On Some Varieties of Soluble Lie Algebras*

Nan Ji-zhu, Wang Cheng-cheng and Li Hai-ling
(School of Mathematical Sciences, Dalian University of Technology, Dalian, Liaoning, 116024)
Communicated by Du Xian-kun

Abstract

In this paper, we study a class of soluble Lie algebras with variety relations that the commutator of m and n is zero. The aim of the paper is to consider the relationship between the Lie algebra L with the variety relations and the Lie algebra L which satisfies the permutation variety relations for the permutation φ of $\{3, \cdots, k\}$.

Key words: variety, permutation, nilpotent class
2000 MR subject classification: 17B30
Document code: A
Article ID: 1674-5647(2012)01-0010-07

1 Introduction

There are many parallel results between groups and Lie algebras. We can translate some results from groups to Lie algebras. For example, Macdonald ${ }^{[1]}$ discussed some varieties of groups, particularly, some varieties associated with nilpotent groups in 1961, and then Suthathip ${ }^{[2]}$ showed the similar varieties for nilpotent Lie algebras. In this paper, we extend similar varieties in [3] to soluble Lie algebras.

Let L be a Lie algebra, and $x_{1}, x_{2}, \cdots, x_{n} \in L$. The commutator $\left[x_{1}, x_{2}, \cdots, x_{n}\right]$ in L is defined by

$$
\left[x_{1}, x_{2}\right]=\left[x_{1}, x_{2}\right]
$$

and

$$
\begin{equation*}
\left[x_{1}, x_{2}, \cdots, x_{n-1}, x_{n}\right]=\left[\left[x_{1}, x_{2}, \cdots, x_{n-1}\right], x_{n}\right], \quad n \geq 2 \tag{1.1}
\end{equation*}
$$

Moreover, we define

$$
\left[x_{1}, x_{2}, \cdots, x_{m} ; y_{1}, y_{2}, \cdots, y_{n}\right]=\left[\left[x_{1}, x_{2}, \cdots, x_{m}\right],\left[y_{1}, y_{2}, \cdots, y_{n}\right]\right]
$$

for any integers m and n. We say that the Lie algebra L is variety $[m, n]=0$ if it satisfies

$$
\left[\left[x_{1}, x_{2}, \cdots, x_{m}\right],\left[y_{1}, y_{2}, \cdots, y_{n}\right]\right]=0, \quad x_{i}, y_{j} \in L
$$

[^0]If a Lie algebra L satisfies $\left[x_{1}, x_{2}, \cdots, x_{k}\right]=\left[x_{1}, x_{2}, x_{\varphi(3)}, \cdots, x_{\varphi(k)}\right]$, where φ is a permutation of $\{3, \cdots, k\}$, then we call that L satisfies $C(k, \varphi)$. If L satisfies $C(k, \varphi)$ for all permutations φ of $\{3, \cdots, k\}$, then we call that L satisfies $C(k)$.

The main result of this paper is that L satisfies $C(n+2)(n \geq 2)$ if and only if L satisfies the law $[n-k, 2+k]=0$ for all $k=0,1, \cdots, n-2$. Then it is easy to see that $[3,2]=0$ is equivalent to $C(5)$. Furthermore, $[n, 2]=0(n \geq 3)$ implies $C(2 n-1)$. However, the law $[m, n]=0$ does not imply any nontrivial law $C(k, \varphi)$ for $m, n \geq 3$.

2 The Lie Algebra with Varieties $[m, n]=0$

Now we want to introduce some properties of the Lie algebra with variety $[m, n]=0$. Denote by (x) a subalgebra generated by x.

Definition 2.1 Let L be a Lie algebra. We define the sequence $\left\{L^{n}\right\}_{n \geq 1}$ by

$$
L^{1}=L, \quad L^{n+1}=\left[L, L^{n}\right], \quad n \geq 1
$$

If $L^{m+1}=0, L^{m} \neq 0$ for some m, then we say that L has nilpotent class precisely m.
Lemma 2.1 ${ }^{[4]}$ Let A be an associative algebra. Then the following identities hold:
(1) $(\operatorname{ad} c)^{m}(a)=\sum_{0 \leq j \leq m}(-1)^{m-j}\binom{m}{j} c^{j} a c^{m-j}$ for all $a, c \in A$;
(2) $[a b, c]=[a, c] b+a[b, c]$ for all $a, b, c \in A$.

Lemma 2.2 ${ }^{[3]}$ If L satisfies $[n, m]=0$, then $[n+p, m+q]=0$ for any nonnegative numbers p and q.

Lemma 2.3 ${ }^{[5]}$ If L satisfies $C\left(k, \varphi_{1}\right)$ and $C\left(k, \varphi_{2}\right)$, then L satisfies $C(k, \varphi)$ for any φ in the group generated by φ_{1} and φ_{2}.

Lemma 2.4 ${ }^{[5]}$ If L satisfies $C(k)$, then L satisfies $C(m)$ for all $m \geq k$.
Lemma 2.5 Let L be a Lie algebra. Then $[a,[x, y]]=0$ if and only if $[a, x, y]=[a, y, x]$ for any $a, x, y \in L$.

Proof. It is easily checked by Jacobian identity.
Lemma 2.6 Let L be a Lie algebra with variety $[n, 2]=0(n \geq 2)$. If $L / Z(L)$ satisfies $C(n+1)$, then L satisfies $C(n+2)$.

Proof. By Lemma 2.5, we know that L satisfies $C\left(n+2, \varphi_{1}\right)$ for $\varphi_{1}=(n+1, n+2)$. Since $L / Z(L)$ satisfies $C(n+1)$, in particular, it satisfies $C\left(n+1, \varphi_{2}\right)$ for $\varphi_{2}=(3,4, \cdots, n+1)$. Thus, for any $x_{1}, x_{2}, \cdots, x_{n+1} \in L$, we have

$$
\left[x_{1}, x_{2}, x_{3}, \cdots, x_{n+1}\right]-\left[x_{1}, x_{2}, x_{\varphi_{2}(3)}, \cdots, x_{\varphi_{2}(n+1)}\right] \in Z(L)
$$

and also

$$
\left[x_{1}, x_{2}, \cdots, x_{n+1}, x_{n+2}\right]=\left[x_{1}, x_{2}, x_{\varphi_{2}(3)}, \cdots, x_{\varphi_{2}(n+1)}, x_{\varphi_{2}(n+2)}\right]
$$

for any $x_{n+2} \in L$. That is, L satisfies $C\left(n+2, \varphi_{2}\right)$. Since $S_{n}=\left\langle\varphi_{1}, \varphi_{2}\right\rangle$, by Lemma 2.3, we know that L satisfies $C(n+2)$.

Lemma 2.7 If L satisfies $[n, m]=0$ and $[n-1, m+1]=0$, then $L / Z(L)$ satisfies $[n-1, m]=0$. Particularly, if L satisfies $[n, n-1]=0$, then $L / Z(L)$ satisfies $[n-1, n-1]=0$.

Proof. Let

$$
\begin{aligned}
& \bar{a}=a+Z(L)=\left[x_{1}, x_{2}, \cdots, x_{n-1}\right]+Z(L), \\
& \bar{b}=b+Z(L)=\left[y_{1}, y_{2}, \cdots, y_{m}\right]+Z(L),
\end{aligned} \quad x_{i}, y_{j} \in L .
$$

By Jacobian identity, we know that $[a, b, z]=[a, z, b]+[a,[b, z]]$ for any $z \in L$. By the hypothesis, L satisfies $[n, m]=0$ and $[n-1, m+1]=0$. Thus we have $[a, z, b]=0$ and $[a,[b, z]]=0$. So $[a, b] \in Z(L)$ and $[\bar{a}, \bar{b}]=[a, b]+Z(L)=\overline{0}$. That is, $L / Z(L)$ satisfies $[n-1, m]=0$.

Lemma 2.8 If L satisfies $[n, m]=0$ and $L / Z(L)$ satisfies $[n-1, m]=0$, then L satisfies $[m+1, n-1]=0$.

Proof. Let $a=\left[x_{1}, x_{2}, \cdots, x_{m+1}\right], b=\left[y_{1}, y_{2}, \cdots, y_{n-1}\right]$ for all $x_{i}, y_{j} \in L$. Then

$$
\begin{aligned}
{[a, b] } & =-[b, a] \\
& =-\left[b,\left[x_{1}, x_{2}, \cdots, x_{m}\right], x_{m+1}\right] \\
& =-\left[b,\left[x_{1}, x_{2}, \cdots, x_{m}\right], x_{m+1}\right]+\left[b, x_{m+1},\left[x_{1}, x_{2}, \cdots, x_{m}\right]\right]
\end{aligned}
$$

Since $L / Z(L)$ satisfies $[n-1, m]=0$, we have $\left[b,\left[x_{1}, x_{2}, \cdots, x_{m}\right]\right] \in Z(L)$. Hence,

$$
\left[b,\left[x_{1}, x_{2}, \cdots, x_{m}\right], x_{m+1}\right]=0
$$

Furthermore, since L satisfies $[n, m]=0$, we have

$$
\left[b, x_{m+1},\left[x_{1}, x_{2}, \cdots, x_{m}\right]\right]=0
$$

Therefore, $[a, b]=0$, that is, L satisfies $[m+1, n-1]=0$.

3 Some Cases for Small m and n

In this section, we consider the construction of the Lie algebra L with variety $[m, n]=0$ for small m and n.

Theorem 3.1 L satisfies $[3,2]=0$ if and only if L satisfies $C(5)$.
Proof. If L satisfies $[3,2]=0$, then by Lemma 2.7, $L / Z(L)$ satisfies $[2,2]=0$. Thus, $L / Z(L)$ satisfies $C(4)$. Thereby, by Lemma 2.6 , the result is true.

Conversely, if L satisfies $C(5)$, in particular, L satisfies $C\left(5, \varphi_{1}\right)$ for $\varphi_{1}=(4,5)$. Using Lemma 2.5, the result follows.

Corollary 3.1 L satisfies $C(n)$ if and only if L satisfies $C\left(n, \varphi_{i}\right)(i=1,2)$ for $\varphi_{1}=$ $(4,5, \cdots, n-1)$ and $\varphi_{2}=(n-1, n)$, where $n \geq 5$.

Proof. If L satisfies $C(n)$, then it is easy to see that L satisfies $C\left(n, \varphi_{i}\right), i=1,2$.
Conversely, let L satisfy $C\left(n, \varphi_{i}\right), i=1,2$. We proceed by induction on n. If $n=5$, it is the result in Theorem 3.1. By Lemma 2.3, L satisfies $C(n, \varphi)$ for any φ such that $\varphi(3)=3$.

Since L satisfies $C\left(n, \varphi_{1}\right)$, we have $\left[x_{1}, x_{2}, x_{3}, \cdots, x_{n-1}, x_{n}\right]=\left[x_{1}, x_{2}, x_{\varphi_{1}(3)}, \cdots, x_{\varphi_{1}(n-1)}, x_{n}\right]$ for any $x_{n} \in L$. Hence,

$$
\left[x_{1}, x_{2}, x_{3}, \cdots, x_{n-1}\right]-\left[x_{1}, x_{2}, x_{\varphi_{1}(3)}, \cdots, x_{\varphi_{1}(n-1)}\right] \in Z(L)
$$

That is, $L / Z(L)$ satisfies $C\left(n-1, \varphi_{1}\right)$. Similarly, we can show that $L / Z(L)$ satisfies $C(n-$ $\left.1, \varphi_{3}\right)$ for $\varphi_{3}=(n-2, n-1) \in\left\langle\varphi_{1}, \varphi_{2}\right\rangle$. By induction on $n, L / Z(L)$ satisfies $C(n-1)$. Thus, by Lemma 2.6, L satisfies $C(n)$.

Theorem 3.2 L satisfies $C(n+2)(n \geq 2)$ if and only if L satisfies $[n-k, 2+k]=0$ for all $k=0,1, \cdots, n-2$.

Proof. Induction on n. In the cases of $n=2$ and $n=3$, it has been proved in Theorem 3.1. Now, we assume $n>3$. If L satisfies $C(n+2)$, then L satisfies $[n, 2]=0$ by Lemma 2.5. Furthermore, L satisfies $C(n+2, \varphi)$ for any φ which fixes $n+2$. Thus,

$$
\left[x_{1}, x_{2}, x_{3}, \cdots, x_{n}, x_{n+1}, x_{n+2}\right]=\left[x_{1}, x_{2}, x_{\varphi(3)}, \cdots, x_{\varphi(n)}, x_{\varphi(n+1)}, x_{n+2}\right]
$$

for any $x_{n+2} \in L$, and then

$$
\left[x_{1}, x_{2}, x_{3}, \cdots, x_{n}, x_{n+1}\right]-\left[x_{1}, x_{2}, x_{\varphi(3)}, \cdots, x_{\varphi(n)}, x_{\varphi(n+1)}\right] \in Z(L)
$$

So we know that $L / Z(L)$ satisfies $C(n+1)$. Then, by the hypothesis of induction on n, $L / Z(L)$ satisfies $[n-1-k, 2+k]=0$ for any nonnegative integer k such that $n-1-k \geq 2$. Finally, by Lemma 2.8 and $[n, 2]=0$, we know that L satisfies $[n-k, 2+k]=0$ for all $k=0,1, \cdots, n-2$.

Conversely, let L satisfy $[n-k, 2+k]=0$ for all nonnegative integers $k \leq n-2$ and assume by induction that if L satisfies $[n-1-k, 2+k]=0$ for all $0 \leq k \leq n-3$, then L satisfies $C(n+1)$. Since L satisfies $[n-k, 2+k]=[n-k-1,2+k+1]=0$, and $L / Z(L)$ satisfies $[n-k-1,2+k]=0$ by Lemma 2.7, $L / Z(L)$ satisfies $C(n+1)$. Hence, L satisfies $C(n+2)$ by Lemma 2.6.

Remark 3.1 By the anticommutativity of Lie bracket, we know that L satisfies $[n, m]=$ 0 if and only if L satisfies $[m, n]=0$. Thus, we can replace Theorem 3.2 by the following result: L satisfies $C(n+2)$ if and only if L satisfies $[n, 2]=[n-1,3]=\cdots=[n-s, 2+s]=0$, where $2 s=n-2$ if n is even and $2 s=n-3$ if n is odd.

Theorem 3.3 If L satisfies

$$
\begin{equation*}
[n, 2]=[n-1,3]=\cdots=[n-k, 2+k]=0 \tag{3.1}
\end{equation*}
$$

for some $k<s$, then L satisfies $C(2 n-2 k-1)$.
Proof. Let L satisfy (3.1). Then, by Lemma 2.2, L satisfies

$$
\begin{equation*}
[2 n-2 k-3,2]=[2 n-2 k-4,3]=\cdots=[n-k, n-k-1]=0 \tag{3.2}
\end{equation*}
$$

also. By Theorem 3.2, we know that L satisfies $C(2 n-2 k-1)$. This completes the proof.
In particular, for $k=0$, we get the following results.
Corollary 3.2 If L satisfies $[n, 2]=0$, then L satisfies $C(2 n-1)$ for $n \geq 3$.

Corollary 3.3 If L satisfies $C(n, \varphi)(n \geq 5)$ for all φ which leave fixed $3, \cdots, m(m \leq$ $n-2)$, or for any set of generators of the group of permutations of $\{m+1, \cdots, n\}(m \geq 3)$, then L satisfies $C(n+m-3)$.

Theorem 3.4 Let L satisfy

$$
\begin{equation*}
[n, 2]=\left[n-k_{1}, 2+k_{1}\right]=\cdots=\left[n-k_{m}, 2+k_{m}\right]=[n-s, 2+s]=0 \tag{3.3}
\end{equation*}
$$

where $0 \leq k_{1} \leq k_{2} \leq \cdots \leq k_{m} \leq s$ and s is defined in Remark 3.1. Then L satisfies $C(n+1+t)$, where $t=\max \left\{k_{1}, k_{2}-k_{1}, \cdots, k_{m}-k_{m-1}, s-k_{m}\right\}$.

Proof. Note that (3.1) implies (3.2), and (3.3) implies that L satisfies $[n+t-1,2]=$ $[n+t-2,3]=\cdots=[2, n+t-1]=0$. Hence, L satisfies $C(n+1+t)$ by Theorem 3.2. This completes the proof.

Next, we comment briefly on some results of the situation for

$$
\begin{equation*}
\left[x_{1}, x_{2}, \cdots, x_{n}\right]=\left[x_{1}, x_{\varphi(2)} \cdots, x_{\varphi(n)}\right] . \tag{3.4}
\end{equation*}
$$

Theorem 3.5 L satisfies (3.4) for all permutations φ of $\{2, \cdots, n\}$ if and only if L is a nilpotent of class $\leq n-1$.

Proof. Use induction on n. For $n=3$, by Lemma 2.5, $\left[x_{1}, x_{2}, x_{3}\right]=\left[x_{1}, x_{3}, x_{2}\right]$ if and only if $\left[x_{1},\left[x_{2}, x_{3}\right]\right]=0$. If L satisfies the hypotheses for $n>3$, then L satisfies $[n-2,2]=0$ by Lemma 2.5 and L satisfies (3.4) for any φ which fixes n. Thus, as in the proof of Lemma 2.6, $L / Z(L)$ satisfies (3.4) when n is replaced by $n-1$ for any permutation φ of $\{2, \cdots, n-1\}$. Therefore, by induction, $L / Z(L)$ is a nilpotent of class $\leq n-2$ and L is a nilpotent of class $\leq n-1$.

The proof of the converse is trivial.
Now, we know that the law $[n, 2]=0(n \geq 3)$ implies $C(2 n-1)$. The law $[n, 1]=0$ means that nilpotence class n implies $C(n+1)$ trivially. However, the law $[m, n]=0(m, n \geq 3)$ does not imply $C(k, \varphi)$ for any k and any nontrivial φ. It suffices to show this for $[3,3]=0$.

Lemma 3.1 If L satisfies $[3,3]=0$ and $C(n, \varphi)(n \geq 4)$, where $\varphi(m)=3, m \neq 3$, then the two-generator subalgebras of L satisfy $C(n+1)$.

Proof. If $n=4$, then it is easy to see that L satisfies $C(4)$. Now, let $n \geq 5, m=n$ and $H=(x, y), x, y \in L$. Then, we show that H satisfies $[n-1,2]=0$. Since L satisfies $[3,3]=0$, it suffices to check that $\left[x_{1}, x_{2}, \cdots, x_{n-1},[x, y]\right]=0$. Since L satisfies $C(n, \varphi)$ and $\varphi(n)=3$, we can assume that $\varphi^{l}(3)=n$. Thus

$$
\left[x, y, x_{3}, \cdots, x_{n-1},[x, y]\right]=\left[x, y,[x, y], x_{\varphi^{l}(4)}, \cdots, x_{\varphi^{l}(n)}\right]=0
$$

If $x_{1}=[x, y]$, then by Jacobian identity we have

$$
\begin{aligned}
{\left[x_{1}, x_{2}, \cdots, x_{n-1},[x, y]\right]=} & {\left[[x, y], x_{3}, x_{2}, \cdots, x_{n-1},[x, y]\right] } \\
& +\left[[x, y],\left[x_{2}, x_{3}\right], x_{4}, \cdots, x_{n-1},[x, y]\right]
\end{aligned}
$$

Since $\varphi(n)=3$,

$$
\begin{aligned}
{\left[[x, y],\left[x_{2}, x_{3}\right], x_{4}, \cdots, x_{n-1},[x, y]\right] } & =\left[x, y,\left[x_{2}, x_{3}\right], x_{4}, \cdots, x_{n-1},[x, y]\right] \\
& =\left[x, y,[x, y],\left[x_{2}, x_{3}\right], x_{4}, \cdots, x_{n-1}\right] \\
& =0 .
\end{aligned}
$$

We have

$$
\left[x_{1}, x_{2}, \cdots, x_{n-1},[x, y]\right]=\left[[x, y], x_{3}, x_{2}, \cdots, x_{n-1},[x, y]\right] .
$$

By the same way, we know that

$$
\begin{aligned}
{\left[x_{1}, x_{2}, \cdots, x_{n-1},[x, y]\right] } & =\left[[x, y], x_{3}, \cdots, x_{n-1},[x, y], x_{2}\right] \\
& =\left[[x, y],[x, y], x_{3}, \cdots, x_{n-1}, x_{2}\right] \\
& =0 .
\end{aligned}
$$

Since $[3,3]=0, H$ satisfies $[n-1,2]=0$. And since L satisfies $[n-2,3]=[n-3,4]=\cdots=$ $[3, n-2]=0$, by Theorem 3.2, H satisfies $C(n+1)$.

Now we consider the case of $m<n$. We proceed by induction on $n-m$. Suppose that the result is true for the case of $\varphi(m+1)=3, m \neq 2$, then we need to consider the case of $\varphi(m)=3(m \neq 3)$. By the hypothesis of induction, we know that $H / Z(H)$ satisfies $C(n)$ and $[n-2,2]=0$. Since H satisfies $[n-2,3]=0$, by Lemma 2.8 we know that H satisfies $[n-1,2]=0$. Thus $[3,3]=0$ implies that H satisfies $C(n+1)$. This completes the proof.

Next, we give a Lie algebra which satisfies $[3,3]=0$, but the subalgebra (x, y) does not satisfy $C(n+1)$ for any $n \geq 4$.

Let $A(Z, 3)$ be the associative algebra of formal power series in the noncommuting variables x, y, z with integer coefficients. Let $\left[r_{1}, r_{2}\right]=r_{1} r_{2}-r_{2} r_{1}$. Then $A(Z, 3)$ can be viewed as a Lie algebra. If the relation $r_{1}\left[r_{2}, r_{3}\right]=0$ is added to $A(Z, 3)$ for any monomials $r_{i} \in A(Z, 3)$, whenever the degree (as monomial in $\left.x, y, z\right)$ of r_{1} is ≥ 3, then the result that $A(Z, 3)$ satisfies $[3,3]=0$ follows.

Now, we only need to show that $\left[\left[r_{1}, r_{2}, r_{3}\right],\left[r_{4}, r_{5}, r_{6}\right]\right]=0$ for any $r_{i} \in A(Z, 3)$. Let $\left[r_{1}, r_{2}\right]=a,\left[r_{4}, r_{5}\right]=b$. Then we have

$$
\begin{aligned}
{\left[\left[r_{1}, r_{2}, r_{3}\right],\left[r_{4}, r_{5}, r_{6}\right]\right]=} & {\left[\left[a, r_{3}\right],\left[b, r_{6}\right]\right] } \\
= & {\left[a r_{3}-r_{3} a, b r_{6}-r_{6} b\right] } \\
= & \left(a r_{3}-r_{3} a\right)\left(b r_{6}-r_{6} b\right)-\left(b r_{6}-r_{6} b\right)\left(a r_{3}-r_{3} a\right) \\
= & \left(a r_{3} b r_{6}-a r_{3} r_{6} b-r_{3} a b r_{6}+r_{3} a r_{6} b\right) \\
& -\left(b r_{6} a r_{3}-b r_{6} r_{3} a-r_{6} b a r_{3}+r_{6} b r_{3} a\right) .
\end{aligned}
$$

In the expression $\left(a r_{3} b r_{6}-a r_{3} r_{6} b-r_{3} a b r_{6}+r_{3} a r_{6} b\right)$, we replace a and b by $r_{1} r_{2}-r_{2} r_{1}$ and $\left[r_{4}, r_{5}\right]$, respectively. And in the expression $\left(b r_{6} a r_{3}-b r_{6} r_{3} a-r_{6} b a r_{3}+r_{6} b r_{3} a\right)$, we replace a and b by $\left[r_{1}, r_{2}\right]$ and $r_{4} r_{5}-r_{5} r_{4}$, respectively. Then we have $\left[\left[r_{1}, r_{2}, r_{3}\right],\left[r_{4}, r_{5}, r_{6}\right]\right]=0$. That is, $A(Z, 3)$ satisfies $[3,3]=0$.

We show that the subalgebra $H=(x, y)$ does not satisfy $C(n+1)$ for $n \geq 4$. By Lemma 2.1, we know that

$$
\begin{aligned}
{[x, y, \underbrace{y, \cdots, y}_{n-3},[x, y]] } & =(-1)^{n-3}\left[(\operatorname{ad} y)^{n-3}([x, y]),[x, y]\right] \\
& =(-1)^{n-3}\left[\sum_{0 \leq j \leq n-3-j}(-1)^{n-3-j}\binom{n-3}{j} y^{j}[x, y] y^{n-3-j},[x, y]\right] \\
& =-[x, y]^{2} y^{n-3} \\
& \neq 0 .
\end{aligned}
$$

By Lemma 2.5, we have

$$
[x, y, \underbrace{y, \cdots, y}_{n-3}, x, y] \neq[x, y, \underbrace{y, \cdots, y}_{n-3}, y, x] .
$$

So (x, y) does not satisfy $C(n+1)$ for any $n \geq 4$.
Hence, by Lemma 3.1, if $[3,3]=0$ implies $C(n, \varphi)$, then $\varphi(3)=3$. Now we suppose that $[3,3]=0$ implies $C(m+n+3, \varphi)$, where $\varphi(m+n+3)=m+3, n>0$. Then, in the Lie algebra $A(Z, 3),[x, y, \underbrace{x, \cdots, x}_{m+n}, y]=[x, y, \underbrace{x, \cdots, x}_{m}, y, \underbrace{x, \cdots, x}_{n}]$. Let $[x, y, \underbrace{x, \cdots, x}_{m}]=T$.
Then

$$
\begin{equation*}
[T, \underbrace{x, \cdots, x}_{n}, y]=[T, y, \underbrace{x, \cdots, x}_{n}] . \tag{3.5}
\end{equation*}
$$

So

$$
\begin{equation*}
\left[(\operatorname{ad} x)^{n}(T), y\right]=(\operatorname{ad} x)^{n}([T, y]) \tag{3.6}
\end{equation*}
$$

By Lemma 2.1, we know that the equality (3.5) holds if and only if $n=0$. Hence, we have proved the following remark.

Remark 3.2 The law $[m, n]=0(m, n \geq 3)$ does not imply $C(k, \varphi)$ for any $k \geq 4$ and nontrivial φ.

References

[1] Macdonald I D. On certain varieties of groups. Math. Z., 1961, 76: 270-282.
[2] Suthathip S. On the Relationship Between the Class of a Lie Algebra and the Classes of Its Subalgebra. Raleigh: North Carolina State Univ., 2007.
[3] Levin F. On some varieties of soluble groups I. Math. Z., 1964, 85: 369-372.
[4] Strade H, Farnsteiner R. Modular Lie Algebras and Their Representations. New York: Dekker, 1988.
[5] Levin F. On some varieties of soluble groups II. Math. Z., 1968, 103: 162-172.

[^0]: *Received date: Jan. 19, 2010.
 Foundation item: The NSF (10671028) of China.

