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1 Introduction and Preliminaries

Equilibrium theory, including optimization problems, variational inequality problems, sad-

dle point problems and complementary problems as special cases, provides us a general

framework for studying other fields. Up to now, main efforts for equilibrium problems have

been made for the solution existence; see, e.g., [1]–[3], and the references therein. A few

results have been obtained for properties of solution sets; see, e.g., [4]–[6], in which stability

of solutions to parameters were studied. In most cases, stability can be viewed as the semi-

continuity, continuity, Lipschitz continuity or some kinds of (generalized) differentiability of

solutions to parameters. Although much efforts have been made for establishing the conti-

nuity, Lipschitz continuity and (generalized) differentiability of solutions to parameters, few

works was concentrated on the semicontinuity of the solution sets.

Khanh and Luu[5] studied the lower and upper semicontinuity of the solution sets for

multivalued quasivariational inequalities with a single parameter. Anh and Khanh[6] consid-

ered the semicontinuity of solution sets for parametric multivalued vector quasiequilibrium

problems. Inspired and motivated by their works, in this paper, we introduce two kinds
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of parametric generalized vector quasi-equilibrium problems, which are more general than

that in the literature, and study the upper and lower semicontinuity of the solution sets to

parameters under some relaxed assumptions.

Throughout this paper, let X , Y , Z, Λ, M be real Hausdorff topological vector spaces,

D be a nonempty compact subset of X and E a nonempty subset of Y . Let 2E denote the

family of all nonempty subsets of E, and T : D×Λ → 2E , G : D×M → 2D and C : D → 2Z

be set-valued mappings such that C(x) is a closed convex pointed cone in Z and intC(x) 6= ∅

for each x ∈ D. Let f : D × E × D → Z be a single-valued mapping.

A set-valued mapping F : X → 2Y is said to be upper semicontinuous (shortly, u.s.c.)

at x0 ∈ X if for any open set V ⊇ F (x0), there exists an open neighborhood U of x0 such

that F (U) ⊆ V . F is said to be u.s.c. on X if it is u.s.c. at each point in X .

F : X → 2Y is said to be lower semicontinuous (shortly, l.s.c.) at x0 ∈ X if for each

y ∈ F (x0) and any open neighborhood V of y, there exists an open neighborhood U of x0

such that F (z) ∩ V 6= ∅ for each z ∈ U , which can be equivalently stated as: F is said to

be l.s.c. at x0 if for any net {xα} with xα → x0 and any y ∈ F (x0), there exists a net {yα}

with yα ∈ F (xα) for all α such that yα → y. F is said to be l.s.c. on X if it is l.s.c. at each

point in X .

F : X → 2Y is said to be a closed set-valued mapping if its graph, denoted by graph(F ),

is a closed set in X × Y , where graph(F ) = {(x, y) : x ∈ X, y ∈ F (x)}.

A single-valued mapping f : D×E×D → Z is said to be Y \− intC(x)-quasiconvex with

respect to T of type Π if for any nonempty finite subset {z1, · · · , zn} ⊆ D, any x ∈ co{z1,

· · · , zn} and any λ ∈ Λ, there exists some i (i = 1, · · · , n) and y ∈ T (x, λ) such that

f(x, y, zi) ∈ Y \(−intC(x)).

2 Parametric Generalized Vector Quasi-equilibrium

Problems

In this section, we introduce two kinds of parametric generalized vector quasi-equilibrium

problems (shortly, PGVQEP) and study the relations between them.

For any given parameters λ ∈ Λ and µ ∈ M , we consider the following two parametric

generalized vector quasi-equilibrium problems:

(PGVQEP1) Find x ∈ D such that there exists y ∈ T (x, λ) satisfying

f(x, y, z) /∈ −intC(x), z ∈ G(x, µ).

(PGVQEP2) Find x ∈ D such that for any z ∈ G(x, µ) there exists y ∈ T (x, λ) satisfying

f(x, y, z) /∈ −intC(x).

We denote their solution sets by S1(λ, µ) and S2(λ, µ), respectively. Firstly, we study

the nonempty of the solution set S1(λ, µ).

Theorem 2.1 For (PGV QEP1), let

(i) the set {x ∈ D : z ∈ G(x, µ)} be open for any z ∈ D and µ ∈ M ;

(ii) f be Y \ − intC(x)-quasiconvex with respect to T of type Π ;
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(iii) the set {x ∈ D : y ∈ T (x, λ), f(x, y, z) /∈ −intC(x)} be closed for any z ∈ D and

λ ∈ Λ.

Then S1(λ, µ) 6= ∅.

Proof. By using the well-known F-KKM Theorem (see [3]) and some similar arguments in

[5], we can easily get the conclusion.

The following theorem states the relations between (PGVQEP1) and (PGVQEP2).

Theorem 2.2 For any given (λ, µ) ∈ Λ × M , one has S1(λ, µ) ⊆ S2(λ, µ). But the

converse inclusion is not necessarily true.

Proof. For each given x0 ∈ S1(λ, µ), there exists y0 ∈ T (x0, λ) satisfying

f(x0, y0, z) /∈ −intC(x0), z ∈ G(x0, µ). (2.1)

Assume to the contrary that x0 /∈ S2(λ, µ). Then there exists z0 ∈ G(x0, µ) such that

f(x0, y, z0) ∈ −intC(x0), y ∈ T (x0, λ), (2.2)

which together with (2.1) indicates that

f(x0, y0, z0) /∈ −intC(x0) and f(x0, y0, z0) ∈ −intC(x0).

This is a contradiction. Therefore, S1(λ, µ) ⊆ S2(λ, µ), which indicates that S2(λ, µ) 6= ∅

under the same assumption of Theorem 2.1.

The following example shows that the converse inclusion is not true.

Example 2.1 Let X , Y , Z = R, D = E = Λ = M = [0, 1], and

T (x, λ) = {1,−1}, x ∈ D, λ ∈ Λ,

G(x, µ) =
{

µ,
µ

2
,

µ

3

}

, x ∈ D, µ ∈ M,

C(x) = [0, +∞), x ∈ D,

f(x, y, z) = y(z − x), x, z ∈ D, y ∈ E.

We can easily deduce that S1(λ, µ) =
[

0,
µ

3

]

∪ [µ, 1] and S2(λ, µ) = [0, 1].

3 Upper and Lower Semicontinuity

In this section, we assume that S1(λ, µ) and S2(λ, µ) are nonempty sets for all λ ∈ Λ and

µ ∈ M . In order to study the upper and lower semicontinuity of solution sets to parameters,

we first recall two basic results.

Lemma 3.1[8] Let X and Y be real topological vector spaces and F : X → 2Y be a set-

valued mapping. If F has compact values, then F is u.s.c. at x if and only if for any nets

{xα} ⊆ X : xα → x and {yα} : yα ∈ F (xα) for all α, there exist y ∈ F (x) and a subnet

{yβ} of {yα} such that yβ → y.

Lemma 3.2[9] Let X and Y be real topological vector spaces and F : X → 2Y be a

set-valued mapping. If F is u.s.c. and has closed values, then graph(F ) is a closed set.
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The following theorem provides a sufficient condition for the upper semicontinuity of the

solution set S1(λ, µ) to parameters (λ, µ).

Theorem 3.1 For any given x0 ∈ X, λ0 ∈ Λ and µ0 ∈ M , let (PGV QEP1) satisfy the

following assumptions:

(i) T (·, λ0) is u.s.c. and has compact values in D;

(ii) G(·, µ0) is l.s.c. in D;

(iii) W (·) is u.s.c. at x0, where W (x) := Z \ (−intC(x));

(iv) f(·, ·, ·) is continuous in D × E × D.

Then S1(·, ·) is u.s.c. and closed at (λ0, µ0).

Proof. Suppose to the contrary that S1(·, ·) is not u.s.c. at (λ0, µ0). Then there ex-

ists an open set V of S1(λ0, µ0) such that for any (λα, µα) → (λ0, µ0) there exists xα ∈

S1(λα, µα)\V . By the compactness of D, without loss of generality, we can assume that

xα → x0 ∈ D \ V . Consequently, we can deduce that x0 ∈ D \ S1(λ0, µ0), which implies

that for any y ∈ T (x0, λ0) there exists z0 ∈ G(x0, µ0) such that

f(x0, y, z0) ∈ −intC(x0). (3.1)

On the other hand, xα ∈ S1(λα, µα) implies that there exists yα ∈ T (xα, λα) such that

f(xα, yα, zα) /∈ −intC(xα), zα ∈ G(xα, µα). (3.2)

It follows from Lemma 3.1 that there exist a subnet {yβ} of {yα} and y0 ∈ T (x0, λ0) such

that yβ → y0. By (ii), there exists z̄α ∈ G(xα, µα) such that z̄α → z0, which together with

(3.2) shows that

f(xα, yβ, z̄α) /∈ −intC(xα), (3.3)

that is, f(xα, yβ, z̄α) ∈ W (xα). By Lemma 3.2, we get f(x0, y0, z0) ∈ W (x0), which contra-

dicts (3.1). Therefore, S1(·, ·) is u.s.c. at (λ0, µ0).

Next, we show that S1(·, ·) is closed at (λ0, µ0).

Suppose to the contrary that S1(·, ·) is not closed at (λ0, µ0). Then there exists a net

(λα, µα, xα) → (λ0, µ0, x0) with xα ∈ S1(λα, µα) and x0 /∈ S1(λ0, µ0). Using a similar way

above, we can finish the rest part of the proof.

In a similar proof way of Theorem 3.1, we can obtain the following result.

Theorem 3.2 For (PGV QEP2), let hypotheses (i)–(iv) in Theorem 3.1 hold. Then

S2(·, ·) is u.s.c. and closed at (λ0, µ0).

Now, we consider the lower semicontinuity of S1(·, ·) and S2(·, ·) to parameters (λ, µ).

Theorem 3.3 For any given x0 ∈ X, λ0 ∈ Λ and µ0 ∈ M , let (PGV QEP1) satisfy the

following assumptions:

(i) G(·, µ0) is u.s.c. and has compact values in D;

(ii) graphT (·) is l.s.c. at λ0, where graphT (λ) := {(x, y) | y ∈ T (x, λ)};

(iii) C(·) is u.s.c. at x0;

(iv) f(·, ·, ·) is continuous in D × E × D;
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(v) f(x, y, z) /∈ −∂C(x) for all x ∈ S1(λ, µ), y ∈ T (x, λ) and z ∈ G(x, µ), where ∂C(x)

denotes the boundary of the set C(x).

Then S1(·, ·) is l.s.c. at (λ0, µ0).

Proof. Suppose to the contrary that S1(·, ·) is not l.s.c. at (λ0, µ0). Then there exist

x0 ∈ S1(λ0, µ0) and (λα, µα) → (λ0, µ0) such that, for all xα ∈ S1(λα, µα), xα does not

converge to x0.

x0 ∈ S1(λ0, µ0) implies that x0 ∈ D and there exists y0 ∈ T (x0, λ0) such that

f(x0, y0, z) /∈ −intC(x0), z ∈ G(x0, µ0). (3.4)

Similarly, xα ∈ S1(λα, µα) implies that xα ∈ D, and there exists yα ∈ T (xα, λα) such that

f(xα, yα, zα) /∈ −intC(xα), zα ∈ G(xα, µα).

By (x0, y0) ∈ graphT (λ0) and (ii), we know that there exists a net (x̄α, ȳα) ∈ graphT (λα)

such that (x̄α, ȳα) → (x0, y0). Consequently, there exists a subnet {x̄β} of {x̄α} such that

x̄β /∈ S1(λβ , µβ) for each β, which indicates that for any yβ ∈ T (x̄β , λβ) there exists zβ ∈

G(x̄β , µβ) such that f(x̄β , yβ, zβ) ∈ −intC(x̄β). Specially, for (x̄β , ȳβ) ∈ graphT (λβ), there

exists z̄β ∈ G(x̄β , µβ) such that

f(x̄β , ȳβ , z̄β) ∈ −intC(x̄β) ⊆ −C(x̄β).

By Lemma 3.1, there exists a subnet of {z̄β}, denoted still by {z̄β}, and z0 ∈ G(x0, µ0) such

that z̄β → z0. By Lemma 3.2 and (iii)–(iv), we can deduce that f(x0, y0, z0) ∈ −C(x0). By

(v), we get f(x0, y0, z0) ∈ −intC(x0), which contradicts (3.4).

In a similar proof way of Theorem 3.3, we can obtain the following result.

Theorem 3.4 For (PGV QEP2), let hypotheses (i)–(v) in the Theorem 3.3 hold. Then

S2(·, ·) is l.s.c. at (λ0, µ0).

References

[1] Ding, X. P., Existence of solutions for quasi-equilibrium problems in noncompact topological
spaces, Comput. Math. Appl., 39(2000), 13–21.

[2] Lin, Z. and Yu, J., The existence of solutions for the system of generalized vector quasi-
equilibrium problems, Appl. Math. Lett., 18(2005), 415–422.

[3] Huang, L. G., Existence of solutions on weak vector equilibrium problems, J. Nonlinear Anal.,
65(2006), 795–801.

[4] Long, X. J., Huang, N. J. and Teo, Kok-lay, Existence and stability of solutions for generalized
strong vector quasi-equilibrium problem, J. Math. Comput. Modelling, 47(2008), 445–451.

[5] Khanh, P. Q. and Luu, L. M., Lower semicontinuity and upper semicontinuity of the solution
sets and approximate solution sets of parametric multivalued quasivariational inequalities, J.

Optim. Theory Appl., 133(2007), 329–339.

[6] Anh, L. Q. and Khanh, P. Q., Semicontinuity of the solution set of parametric multivalued
vector quasiequilibrium problems, J. Math. Anal. Appl., 294(2004), 699–711.

[7] Hai, N. X. and Khanh, P. Q., The solution existence of general variational inclusion problems,
J. Math. Anal. Appl., 328(2007), 1268–1277.

[8] Ferro, F., A minimax theorem for vector valued functions, J. Optim. Theory Appl., 60(1989),
19–31.

[9] Zhang, C. J., Set-valued Analysis with Applications in Economic (in Chinese), Science Press,
Beijing, 2004.


