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Abstract: In this paper, we study a class of soluble Lie algebras with variety relations

that the commutator of m and n is zero. The aim of the paper is to consider the
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1 Introduction

There are many parallel results between groups and Lie algebras. We can translate some

results from groups to Lie algebras. For example, Macdonald[1] discussed some varieties

of groups, particularly, some varieties associated with nilpotent groups in 1961, and then

Suthathip[2] showed the similar varieties for nilpotent Lie algebras. In this paper, we extend

similar varieties in [3] to soluble Lie algebras.

Let L be a Lie algebra, and x1, x2, · · · , xn ∈ L. The commutator [x1, x2, · · · , xn] in L is

defined by

[x1, x2] = [x1, x2]

and

[x1, x2, · · · , xn−1, xn] = [[x1, x2, · · · , xn−1], xn], n ≥ 2. (1.1)

Moreover, we define

[x1, x2, · · · , xm; y1, y2, · · · , yn] = [[x1, x2, · · · , xm], [y1, y2, · · · , yn]]

for any integers m and n. We say that the Lie algebra L is variety [m, n] = 0 if it satisfies

[[x1, x2, · · · , xm], [y1, y2, · · · , yn]] = 0, xi, yj ∈ L.
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If a Lie algebra L satisfies [x1, x2, · · · , xk] = [x1, x2, xϕ(3), · · · , xϕ(k)], where ϕ is a per-

mutation of {3, · · · , k}, then we call that L satisfies C(k, ϕ). If L satisfies C(k, ϕ) for all

permutations ϕ of {3, · · · , k}, then we call that L satisfies C(k).

The main result of this paper is that L satisfies C(n+2) (n ≥ 2) if and only if L satisfies

the law [n − k, 2 + k] = 0 for all k = 0, 1, · · · , n − 2. Then it is easy to see that [3,2]=0 is

equivalent to C(5). Furthermore, [n, 2] = 0 (n ≥ 3) implies C(2n − 1). However, the law

[m, n] = 0 does not imply any nontrivial law C(k, ϕ) for m, n ≥ 3.

2 The Lie Algebra with Varieties [m, n] = 0

Now we want to introduce some properties of the Lie algebra with variety [m, n] = 0. Denote

by (x) a subalgebra generated by x.

Definition 2.1 Let L be a Lie algebra. We define the sequence {Ln}n≥1 by

L1 = L, Ln+1 = [L, Ln], n ≥ 1.

If Lm+1 = 0, Lm 6= 0 for some m, then we say that L has nilpotent class precisely m.

Lemma 2.1[4] Let A be an associative algebra. Then the following identities hold:

(1) (adc)m(a) =
∑

0≤j≤m

(−1)m−j
( m

j

)

cjacm−j for all a, c ∈ A;

(2) [ab, c] = [a, c]b + a[b, c] for all a, b, c ∈ A.

Lemma 2.2[3] If L satisfies [n, m] = 0, then [n+p, m+q] = 0 for any nonnegative numbers

p and q.

Lemma 2.3[5] If L satisfies C(k, ϕ1) and C(k, ϕ2), then L satisfies C(k, ϕ) for any ϕ in

the group generated by ϕ1 and ϕ2.

Lemma 2.4[5] If L satisfies C(k), then L satisfies C(m) for all m ≥ k.

Lemma 2.5 Let L be a Lie algebra. Then [a, [x, y]] = 0 if and only if [a, x, y] = [a, y, x]

for any a, x, y ∈ L.

Proof. It is easily checked by Jacobian identity.

Lemma 2.6 Let L be a Lie algebra with variety [n, 2] = 0 (n ≥ 2). If L/Z(L) satisfies

C(n + 1), then L satisfies C(n + 2).

Proof. By Lemma 2.5, we know that L satisfies C(n + 2, ϕ1) for ϕ1 = (n + 1, n + 2). Since

L/Z(L) satisfies C(n + 1), in particular, it satisfies C(n + 1, ϕ2) for ϕ2 = (3, 4, · · · , n + 1).

Thus, for any x1, x2, · · · , xn+1 ∈ L, we have

[x1, x2, x3, · · · , xn+1] − [x1, x2, xϕ2(3), · · · , xϕ2(n+1)] ∈ Z(L),

and also

[x1, x2, · · · , xn+1, xn+2] = [x1, x2, xϕ2(3), · · · , xϕ2(n+1), xϕ2(n+2)]

for any xn+2 ∈ L. That is, L satisfies C(n + 2, ϕ2). Since Sn = 〈ϕ1, ϕ2〉, by Lemma 2.3, we

know that L satisfies C(n + 2).
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Lemma 2.7 If L satisfies [n, m] = 0 and [n − 1, m + 1] = 0, then L/Z(L) satisfies

[n−1, m] = 0. Particularly, if L satisfies [n, n−1] = 0, then L/Z(L) satisfies [n−1, n−1] = 0.

Proof. Let

ā = a + Z(L) = [x1, x2, · · · , xn−1] + Z(L),

b̄ = b + Z(L) = [y1, y2, · · · , ym] + Z(L),
xi, yj ∈ L.

By Jacobian identity, we know that [a, b, z] = [a, z, b] + [a, [b, z]] for any z ∈ L. By the

hypothesis, L satisfies [n, m] = 0 and [n − 1, m + 1] = 0. Thus we have [a, z, b] = 0 and

[a, [b, z]] = 0. So [a, b] ∈ Z(L) and [ā, b̄] = [a, b] + Z(L) = 0̄. That is, L/Z(L) satisfies

[n − 1, m] = 0.

Lemma 2.8 If L satisfies [n, m] = 0 and L/Z(L) satisfies [n−1, m] = 0, then L satisfies

[m + 1, n − 1] = 0.

Proof. Let a = [x1, x2, · · · , xm+1], b = [y1, y2, · · · , yn−1] for all xi, yj ∈ L. Then

[a, b] = −[b, a]

= −[b, [x1, x2, · · · , xm], xm+1]

= −[b, [x1, x2, · · · , xm], xm+1] + [b, xm+1, [x1, x2, · · · , xm]].

Since L/Z(L) satisfies [n − 1, m] = 0, we have [b, [x1, x2, · · · , xm]] ∈ Z(L). Hence,

[b, [x1, x2, · · · , xm], xm+1] = 0.

Furthermore, since L satisfies [n, m] = 0, we have

[b, xm+1, [x1, x2, · · · , xm]] = 0.

Therefore, [a, b] = 0, that is, L satisfies [m + 1, n− 1] = 0.

3 Some Cases for Small m and n

In this section, we consider the construction of the Lie algebra L with variety [m, n] = 0 for

small m and n.

Theorem 3.1 L satisfies [3, 2] = 0 if and only if L satisfies C(5).

Proof. If L satisfies [3, 2] = 0, then by Lemma 2.7, L/Z(L) satisfies [2, 2] = 0. Thus,

L/Z(L) satisfies C(4). Thereby, by Lemma 2.6, the result is true.

Conversely, if L satisfies C(5), in particular, L satisfies C(5, ϕ1) for ϕ1 = (4, 5). Using

Lemma 2.5, the result follows.

Corollary 3.1 L satisfies C(n) if and only if L satisfies C(n, ϕi) (i = 1, 2) for ϕ1 =

(4, 5, · · · , n − 1) and ϕ2 = (n − 1, n), where n ≥ 5.

Proof. If L satisfies C(n), then it is easy to see that L satisfies C(n, ϕi), i = 1, 2.

Conversely, let L satisfy C(n, ϕi), i = 1, 2. We proceed by induction on n. If n = 5, it

is the result in Theorem 3.1. By Lemma 2.3, L satisfies C(n, ϕ) for any ϕ such that ϕ(3) = 3.
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Since L satisfies C(n, ϕ1), we have [x1, x2, x3, · · · , xn−1, xn] = [x1, x2, xϕ1(3), · · · , xϕ1(n−1), xn]

for any xn ∈ L. Hence,

[x1, x2, x3, · · · , xn−1] − [x1, x2, xϕ1(3), · · · , xϕ1(n−1)] ∈ Z(L).

That is, L/Z(L) satisfies C(n − 1, ϕ1). Similarly, we can show that L/Z(L) satisfies C(n −

1, ϕ3) for ϕ3 = (n − 2, n − 1) ∈ 〈ϕ1, ϕ2〉. By induction on n, L/Z(L) satisfies C(n − 1).

Thus, by Lemma 2.6, L satisfies C(n).

Theorem 3.2 L satisfies C(n + 2) (n ≥ 2) if and only if L satisfies [n− k, 2 + k] = 0 for

all k = 0, 1, · · · , n − 2.

Proof. Induction on n. In the cases of n = 2 and n = 3, it has been proved in Theorem

3.1. Now, we assume n > 3. If L satisfies C(n + 2), then L satisfies [n, 2] = 0 by Lemma

2.5. Furthermore, L satisfies C(n + 2, ϕ) for any ϕ which fixes n + 2. Thus,

[x1, x2, x3, · · · , xn, xn+1, xn+2] = [x1, x2, xϕ(3), · · · , xϕ(n), xϕ(n+1), xn+2]

for any xn+2 ∈ L, and then

[x1, x2, x3, · · · , xn, xn+1] − [x1, x2, xϕ(3), · · · , xϕ(n), xϕ(n+1)] ∈ Z(L).

So we know that L/Z(L) satisfies C(n + 1). Then, by the hypothesis of induction on n,

L/Z(L) satisfies [n− 1− k, 2 + k] = 0 for any nonnegative integer k such that n− 1− k ≥ 2.

Finally, by Lemma 2.8 and [n, 2] = 0, we know that L satisfies [n − k, 2 + k] = 0 for all

k = 0, 1, · · · , n − 2.

Conversely, let L satisfy [n − k, 2 + k] = 0 for all nonnegative integers k ≤ n − 2 and

assume by induction that if L satisfies [n − 1 − k, 2 + k] = 0 for all 0 ≤ k ≤ n − 3, then L

satisfies C(n + 1). Since L satisfies [n − k, 2 + k] = [n − k − 1, 2 + k + 1] = 0, and L/Z(L)

satisfies [n − k − 1, 2 + k] = 0 by Lemma 2.7, L/Z(L) satisfies C(n + 1). Hence, L satisfies

C(n + 2) by Lemma 2.6.

Remark 3.1 By the anticommutativity of Lie bracket, we know that L satisfies [n, m] =

0 if and only if L satisfies [m, n] = 0. Thus, we can replace Theorem 3.2 by the following

result: L satisfies C(n+2) if and only if L satisfies [n, 2] = [n−1, 3] = · · · = [n−s, 2+s] = 0,

where 2s = n − 2 if n is even and 2s = n − 3 if n is odd.

Theorem 3.3 If L satisfies

[n, 2] = [n − 1, 3] = · · · = [n − k, 2 + k] = 0 (3.1)

for some k < s, then L satisfies C(2n − 2k − 1).

Proof. Let L satisfy (3.1). Then, by Lemma 2.2, L satisfies

[2n − 2k − 3, 2] = [2n− 2k − 4, 3] = · · · = [n − k, n − k − 1] = 0 (3.2)

also. By Theorem 3.2, we know that L satisfies C(2n − 2k − 1). This completes the proof.

In particular, for k = 0, we get the following results.

Corollary 3.2 If L satisfies [n, 2] = 0, then L satisfies C(2n − 1) for n ≥ 3.
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Corollary 3.3 If L satisfies C(n, ϕ) (n ≥ 5) for all ϕ which leave fixed 3, · · · , m (m ≤

n− 2), or for any set of generators of the group of permutations of {m+ 1, · · · , n} (m ≥ 3),

then L satisfies C(n + m − 3).

Theorem 3.4 Let L satisfy

[n, 2] = [n − k1, 2 + k1] = · · · = [n − km, 2 + km] = [n − s, 2 + s] = 0, (3.3)

where 0 ≤ k1 ≤ k2 ≤ · · · ≤ km ≤ s and s is defined in Remark 3.1. Then L satisfies

C(n + 1 + t), where t = max{k1, k2 − k1, · · · , km − km−1, s − km}.

Proof. Note that (3.1) implies (3.2), and (3.3) implies that L satisfies [n + t − 1, 2] =

[n + t− 2, 3] = · · · = [2, n + t− 1] = 0. Hence, L satisfies C(n + 1 + t) by Theorem 3.2. This

completes the proof.

Next, we comment briefly on some results of the situation for

[x1, x2, · · · , xn] = [x1, xϕ(2) · · · , xϕ(n)]. (3.4)

Theorem 3.5 L satisfies (3.4) for all permutations ϕ of {2, · · · , n} if and only if L is a

nilpotent of class ≤ n − 1.

Proof. Use induction on n. For n = 3, by Lemma 2.5, [x1, x2, x3] = [x1, x3, x2] if and only

if [x1, [x2, x3]] = 0. If L satisfies the hypotheses for n > 3, then L satisfies [n − 2, 2] = 0 by

Lemma 2.5 and L satisfies (3.4) for any ϕ which fixes n. Thus, as in the proof of Lemma 2.6,

L/Z(L) satisfies (3.4) when n is replaced by n− 1 for any permutation ϕ of {2, · · · , n− 1}.

Therefore, by induction, L/Z(L) is a nilpotent of class ≤ n− 2 and L is a nilpotent of class

≤ n − 1.

The proof of the converse is trivial.

Now, we know that the law [n, 2] = 0 (n ≥ 3) implies C(2n−1). The law [n, 1] = 0 means

that nilpotence class n implies C(n + 1) trivially. However, the law [m, n] = 0 (m, n ≥ 3)

does not imply C(k, ϕ) for any k and any nontrivial ϕ. It suffices to show this for [3, 3] = 0.

Lemma 3.1 If L satisfies [3, 3] = 0 and C(n, ϕ) (n ≥ 4), where ϕ(m) = 3, m 6= 3, then

the two-generator subalgebras of L satisfy C(n + 1).

Proof. If n = 4, then it is easy to see that L satisfies C(4). Now, let n ≥ 5, m = n

and H = (x, y), x, y ∈ L. Then, we show that H satisfies [n − 1, 2] = 0. Since L satisfies

[3, 3] = 0, it suffices to check that [x1, x2, · · · , xn−1, [x, y]] = 0. Since L satisfies C(n, ϕ) and

ϕ(n) = 3, we can assume that ϕl(3) = n. Thus

[x, y, x3, · · · , xn−1, [x, y]] = [x, y, [x, y], xϕl(4), · · · , xϕl(n)] = 0.

If x1 = [x, y], then by Jacobian identity we have

[x1, x2, · · · , xn−1, [x, y]] = [[x, y], x3, x2, · · · , xn−1, [x, y]]

+ [[x, y], [x2, x3], x4, · · · , xn−1, [x, y]].
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Since ϕ(n) = 3,

[[x, y], [x2, x3], x4, · · · , xn−1, [x, y]] = [x, y, [x2, x3], x4, · · · , xn−1, [x, y]]

= [x, y, [x, y], [x2, x3], x4, · · · , xn−1]

= 0.

We have

[x1, x2, · · · , xn−1, [x, y]] = [[x, y], x3, x2, · · · , xn−1, [x, y]].

By the same way, we know that

[x1, x2, · · · , xn−1, [x, y]] = [[x, y], x3, · · · , xn−1, [x, y], x2]

= [[x, y], [x, y], x3, · · · , xn−1, x2]

= 0.

Since [3, 3] = 0, H satisfies [n− 1, 2] = 0. And since L satisfies [n− 2, 3] = [n− 3, 4] = · · · =

[3, n − 2] = 0, by Theorem 3.2, H satisfies C(n + 1).

Now we consider the case of m < n. We proceed by induction on n − m. Suppose that

the result is true for the case of ϕ(m + 1) = 3, m 6= 2, then we need to consider the case

of ϕ(m) = 3 (m 6= 3). By the hypothesis of induction, we know that H/Z(H) satisfies C(n)

and [n − 2, 2] = 0. Since H satisfies [n − 2, 3] = 0, by Lemma 2.8 we know that H satisfies

[n − 1, 2] = 0. Thus [3, 3] = 0 implies that H satisfies C(n + 1). This completes the proof.

Next, we give a Lie algebra which satisfies [3, 3] = 0, but the subalgebra (x, y) does not

satisfy C(n + 1) for any n ≥ 4.

Let A(Z, 3) be the associative algebra of formal power series in the noncommuting vari-

ables x, y, z with integer coefficients. Let [r1, r2] = r1r2 − r2r1. Then A(Z, 3) can be

viewed as a Lie algebra. If the relation r1[r2, r3] = 0 is added to A(Z, 3) for any monomials

ri ∈ A(Z, 3), whenever the degree (as monomial in x, y, z) of r1 is ≥ 3, then the result that

A(Z, 3) satisfies [3, 3] = 0 follows.

Now, we only need to show that [[r1, r2, r3], [r4, r5, r6]] = 0 for any ri ∈ A(Z, 3). Let

[r1, r2] = a, [r4, r5] = b. Then we have

[[r1, r2, r3], [r4, r5, r6]] = [[a, r3], [b, r6]]

= [ar3 − r3a, br6 − r6b]

= (ar3 − r3a)(br6 − r6b) − (br6 − r6b)(ar3 − r3a)

= (ar3br6 − ar3r6b − r3abr6 + r3ar6b)

− (br6ar3 − br6r3a − r6bar3 + r6br3a).

In the expression (ar3br6 − ar3r6b− r3abr6 + r3ar6b), we replace a and b by r1r2 − r2r1 and

[r4, r5], respectively. And in the expression (br6ar3 − br6r3a − r6bar3 + r6br3a), we replace

a and b by [r1, r2] and r4r5 − r5r4, respectively. Then we have [[r1, r2, r3], [r4, r5, r6]] = 0.

That is, A(Z, 3) satisfies [3, 3] = 0 .
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We show that the subalgebra H = (x, y) does not satisfy C(n+1) for n ≥ 4. By Lemma

2.1, we know that

[x, y, y, · · · , y
︸ ︷︷ ︸

n−3

, [x, y]] = (−1)n−3[(ady)n−3([x, y]), [x, y]]

= (−1)n−3
[ ∑

0≤j≤n−3−j

(−1)n−3−j

(
n − 3

j

)

yj [x, y]yn−3−j , [x, y]
]

= −[x, y]2yn−3

6= 0.

By Lemma 2.5, we have

[x, y, y, · · · , y
︸ ︷︷ ︸

n−3

, x, y] 6= [x, y, y, · · · , y
︸ ︷︷ ︸

n−3

, y, x].

So (x, y) does not satisfy C(n + 1) for any n ≥ 4.

Hence, by Lemma 3.1, if [3, 3] = 0 implies C(n, ϕ), then ϕ(3) = 3. Now we suppose

that [3, 3] = 0 implies C(m + n + 3, ϕ), where ϕ(m + n + 3) = m + 3, n > 0. Then, in the

Lie algebra A(Z, 3), [x, y, x, · · · , x
︸ ︷︷ ︸

m+n

, y] = [x, y, x, · · · , x
︸ ︷︷ ︸

m

, y, x, · · · , x
︸ ︷︷ ︸

n

]. Let [x, y, x, · · · , x
︸ ︷︷ ︸

m

] = T .

Then

[T, x, · · · , x
︸ ︷︷ ︸

n

, y] = [T, y, x, · · · , x
︸ ︷︷ ︸

n

]. (3.5)

So

[(adx)n(T ), y] = (adx)n([T, y]). (3.6)

By Lemma 2.1, we know that the equality (3.5) holds if and only if n = 0. Hence, we have

proved the following remark.

Remark 3.2 The law [m, n] = 0 (m, n ≥ 3) does not imply C(k, ϕ) for any k ≥ 4 and

nontrivial ϕ.
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