On Some Varieties of Soluble Lie Algebras*

NAN JI-ZHU, WANG CHENG-CHENG AND LI HAI-LING (School of Mathematical Sciences, Dalian University of Technology, Dalian, Liaoning, 116024)

Communicated by Du Xian-kun

Abstract: In this paper, we study a class of soluble Lie algebras with variety relations that the commutator of m and n is zero. The aim of the paper is to consider the relationship between the Lie algebra L with the variety relations and the Lie algebra L which satisfies the permutation variety relations for the permutation φ of $\{3, \dots, k\}$.

Key words: variety, permutation, nilpotent class

2000 MR subject classification: 17B30

Document code: A

Article ID: 1674-5647(2012)01-0010-07

1 Introduction

There are many parallel results between groups and Lie algebras. We can translate some results from groups to Lie algebras. For example, Macdonald^[1] discussed some varieties of groups, particularly, some varieties associated with nilpotent groups in 1961, and then Suthathip^[2] showed the similar varieties for nilpotent Lie algebras. In this paper, we extend similar varieties in [3] to soluble Lie algebras.

Let L be a Lie algebra, and $x_1, x_2, \dots, x_n \in L$. The commutator $[x_1, x_2, \dots, x_n]$ in L is defined by

$$[x_1, x_2] = [x_1, x_2]$$

and

$$[x_1, x_2, \cdots, x_{n-1}, x_n] = [[x_1, x_2, \cdots, x_{n-1}], x_n], \qquad n \ge 2.$$
(1.1)

Moreover, we define

$$[x_1, x_2, \cdots, x_m; y_1, y_2, \cdots, y_n] = [[x_1, x_2, \cdots, x_m], [y_1, y_2, \cdots, y_n]]$$

for any integers m and n. We say that the Lie algebra L is variety [m, n] = 0 if it satisfies

$$[[x_1, x_2, \cdots, x_m], [y_1, y_2, \cdots, y_n]] = 0, \quad x_i, y_j \in L$$

Foundation item: The NSF (10671028) of China.

^{*}Received date: Jan. 19, 2010.

If a Lie algebra L satisfies $[x_1, x_2, \dots, x_k] = [x_1, x_2, x_{\varphi(3)}, \dots, x_{\varphi(k)}]$, where φ is a permutation of $\{3, \dots, k\}$, then we call that L satisfies $C(k, \varphi)$. If L satisfies $C(k, \varphi)$ for all permutations φ of $\{3, \dots, k\}$, then we call that L satisfies C(k).

The main result of this paper is that L satisfies C(n+2) $(n \ge 2)$ if and only if L satisfies the law [n-k,2+k]=0 for all $k=0,1,\cdots,n-2$. Then it is easy to see that [3,2]=0 is equivalent to C(5). Furthermore, [n,2]=0 $(n \ge 3)$ implies C(2n-1). However, the law [m,n]=0 does not imply any nontrivial law $C(k,\varphi)$ for $m,n \ge 3$.

2 The Lie Algebra with Varieties [m, n] = 0

Now we want to introduce some properties of the Lie algebra with variety [m, n] = 0. Denote by (x) a subalgebra generated by x.

Definition 2.1 Let L be a Lie algebra. We define the sequence $\{L^n\}_{n\geq 1}$ by $L^1=L, \qquad L^{n+1}=[L,L^n], \qquad n\geq 1.$

If $L^{m+1}=0$, $L^m\neq 0$ for some m, then we say that L has nilpotent class precisely m.

Lemma 2.1^[4] Let A be an associative algebra. Then the following identities hold:

(1)
$$(\operatorname{ad} c)^m(a) = \sum_{0 \le j \le m} (-1)^{m-j} \binom{m}{j} c^j a c^{m-j}$$
 for all $a, c \in A$;

(2) [ab, c] = [a, c]b + a[b, c] for all $a, b, c \in A$.

Lemma 2.2^[3] If L satisfies [n, m] = 0, then [n+p, m+q] = 0 for any nonnegative numbers p and q.

Lemma 2.3^[5] If L satisfies $C(k, \varphi_1)$ and $C(k, \varphi_2)$, then L satisfies $C(k, \varphi)$ for any φ in the group generated by φ_1 and φ_2 .

Lemma 2.4^[5] If L satisfies C(k), then L satisfies C(m) for all $m \ge k$.

Lemma 2.5 Let L be a Lie algebra. Then [a, [x, y]] = 0 if and only if [a, x, y] = [a, y, x] for any $a, x, y \in L$.

Proof. It is easily checked by Jacobian identity.

Lemma 2.6 Let L be a Lie algebra with variety [n,2] = 0 $(n \ge 2)$. If L/Z(L) satisfies C(n+1), then L satisfies C(n+2).

Proof. By Lemma 2.5, we know that L satisfies $C(n+2,\varphi_1)$ for $\varphi_1=(n+1,n+2)$. Since L/Z(L) satisfies C(n+1), in particular, it satisfies $C(n+1,\varphi_2)$ for $\varphi_2=(3,4,\cdots,n+1)$. Thus, for any $x_1,x_2,\cdots,x_{n+1}\in L$, we have

$$[x_1, x_2, x_3, \cdots, x_{n+1}] - [x_1, x_2, x_{\varphi_2(3)}, \cdots, x_{\varphi_2(n+1)}] \in Z(L),$$

and also

NO. 1

$$[x_1, x_2, \cdots, x_{n+1}, x_{n+2}] = [x_1, x_2, x_{\varphi_2(3)}, \cdots, x_{\varphi_2(n+1)}, x_{\varphi_2(n+2)}]$$

for any $x_{n+2} \in L$. That is, L satisfies $C(n+2, \varphi_2)$. Since $S_n = \langle \varphi_1, \varphi_2 \rangle$, by Lemma 2.3, we know that L satisfies C(n+2).

12 COMM. MATH. RES. VOL. 28

Lemma 2.7 If L satisfies [n,m] = 0 and [n-1,m+1] = 0, then L/Z(L) satisfies [n-1,m] = 0. Particularly, if L satisfies [n,n-1] = 0, then L/Z(L) satisfies [n-1,n-1] = 0.

Proof. Let

$$\bar{a} = a + Z(L) = [x_1, x_2, \cdots, x_{n-1}] + Z(L),$$

 $\bar{b} = b + Z(L) = [y_1, y_2, \cdots, y_m] + Z(L),$ $x_i, y_j \in L.$

By Jacobian identity, we know that [a,b,z]=[a,z,b]+[a,[b,z]] for any $z\in L$. By the hypothesis, L satisfies [n,m]=0 and [n-1,m+1]=0. Thus we have [a,z,b]=0 and [a,[b,z]]=0. So $[a,b]\in Z(L)$ and $[\bar{a},\bar{b}]=[a,b]+Z(L)=\bar{0}$. That is, L/Z(L) satisfies [n-1,m]=0.

Lemma 2.8 If L satisfies [n, m] = 0 and L/Z(L) satisfies [n-1, m] = 0, then L satisfies [m+1, n-1] = 0.

$$\begin{aligned} \textit{Proof.} \quad \text{Let } a &= [x_1, x_2, \cdots, x_{m+1}], \ b &= [y_1, y_2, \cdots, y_{n-1}] \text{ for all } x_i, y_j \in L. \text{ Then} \\ &[a, b] &= -[b, a] \\ &= -[b, [x_1, x_2, \cdots, x_m], x_{m+1}] \\ &= -[b, [x_1, x_2, \cdots, x_m], x_{m+1}] + [b, x_{m+1}, [x_1, x_2, \cdots, x_m]]. \end{aligned}$$

Since L/Z(L) satisfies [n-1,m]=0, we have $[b,[x_1,x_2,\cdots,x_m]]\in Z(L).$ Hence,

$$[b, [x_1, x_2, \cdots, x_m], x_{m+1}] = 0.$$

Furthermore, since L satisfies [n, m] = 0, we have

$$[b, x_{m+1}, [x_1, x_2, \cdots, x_m]] = 0.$$

Therefore, [a, b] = 0, that is, L satisfies [m + 1, n - 1] = 0.

3 Some Cases for Small m and n

In this section, we consider the construction of the Lie algebra L with variety [m, n] = 0 for small m and n.

Theorem 3.1 L satisfies [3,2] = 0 if and only if L satisfies C(5).

Proof. If L satisfies [3,2] = 0, then by Lemma 2.7, L/Z(L) satisfies [2,2] = 0. Thus, L/Z(L) satisfies C(4). Thereby, by Lemma 2.6, the result is true.

Conversely, if L satisfies C(5), in particular, L satisfies $C(5, \varphi_1)$ for $\varphi_1 = (4, 5)$. Using Lemma 2.5, the result follows.

Corollary 3.1 L satisfies C(n) if and only if L satisfies $C(n, \varphi_i)$ (i = 1, 2) for $\varphi_1 = (4, 5, \dots, n-1)$ and $\varphi_2 = (n-1, n)$, where $n \geq 5$.

Proof. If L satisfies C(n), then it is easy to see that L satisfies $C(n,\varphi_i)$, i=1,2.

Conversely, let L satisfy $C(n, \varphi_i)$, i = 1, 2. We proceed by induction on n. If n = 5, it is the result in Theorem 3.1. By Lemma 2.3, L satisfies $C(n, \varphi)$ for any φ such that $\varphi(3) = 3$.

NO. 1

Since L satisfies $C(n, \varphi_1)$, we have $[x_1, x_2, x_3, \dots, x_{n-1}, x_n] = [x_1, x_2, x_{\varphi_1(3)}, \dots, x_{\varphi_1(n-1)}, x_n]$ for any $x_n \in L$. Hence,

$$[x_1, x_2, x_3, \cdots, x_{n-1}] - [x_1, x_2, x_{\varphi_1(3)}, \cdots, x_{\varphi_1(n-1)}] \in Z(L).$$

That is, L/Z(L) satisfies $C(n-1,\varphi_1)$. Similarly, we can show that L/Z(L) satisfies $C(n-1,\varphi_3)$ for $\varphi_3=(n-2,n-1)\in \langle \varphi_1,\varphi_2\rangle$. By induction on n, L/Z(L) satisfies C(n-1). Thus, by Lemma 2.6, L satisfies C(n).

Theorem 3.2 L satisfies C(n+2) $(n \ge 2)$ if and only if L satisfies [n-k, 2+k] = 0 for all $k = 0, 1, \dots, n-2$.

Proof. Induction on n. In the cases of n=2 and n=3, it has been proved in Theorem 3.1. Now, we assume n>3. If L satisfies C(n+2), then L satisfies [n,2]=0 by Lemma 2.5. Furthermore, L satisfies $C(n+2,\varphi)$ for any φ which fixes n+2. Thus,

$$[x_1, x_2, x_3, \cdots, x_n, x_{n+1}, x_{n+2}] = [x_1, x_2, x_{\varphi(3)}, \cdots, x_{\varphi(n)}, x_{\varphi(n+1)}, x_{n+2}]$$

for any $x_{n+2} \in L$, and then

$$[x_1, x_2, x_3, \cdots, x_n, x_{n+1}] - [x_1, x_2, x_{\varphi(3)}, \cdots, x_{\varphi(n)}, x_{\varphi(n+1)}] \in Z(L).$$

So we know that L/Z(L) satisfies C(n+1). Then, by the hypothesis of induction on n, L/Z(L) satisfies [n-1-k,2+k]=0 for any nonnegative integer k such that $n-1-k\geq 2$. Finally, by Lemma 2.8 and [n,2]=0, we know that L satisfies [n-k,2+k]=0 for all $k=0,1,\cdots,n-2$.

Conversely, let L satisfy [n-k,2+k]=0 for all nonnegative integers $k \leq n-2$ and assume by induction that if L satisfies [n-1-k,2+k]=0 for all $0 \leq k \leq n-3$, then L satisfies C(n+1). Since L satisfies [n-k,2+k]=[n-k-1,2+k+1]=0, and L/Z(L) satisfies [n-k-1,2+k]=0 by Lemma 2.7, L/Z(L) satisfies C(n+1). Hence, L satisfies C(n+2) by Lemma 2.6.

Remark 3.1 By the anticommutativity of Lie bracket, we know that L satisfies [n, m] = 0 if and only if L satisfies [m, n] = 0. Thus, we can replace Theorem 3.2 by the following result: L satisfies C(n+2) if and only if L satisfies $[n, 2] = [n-1, 3] = \cdots = [n-s, 2+s] = 0$, where 2s = n-2 if n is even and 2s = n-3 if n is odd.

Theorem 3.3 If L satisfies

$$[n,2] = [n-1,3] = \dots = [n-k,2+k] = 0 \tag{3.1}$$

for some k < s, then L satisfies C(2n - 2k - 1).

Proof. Let L satisfy (3.1). Then, by Lemma 2.2, L satisfies

$$[2n-2k-3,2] = [2n-2k-4,3] = \dots = [n-k,n-k-1] = 0$$
(3.2)

also. By Theorem 3.2, we know that L satisfies C(2n-2k-1). This completes the proof. In particular, for k=0, we get the following results.

Corollary 3.2 If L satisfies [n,2] = 0, then L satisfies C(2n-1) for n > 3.

Corollary 3.3 If L satisfies $C(n,\varphi)$ $(n \ge 5)$ for all φ which leave fixed $3, \dots, m$ $(m \le n-2)$, or for any set of generators of the group of permutations of $\{m+1,\dots,n\}$ $(m \ge 3)$, then L satisfies C(n+m-3).

Theorem 3.4 Let L satisfy

$$[n,2] = [n-k_1, 2+k_1] = \dots = [n-k_m, 2+k_m] = [n-s, 2+s] = 0, \tag{3.3}$$

where $0 \le k_1 \le k_2 \le \cdots \le k_m \le s$ and s is defined in Remark 3.1. Then L satisfies C(n+1+t), where $t = \max\{k_1, k_2 - k_1, \cdots, k_m - k_{m-1}, s - k_m\}$.

Proof. Note that (3.1) implies (3.2), and (3.3) implies that L satisfies $[n+t-1,2]=[n+t-2,3]=\cdots=[2,n+t-1]=0$. Hence, L satisfies C(n+1+t) by Theorem 3.2. This completes the proof.

Next, we comment briefly on some results of the situation for

$$[x_1, x_2, \cdots, x_n] = [x_1, x_{\varphi(2)}, \cdots, x_{\varphi(n)}].$$
 (3.4)

Theorem 3.5 L satisfies (3.4) for all permutations φ of $\{2, \dots, n\}$ if and only if L is a nilpotent of class $\leq n-1$.

Proof. Use induction on n. For n=3, by Lemma 2.5, $[x_1,x_2,x_3]=[x_1,x_3,x_2]$ if and only if $[x_1,[x_2,x_3]]=0$. If L satisfies the hypotheses for n>3, then L satisfies [n-2,2]=0 by Lemma 2.5 and L satisfies (3.4) for any φ which fixes n. Thus, as in the proof of Lemma 2.6, L/Z(L) satisfies (3.4) when n is replaced by n-1 for any permutation φ of $\{2,\cdots,n-1\}$. Therefore, by induction, L/Z(L) is a nilpotent of class $\leq n-2$ and L is a nilpotent of class $\leq n-1$.

The proof of the converse is trivial.

Now, we know that the law [n, 2] = 0 $(n \ge 3)$ implies C(2n-1). The law [n, 1] = 0 means that nilpotence class n implies C(n+1) trivially. However, the law [m, n] = 0 $(m, n \ge 3)$ does not imply $C(k, \varphi)$ for any k and any nontrivial φ . It suffices to show this for [3, 3] = 0.

Lemma 3.1 If L satisfies [3,3] = 0 and $C(n,\varphi)$ $(n \ge 4)$, where $\varphi(m) = 3$, $m \ne 3$, then the two-generator subalgebras of L satisfy C(n+1).

Proof. If n=4, then it is easy to see that L satisfies C(4). Now, let $n \geq 5$, m=n and $H=(x,y), x,y \in L$. Then, we show that H satisfies [n-1,2]=0. Since L satisfies [3,3]=0, it suffices to check that $[x_1,x_2,\cdots,x_{n-1},[x,y]]=0$. Since L satisfies $C(n,\varphi)$ and $\varphi(n)=3$, we can assume that $\varphi^l(3)=n$. Thus

$$[x, y, x_3, \dots, x_{n-1}, [x, y]] = [x, y, [x, y], x_{\varphi^l(4)}, \dots, x_{\varphi^l(n)}] = 0.$$

If $x_1 = [x, y]$, then by Jacobian identity we have

$$[x_1, x_2, \cdots, x_{n-1}, [x, y]] = [[x, y], x_3, x_2, \cdots, x_{n-1}, [x, y]] + [[x, y], [x_2, x_3], x_4, \cdots, x_{n-1}, [x, y]].$$

Since $\varphi(n) = 3$,

NO. 1

$$[[x, y], [x_2, x_3], x_4, \cdots, x_{n-1}, [x, y]] = [x, y, [x_2, x_3], x_4, \cdots, x_{n-1}, [x, y]]$$
$$= [x, y, [x, y], [x_2, x_3], x_4, \cdots, x_{n-1}]$$
$$= 0$$

We have

$$[x_1, x_2, \cdots, x_{n-1}, [x, y]] = [[x, y], x_3, x_2, \cdots, x_{n-1}, [x, y]].$$

By the same way, we know that

$$[x_1, x_2, \cdots, x_{n-1}, [x, y]] = [[x, y], x_3, \cdots, x_{n-1}, [x, y], x_2]$$
$$= [[x, y], [x, y], x_3, \cdots, x_{n-1}, x_2]$$
$$= 0$$

Since [3,3] = 0, H satisfies [n-1,2] = 0. And since L satisfies $[n-2,3] = [n-3,4] = \cdots = [3, n-2] = 0$, by Theorem 3.2, H satisfies C(n+1).

Now we consider the case of m < n. We proceed by induction on n - m. Suppose that the result is true for the case of $\varphi(m+1) = 3$, $m \neq 2$, then we need to consider the case of $\varphi(m) = 3$ ($m \neq 3$). By the hypothesis of induction, we know that H/Z(H) satisfies C(n) and [n-2,2] = 0. Since H satisfies [n-2,3] = 0, by Lemma 2.8 we know that H satisfies [n-1,2] = 0. Thus [3,3] = 0 implies that H satisfies C(n+1). This completes the proof.

Next, we give a Lie algebra which satisfies [3,3] = 0, but the subalgebra (x,y) does not satisfy C(n+1) for any $n \ge 4$.

Let A(Z,3) be the associative algebra of formal power series in the noncommuting variables x, y, z with integer coefficients. Let $[r_1, r_2] = r_1r_2 - r_2r_1$. Then A(Z,3) can be viewed as a Lie algebra. If the relation $r_1[r_2, r_3] = 0$ is added to A(Z,3) for any monomials $r_i \in A(Z,3)$, whenever the degree (as monomial in x, y, z) of r_1 is ≥ 3 , then the result that A(Z,3) satisfies [3,3] = 0 follows.

Now, we only need to show that $[[r_1, r_2, r_3], [r_4, r_5, r_6]] = 0$ for any $r_i \in A(Z, 3)$. Let $[r_1, r_2] = a, [r_4, r_5] = b$. Then we have

$$\begin{aligned} [[r_1, r_2, r_3], [r_4, r_5, r_6]] &= [[a, r_3], [b, r_6]] \\ &= [ar_3 - r_3 a, br_6 - r_6 b] \\ &= (ar_3 - r_3 a)(br_6 - r_6 b) - (br_6 - r_6 b)(ar_3 - r_3 a) \\ &= (ar_3 br_6 - ar_3 r_6 b - r_3 abr_6 + r_3 ar_6 b) \\ &- (br_6 ar_3 - br_6 r_3 a - r_6 bar_3 + r_6 br_3 a). \end{aligned}$$

In the expression $(ar_3br_6 - ar_3r_6b - r_3abr_6 + r_3ar_6b)$, we replace a and b by $r_1r_2 - r_2r_1$ and $[r_4, r_5]$, respectively. And in the expression $(br_6ar_3 - br_6r_3a - r_6bar_3 + r_6br_3a)$, we replace a and b by $[r_1, r_2]$ and $r_4r_5 - r_5r_4$, respectively. Then we have $[[r_1, r_2, r_3], [r_4, r_5, r_6]] = 0$. That is, A(Z, 3) satisfies [3, 3] = 0.

16 COMM. MATH. RES. VOL. 28

We show that the subalgebra H = (x, y) does not satisfy C(n+1) for $n \ge 4$. By Lemma 2.1, we know that

$$\begin{split} [x,y,\underbrace{y,\cdots,y}_{n-3},[x,y]] &= (-1)^{n-3}[(\mathrm{ad}y)^{n-3}([x,y]),[x,y]] \\ &= (-1)^{n-3} \Big[\sum_{0 \leq j \leq n-3-j} (-1)^{n-3-j} \binom{n-3}{j} y^j [x,y] y^{n-3-j},[x,y] \Big] \\ &= -[x,y]^2 y^{n-3} \\ &\neq 0. \end{split}$$

By Lemma 2.5, we have

$$[x, y, \underbrace{y, \cdots, y}_{n-3}, x, y] \neq [x, y, \underbrace{y, \cdots, y}_{n-3}, y, x].$$

So (x, y) does not satisfy C(n + 1) for any $n \ge 4$.

Hence, by Lemma 3.1, if [3,3]=0 implies $C(n,\varphi)$, then $\varphi(3)=3$. Now we suppose that [3,3]=0 implies $C(m+n+3,\varphi)$, where $\varphi(m+n+3)=m+3,\ n>0$. Then, in the Lie algebra $A(Z,3),\ [x,y,\underbrace{x,\cdots,x}_{m+n},y]=[x,y,\underbrace{x,\cdots,x}_{m},y,\underbrace{x,\cdots,x}_{n}]$. Let $[x,y,\underbrace{x,\cdots,x}_{m}]=T$.

Then

$$[T,\underbrace{x,\cdots,x}_{n},y] = [T,y,\underbrace{x,\cdots,x}_{n}]. \tag{3.5}$$

So

$$[(adx)^n(T), y] = (adx)^n([T, y]). (3.6)$$

By Lemma 2.1, we know that the equality (3.5) holds if and only if n = 0. Hence, we have proved the following remark.

Remark 3.2 The law [m, n] = 0 $(m, n \ge 3)$ does not imply $C(k, \varphi)$ for any $k \ge 4$ and nontrivial φ .

References

- [1] Macdonald I D. On certain varieties of groups. Math. Z., 1961, 76: 270-282.
- [2] Suthathip S. On the Relationship Between the Class of a Lie Algebra and the Classes of Its Subalgebra. Raleigh: North Carolina State Univ., 2007.
- [3] Levin F. On some varieties of soluble groups I. Math. Z., 1964, 85: 369–372.
- [4] Strade H, Farnsteiner R. Modular Lie Algebras and Their Representations. New York: Dekker, 1988.
- [5] Levin F. On some varieties of soluble groups II. Math. Z., 1968, 103: 162–172.