions

L0(θ, d0) =






0, θ ≤ θ0;

a
[
1 −

(θ0

θ

)2]
, θ > θ0,

L1(θ, d1) =





a
[(θ0

θ

)2

− 1
]
, θ ≤ θ0;

0, θ > θ0,

where a > 0, d = {d0, d1} is action space, d0 and d1 imply acceptance and rejection of H0.

Assume that the prior distribution G(θ) of θ is unknown. Then we have the randomized

decision function

δ(x) = P (accept H0 | X = x). (1.3)

And the risk function of δ(x) is shown by

R(δ(x), G(θ)) =

∫

Θ

∫

Ω

[L0(θ, d0)f(x | θ)δ(x) + L1(θ, d1)f(x | θ)(1 − δ(x))]dxdG(θ)

= a

∫

Ω

β(x)δ(x)dx + CG, (1.4)

where

CG =

∫

Θ

L1(θ, d1)dG(θ), β(x) =

∫

Θ

[
1 −

(θ0

θ

)2]
f(x | θ)dG(θ). (1.5)

The marginal density function of X is given by

fG(x) =

∫

Θ

f(x | θ)dG(θ) =

∫

Θ

x

θ2
e−

x2

2θ2 dG(θ).

By (1.5) and simple calculations, we have

β(x) = u(x)fG(x) + v(x)f
(1)
G (x), (1.6)

where f
(1)
G (x) is the first order derivative of fG(x), and

u(x) = 1 − 1

4
θ0x

−2, v(x) =
1

2
θ0x

−1.

Using (1.4), we obtain the Bayes test function as follows:

δG(x) =

{
1, β(x) ≤ 0;

0, β(x) > 0.
(1.7)

Further, we can get the minimum Bayes risk

R(G) = inf
δ

R(δ, G) = R(δG, G) = a

∫

Ω

β(x)δG(x)dx + CG. (1.8)

When the prior distribution of G(θ) is known and δ(x) = δG(x), R(G) can be obtained.

However, when G(θ) is unknown, so that δG(x) cannot be made use of, we need to introduce

EB method.

2 Construction of EB Test Function

Under the following assumptions, we are to construct the EB test function. Let (X1, θ1),

(X2, θ2), · · · , (Xn, θn) and (Xn+1, θn+1)=̂(X, θ) be independent random vectors, where θi

(i = 1, · · · , n) and θ are indepently identically distributed (i.i.d.) and have common prior

distribution G(θ). Let X1, X2, · · · , Xn, X be sequence of mutually independent random
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variables, where X1, X2, · · · , Xn are historical samples and X is the present sample. Due

to some factors, historical samples X1, X2, · · · , Xn cannot be observed, which are sufferred

from interruption of random error variables ε1, ε2, · · · , εn. Hence, we can only observe the

data with error of measurement X ′

1, X ′

2, · · · , X ′

n, and X ′

i is determined by

Xi = X ′

i + εi, 1 ≤ i ≤ n,

where εi (i = 1, 2, · · · , n) are mutually independent random variables having the identical

normal distribution N(0, σ2), and the variance σ2 is known.

Assume that X ′

1, X ′

2, · · · , X ′

n and ε1, ε2, · · · , εn are mutually independent. Let X1, X2,

· · · , Xn have the common marginal density function fG(x), and X ′

1, X ′

2, · · · , X ′

n have the

common marginal density function fG′(x). Assume fG(x) ∈ Cs,α, x ∈ R1, where

Cs,α = {g(x) | g(x) is the probability density function and has continuous

s-th order derivative g(s)(x) with |g(s)(x)| ≤ α, s ≥ 2, α > 0}.
First we construct the estimator of β(x).

Let Kr(x) be a Borel measurable bounded function vanishing off (0, 1) and such that

(A1)
1

t!

∫ 1

0

ytKr(y)dy =

{
1, t = r;

0, t 6= r, t = 0, 1, 2, · · · , s − 1.

By the convolution formula, we get

fG(x) =

∫ +∞

−∞

fG′(x − y)
1√
2πσ

e−
y2

2σ2 dy. (2.1)

The kernel estimation of f
(r)
G (x) is defined by

f
(r)
G (x) =

∫ +∞

−∞

f
(r)
G′ (x − y)

1√
2πσ

e−
y2

2σ2 dy. (2.2)

Denote

f
(0)
G (x) = fG(x).

Since f
(r)
G′ (x) is unknown, the kernel-type density estimation (see [5]) of f

(r)
G′ (x) is defined

by

f̂
(r)
G′ (x) =

1

nh
(1+r)
n

n∑

i=1

Kr

(X ′

i − x

hn

)
. (2.3)

Substituting (2.3) into (2.2), we get

f̂
(r)
G (x) =

1

nh
(1+r)
n

n∑

i=1

∫ +∞

−∞

Kr

(X ′

i − x + y

hn

) 1√
2πσ

e−
y2

2σ2 dy, (2.4)

where r = 0, 1, hn is the smoothing bandwidth, hn > 0, and lim
n→∞

hn = 0.

Write

f
(0)
G′ (x) = fG′(x).

Then, the estimator of β(x) is obtained from

βn(x) = u(x)f̂G(x) + v(x)f̂
(1)
G (x). (2.5)

Hence, the EB test function is defined by

δn(x) =

{
1, βn(x) ≤ 0;

0, βn(x) > 0.
(2.6)
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Let En denote the mathematical expectation with respect to the joint distribution of

X ′

1, X ′

2, · · · , X ′

n. We get the overall Bayes risk of δn(x) as

R(δn, G) = a

∫

Ω

β(x)En[δn(x)]dx + CG. (2.7)

If

lim
n→∞

R(δn, G) = R(δG, G),

then {δn(x)} is the asymptotic optimality of EB test function; if

R(δn, G) − R(δG, G) = O(n−q), q > 0,

then O(n−q) is the asymptotic optimality convergence rate of EB test function of {δn(x)}.
We give two lemmas in the following.

Let c, c1, c2, c3, c4 be constants which can be different in different cases even in the same

expression.

Lemma 2.1 Let f̂
(r)
G (x) be defined by (2.4). Assume that (A1) holds, and x ∈ Ω .

(I) If f
(r)
G (x) is a continuous function,

lim
n→∞

hn = 0, lim
n→∞

nh2r+2
n = ∞,

then

lim
n→∞

E|f̂ (r)
G (x) − f

(r)
G (x)|2 = 0;

(II) If fG(x) ∈ Cs,a, taking hn = n−
1

2+2s , then, for 0 < λ ≤ 1, we have

E|f̂ (r)
G (x) − f

(r)
G (x)|2λ ≤ c · n−

λ(s−r)
1+s .

Proof. (I) By Cr inequality, we get

E|f̂ (r)
G (x) − f

(r)
G (x)|2 ≤ 2|Ef̂

(r)
G (x) − f

(r)
G (x)|2 + 2Var(f̂

(r)
G (x)) := 2(I2

1 + I2). (2.8)

Then

Ef̂
(r)
G (x) =

1

h
(1+r)
n

∫ +∞

−∞

{[∫ +∞

−∞

Kr

(s − x + y

hn

)
fG′(s)ds

] 1√
2πσ

e−
y2

2σ2

}
dy

=
1

hr
n

{∫ +∞

−∞

[ ∫ +∞

−∞

Kr(u)fG′(x − y + hnu)du
] 1√

2πσ
e−

y2

2σ2

}
dy

=
1

hr
n

∫ +∞

−∞

I1(x, y)
1√
2πσ

e−
y2

2σ2 dy,

where

I1(x, y) =

∫ +∞

−∞

Kr(u)fG′(x − y + hnu)du.

Since fG(x) ∈ Cs,α, it is easy to see that fG′(x) ∈ Cs,α. We obtain the following Taylor

expansion of fG′(x − y + hnu) in x − y:

fG′(x − y + hnu) − fG′(x − y)

=
f ′

G′(x − y)

1!
hnu +

f ′′

G′(x − y)

2!
(hnu)2 + · · · + f

(s)
G′ (ξ∗)

s!
(hnu)s,

where ξ∗ ∈ (x − y, x + y + hnu).

Due to (A1) and fG(x) ∈ Cs,α, it is easy to see that

I1(x, y) = f
(r)
G′ (x − y) + o(hs−r

n ).
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Hence

Ef̂
(r)
G (x) =

∫ +∞

−∞

f
(r)
G′ (x − y)

1√
2πσ

e−
y2

2σ2 dy + o(hs−r
n )

= f
(r)
G (x) + o(hs−r

n ).

Furthermore, we have

I1 = |Ef̂
(r)
G (x) − f

(r)
G (x)|2 ≤ ch2(s−r)

n . (2.9)

When hn → 0, we get

lim
n→∞

I2
1 = lim

n→∞

|Ef̂
(r)
G (x) − f

(r)
G (x)|2 = 0. (2.10)

It follows that

I2 = n−1h−2(r+2)
n Var

[ ∫ +∞

−∞

Kr

(X ′

i − x + y

hn

) 1√
2πσ

e−
y2

2σ2 dy
]

≤ n−1h−2(r+2)
n E

{ ∫ +∞

−∞

[
Kr

(X ′

1 − x + y

hn

)] 1√
2πσ

e−
y2

2σ2 dy
}2

.

Since Kr(x) is a Borel measurable bounded function, we get∫ +∞

−∞

∣∣∣Kr

(X ′

1 − x + y

hn

)∣∣∣
1√
2πσ

e−
y2

2σ2 dy < c.

Hence

I2 ≤ cn−1h−(2r+2)
n . (2.11)

When hn → 0, nh2r+2
n → ∞, we get

lim
n→∞

I2 = lim
n→∞

Var(f̂
(r)
G (x)) = 0. (2.12)

By substituting (2.10), (2.12) into (2.8), the proof of (I) is completed.

(II) Similar to (2.8), we can show that

E|f̂ (r)
G (x) − f

(r)
G (x)|2λ ≤ 2[Ef̂

(r)
G (x) − f

(r)
G (x)]2λ + 2[Var(f̂

(r)
G (x))]λ

:= 2(J2λ
1 + Jλ

2 ). (2.13)

By (2.9), when hn = n−
1

2+2s , we get

J2λ
1 = |Ef̂

(r)
G (x) − f

(r)
G (x)|2λ ≤ c · n−

λ(s−r)
s+1 . (2.14)

By (2.11), when hn = n−
1

2+2s , we have

Jλ
2 ≤ [c1(nh2r+2

n )−1]λ ≤ c · n−
λ(s−r)

1+s . (2.15)

By substituting (2.14), (2.15) into (2.13), the proof of (II) is completed.

Lemma 2.2
[2] Let R(δG, G) and R(δn, G) be defined by (1.8) and (2.7). Then

0 ≤ R(δn, G) − R(δG, G) ≤ a

∫

Ω

|β(x)|P (|βn(x) − β(x)| ≥ |β(x)|)dx.

3 Asymptotic Optimality and Convergence Rates

Theorem 3.1 Let f̂
(r)
G (x) be defined by (2.4). Assume that (A1) and the following regu-

larity conditions hold:

(i) hn > 0, lim
n→∞

hn = 0, lim
n→∞

nh4
n = ∞;

(ii)

∫

Θ

θ−2dG(θ) < +∞;
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(iii) f
(1)
G (x) is a continuous function.

Then we have

lim
n→∞

R(δn, G) = R(δG, G).

Proof. By Lemma 2.2 we have

0 ≤ R(δn, G) − R(δG, G) ≤ a

∫

Ω

|β(x)|P (|βn(x) − β(x)| ≥ |β(x)|)dx.

Write

Qn(x) = |β(x)|P (|βn(x) − β(x)| ≥ |β(x)|).
Then

Qn(x) ≤ |β(x)|.
Again by (1.6) and the Fubini theorem, we can get∫

Ω

|β(x)|dx =

∫

Ω

∫

Θ

[
1 −

(θ0

θ

)2]
f(x | θ)dG(θ)dx

= 1 + θ2
0

∫

Ω

∫

Θ

θ−2f(x | θ)dG(θ)dx

= 1 + θ2
0

∫

Θ

θ−2dG(θ)

< + ∞.

Applying the dominant convergence theorem, we have

0 ≤ lim
n→∞

R(δn, G) − R(δG, G) ≤
∫

Ω

[ lim
n→∞

Qn(x)]dx. (3.1)

To prove that Theorem 3.1 holds, we only need to prove

lim
n→∞

Qn(x) = 0 a.s.x.

By Markov’s and Jensen’s inequalities, one has

Qn(x)) ≤ E|βn(x) − β(x)|
≤ |u(x)|E|f̂G(x) − fG(x)| + |v(x)|E|f̂ (1)

G (x) − f
(1)
G (x)|

≤ |u(x)|[E|f̂G(x) − fG(x)|2]1/2 + |v(x)|[E|f̂ (1)
G (x) − f

(1)
G (x)|2]1/2.

Again by Lemma 2.1(I), for fixed x ∈ Ω , when r = 0, 1, we have

0 ≤ lim
n→∞

Qn(x)

≤ |u(x)|[ lim
n→∞

E|f̂G(x) − fG(x)|2]1/2 + |v(x)|[ lim
n→∞

E|f̂ (1)
G (x) − f

(1)
G (x)|2]1/2

= 0. (3.2)

By substituting (3.2) into (3.1), the proof of Theorem 3.1 is completed.

Theorem 3.2 Let f̂
(r)
G (x) be defined by (2.4). Assume (A1) and the following regularity

conditions hold:

(B1) fG(x) ∈ Cs,α;

(B2)

∫

Ω

|x|−mλ|β(x)|1−λdx < +∞, where 0 < λ ≤ 1, m = 0, 1, 2.

Then, if hn = n−
1

2s+2 , we have

R(δn, G) − R(δG, G) = O
(
n
−

λ(s−1)
2(s+1)

)
,

where s ≥ 2.



NO. 1 HUANG J. EMPIRICAL BAYES TEST 7

Proof. By Lemma 2.2 and Markov’s inequality, we have

0 ≤ R(δn, G) − R(δG, G)

≤
∫

Ω

|β(x)|1−λE|βn(x) − β(x)|λdx

≤ c1

∫

Ω

|β(x)|1−λ|u(x)|E|f̂G(x) − fG(x)|dx

+ c2

∫

Ω

|β(x)|1−λ|v(x)|E|f̂ (1)
G (x) − f

(1)
G (x)|dx

= An + Bn. (3.3)

By Lemma 2.1(II) and condition (B2), we get

An ≤ c1n
−

λs
2s+2

∫

Ω

|β(x)|1−λ|u(x)|λdx ≤ c3n
−

λs
2s+2 , (3.4)

Bn ≤ c2n
−

λ(s−1)
2s+2

∫

Ω

|β(x)|1−λ|v(x)|λ(x)dx ≤ c4n
−

λ(s−1)
2s+2 . (3.5)

Substituting (3.4) and (3.5) into (3.3), we get

R(δn, G) − R(δG, G) = O
(
n
−

λ(s−1)
2(s+1)

)
.

The proof of Theorem 3.2 is completed.

Remark 3.1 When λ → 1 and s → ∞, O
(
n
−

λ(s−1)
2(s+1)

)
is arbitrarily close to O(n−

1
2 ).
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