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1 Introduction

The techniques of partial order theory are used to discuss the existence of coupled solutions

and coupled minimal-maximal solutions for a kind of nonlinear operator equation in a partial

ordered linear topology space as follows:

Nx = A(x, x), (1.1)

where N is an increasing operator and A is a mixed monotone operator.

In 1987, Guo and Lakshmikantham[1] studied a nonlinear operator equation in a Banach

space as

x = A(x, x), (1.2)

where A is a mixed monotone operator. They obtained some existence results of coupled so-

lution for this operator equation. In 2005, Liu and Feng[2] considered the following operator

equation:

Nx = Ax (1.3)

∗
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in a complete metric space and a Banach space, respectively, and by using the technique of

partial order theory they obtained some existence results of solution. Very recently, He[3]

has dealt with the operator equation (1.1) in Banach spaces and have given some solvability

results for this kind of equations by using the concept of φ concave-ψ convex operator (see

[4]).

Motivated and inspired by the above works, the main purpose of this paper is to further

study the solvability of the equation (1.1). Under some suitable conditions, we give some

new existence theorems for this kind of equations. To the knowledge of the author, there

are very few works on the existence of coupled solutions and coupled minimal-maximal

solutions for the equation (1.1) in partial ordered linear topology space, and therefore, our

results generalize and improve some corresponding results.

2 Preliminaries

In this section, we give some concepts and lemmas which are necessary for proving the main

results of this paper, and the other unstated concepts can be seen in [5–8].

Let E be a real linear topology space, P be a cone of E and “ ≤ ” be a partial order

induced by the cone P , i.e., for any x, y ∈ E, x ≤ y (or alternatively, denoted as y ≥ x) if

and only if y − x ∈ P . We write x < y, if x ≤ y and x 6= y.

Let x, y ∈ E, x < y. The set defined by [x, y] = {z |x ≤ z ≤ y} is called an ordered

interval in E. For any subset D ⊂ E×E, we denote by D̄w, co(D) and CD the weak closure

of D, the closed convex hull of D and the complement of D, respectively.

Let

P1 = {(x, y) ∈ E × E | x ≥ θ, y ≤ θ},

where θ denotes the zero element of E. It is easy to see that P1 is a cone of the product

space E × E, and P1 defines a partial order in E × E as follows (denoted as ≺):

(x, y) ≺ (u, v) (or alternatively, denoted as (u, v) ≻ (x, y)) if and only if x ≤ u and

y ≥ v.

Definition 2.1
[9−10] Let D be a nonempty subset of a real partial order linear topology

space (E,≤).

(i) The operator A : D × D → E is said to be mixed monotone if A(x, y) is both non-

decreasing in x and nonincreasing in y, i.e., if u1 ≤ u2, v2 ≤ v1, ui, vi ∈ D (i = 1, 2)

imply

A(u1, v1) ≤ A(u2, v2).

(ii) A point (x∗, y∗) ∈ D × D, x∗ ≤ y∗ is called a coupled solution of the nonlinear

operator equation (1.1) if

Nx∗ = A(x∗, y∗), A(y∗, x∗) = Ny∗.

(iii) A point (x∗, y∗) ∈ D × D, x∗ ≤ y∗ is called a coupled minimal-maximal solution

of the nonlinear operator equation (1.1), if (x∗, y∗) is a coupled solution of the nonlinear
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operator equation (1.1) such that for any coupled solution (u∗, v∗) of (1.1), we have

x∗ ≤ u∗, y∗ ≥ v∗.

Lemma 2.1 Assume that G : D × D → E is a mixed monotone operator and N is a

nonlinear operator. Let

H(x, y)
.
= (G(x, y), G(y, x)), B(x, y)

.
= (Nx,Ny), (x, y) ∈ D ×D.

Then the following conclusions hold:

(i) H is an increasing operator on the partial order deduced by P1;

(ii) H(x, y) = B(x, y) has a solution (x∗, y∗) if and only if (x∗, y∗) is a coupled solution

of

Nx = G(x, x);

(iii) A minimal solution of

H(x, y) = B(x, y)

is a coupled minimal-maximal solution of

Nx = G(x, x).

Proof. (i) For any (u1, v1), (u2, v2) ∈ D×D, if (u1, v1) ≺ (u2, v2), then it follows from the

definition of ≺ that

u1 ≤ u2, v1 ≥ v2.

The mixed monotonicity of G implies that

G(u1, v1) ≤ G(u2, v2), G(v2, u2) ≤ G(v1, u1).

Therefore, by the definition of ≺ again, we have

(G(u1, v1), G(v1, u1)) ≺ (G(u2, v2), G(v2, u2)),

i.e.,

H(u1, v1) ≺ H(u2, v2).

Thus, H is an increasing operator on the partial order deduced by P1.

(ii) (x∗, y∗) is a solution of

H(x, y) = B(x, y)

if and only if (x∗, y∗) is a solution of

(G(x, y), G(y, x)) = (Nx,Ny),

i.e.,

Nx∗ = G(x∗, y∗), Ny∗ = G(y∗, x∗).

Thus,

H(x, y) = B(x, y)

has a solution (x∗, y∗) if and only if (x∗, y∗) is a coupled solution of

Nx = G(x, x).

(iii) Suppose that (u∗, v∗) is a minimal solution of

H(x, y) = B(x, y).
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For any solution (u, v) of

H(x, y) = B(x, y),

by the minimal quality, we have

(u∗, v∗) ≺ (u, v).

Therefore,

u∗ ≤ u, v ≤ v∗.

By (ii) and Definition 2.1, it is easy to see that (u∗, v∗) is a coupled minimal-maximal

solution of

Nx = G(x, x).

This completes the proof.

We also need the following lemmas.

Lemma 2.2
[8] Assume that (E, P ) is a partially ordered space, D is a nonempty subset

of E and y ∈ E. If z ≤ y (or y ≤ z) for all z ∈ D, then z ≤ y (corresponding y ≤ z) for all

z ∈ co(D).

Let L(E) be the space of all linear operators on E. We give the following lemma on an

operator, whose proof is omitted, due to it is easy to prove.

Lemma 2.3 Assume that Λ ∈ (0, 1], T ∈ L(E), and (ΛI + T )−1 ∈ L(E). Then

(ΛI + T )−1[ΛA(x, y) + Tu] = u

if and only if

A(x, y) = u.

3 Main Results and Their Proofs

Our main results are the following two theorems:

Theorem 3.1 Let E be a real linear topology space, P be a cone of E, u0, v0 ∈ E,

u0 < v0, D0 = [u0, v0] be an ordered interval in E and N be an increasing operator with

N(D0) = D0. Assume that A : D
.
= [(u0, v0), (v0, u0)] → E is a mixed monotone operator,

Λ ∈ (0, 1], T ∈ L(E) and (ΛI + T )−1 ∈ L(E) are positive operators. If the following

conditions are satisfied:

(i) Nu0 ≤ A(u0, v0), A(v0, u0) ≤ Nv0;

(ii) for any x1, x2 ∈ D0, Nx1 ≤ Nx2 implies x1 ≤ x2;

(iii) any totally ordered subset of G(D) is relatively compact with weak topology, where

G(x, y)
.
= (ΛI + T )−1[ΛA(x, y) + TNx], (x, y) ∈ D,

then the nonlinear operator equation (1.1) has a coupled solution (x∗, y∗) ∈ D.

Proof. First, we verify that the following conclusions hold:

G : D → [u0, v0]
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is a mixed monotone operator and

Nu0 ≤ G(u0, v0), G(v0, u0) ≤ Nv0.

In fact, if (x, y) ∈ D, then

u0 ≤ x, y ≤ v0.

Since N is an increasing operator with N(D0) = D0, we can get

u0 ≤ Nu0 ≤ Nx ≤ Nv0 ≤ v0.

Since T ∈ L(E) is a positive operator, we have

Tu0 ≤ TNx ≤ Tv0.

On the other hand, by the mixed monotonicity of A and the condition (i), we have

A(x, y) ≤ A(v0, u0) ≤ Nv0 ≤ v0,

A(x, y) ≥ A(u0, v0) ≥ Nu0 ≥ u0.

Therefore, we can get

Λu0 + Tu0 ≤ ΛA(x, y) + TNx ≤ Λv0 + Tv0,

i.e.,

(ΛI + T )u0 ≤ ΛA(x, y) + TNx ≤ (ΛI + T )v0.

Since (ΛI + T )−1 ∈ L(E) is a positive operator, we have

u0 ≤ (ΛI + T )−1[ΛA(x, y) + TNx] ≤ v0,

i.e.,

u0 ≤ G(x, y) ≤ v0.

If (x1, y1), (x2, y2) ∈ D, and (x1, y1) ≺ (x2, y2), then

x1 ≤ x2, y1 ≥ y2.

Hence

Nx1 ≤ Nx2, Nx2 −Nx1 ∈ P.

Since T ∈ L(E) is a positive operator, by the mixed monotonicity of A, we have T (Nx2−

Nx1) ∈ P , i.e.,

TNx2 ≥ TNx1, A(x1, y1) ≤ A(x2, y2).

Therefore,

ΛA(x1, y1) + TNx1 ≤ ΛA(x2, y2) + TNx2.

Since (ΛI + T )−1 ∈ L(E) is a positive operator, we have

(ΛI + T )−1[ΛA(x1, y1) + TNx1] ≤ (ΛI + T )−1[ΛA(x2, y2) + TNx2],

i.e.,

G(x1, y1) ≤ G(x2, y2).

Therefore, G is a mixed monotone operator.

And then we show that

Nu0 ≤ G(u0, v0), G(v0, u0) ≤ Nv0.

In fact, by the condition (i), we have

ΛA(v0, u0) ≤ ΛNv0, ΛNu0 ≤ ΛA(u0, v0).
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Hence,

ΛA(v0, u0) + TNv0 ≤ ΛNv0 + TNv0 = (ΛI + T )Nv0,

(ΛI + T )Nu0 = ΛNu0 + TNu0 ≤ ΛA(u0, v0) + TNu0.

Notice that (ΛI + T )−1 ∈ L(E) is a positive operator. Thus we have

Nv0 ≥ (ΛI + T )−1[ΛA(v0, u0) + TNv0] = G(v0, u0),

Nu0 ≤ (ΛI + T )−1[ΛA(u0, v0) + TNu0] = G(u0, v0).

Next, we show that the nonlinear operator equation

B(x, y) = H(x, y) (∗)

has a solution in D, where

H(x, y)
.
= (G(x, y), G(y, x)), B(x, y)

.
= (Nx, Ny).

Step 1. By Lemma 2.1, H is an increasing operator. Let

M1 = {(x, y) ∈ D|B(x, y) ≺ H(x, y)},

M2 = {(y, x)|(x, y) ∈M1}.

Then M1 6= ∅ (since (u0, v0) ∈M1).

Suppose that K1 is a totally ordered subset of M1. Then K2 = {(y, x)|(x, y) ∈ K1} is a

totally ordered subset of M2. For any q1 ∈ G(K1), q2 ∈ G(K2), let

R1(q1) = {z ∈ D0|q1 ≤ z},

R2(q2) = {z ∈ D0|z ≤ q2},

S1(q1) = co(G(K1)) ∩R1(q1),

S2(q2) = co(G(K2)) ∩R2(q2).

It is easy to see that R1(q1), R2(q2), S1(q1) and S2(q2) are all convex and closed sets.

The mixed monotonicity forG implies that G(Ki) (i = 1, 2) are totally ordered subsets of

G(D). From the condition (iii), we know that G(Ki)
w

(i = 1, 2) are weakly compact sets in

G(D). Hence co
(

G(Ki)
)w

(i = 1, 2) are also weakly compact sets due to the Krein-Smulian

theorem.

Since co(G(Ki)) ⊂ co
(

G(Ki)
)w

(i = 1, 2), we know that co(G(Ki)) (i = 1, 2) are weakly

compact.

Step 2. Notice that Si(qi) 6= ∅ (since for any qi ∈ G(Ki), qi ∈ Si(qi), i = 1, 2). For any

q′1, q
′

2, · · · , q
′

n ∈ G(K1) and q′′1 , q′′2 , · · · , q′′n ∈ G(K2), without loss of generality, we suppose

that q′1 ≤ q′2 ≤ · · · ≤ q′n and q′′1 ≤ q′′2 ≤ · · · ≤ q′′n. Then S1(q
′

1) ⊃ S1(q
′

2) ⊃ · · · ⊃ S1(q
′

n) and

S2(q
′′

1 ) ⊂ S2(q
′′

2 ) ⊂ · · · ⊂ S2(q
′′

n). It is obvious that
n
⋂

i=1

S1(q
′

i) ⊃ S1(q
′

n) 6= ∅,
n
⋂

i=1

S2(q
′′

i ) ⊃ S2(q
′′

1 ) 6= ∅. (3.1)

It is easy to prove that
⋂

qj∈G(Ki)

Si(qj) 6= ∅, i = 1, 2, j = 1, 2, · · · , n.

Step 3. There exist q∗i ∈
⋂

qj∈G(Ki)

Si(qj) (i = 1, 2) such that q∗i ∈ Si(qj) for all qj ∈

G(Ki). Thus q∗i ∈ Ri(qj) for all qj ∈ G(Ki). By the construction of Ri(qj), we have

q1 ≤ q∗1 , q1 ∈ G(K1), q2 ≥ q∗2 , q2 ∈ G(K2).
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Since N(D0) = D0, we know that there exist w1, w2 ∈ D0 such that

Nw1 = q∗1 , Nw2 = q∗2 .

Now for any (x, y) ∈ K1, we have (y, x) ∈ K2. Hence

G(x, y) ≤ q∗1 = Nw1, G(y, x) ≥ q∗2 = Nw2.

Therefore,

(Nx,Ny) ≺ H(x, y) = (G(x, y), G(y, x)),

i.e.,

Nx ≤ G(x, y), G(y, x) ≤ Ny.

Thus

Nx ≤ Nw1, Nw2 ≤ Ny.

From the condition (ii), we have

x ≤ w1, w2 ≤ y.

Therefore

(x, y) ≺ (w1, w2), (y, x) ≻ (w2, w1). (3.2)

This indicates that (w1, w2) is an upper bound of K1 and (w1, w2) ∈ M1. From Zorn’s

Lemma we know that M1 contains a maximal element (x∗, y∗).

Step 4. Finally we prove that the maximal element (x∗, y∗) is the solution of the non-

linear operator equation (∗) .

By the definition of B, the condition (ii) and N being an increasing operator, it is not

difficult to check that B is also an increasing operator and if

B(x1, y1) ≺ B(x2, y2), (xi, yi) ∈ D (i = 1, 2),

then

(x1, y1) ≺ (x2, y2).

Since (x∗, y∗) ∈M1, we have

B(x∗, y∗) ≺ H(x∗, y∗) = B(B−1H(x∗, y∗)),

and hence

(x∗, y∗) ≺ B−1H(x∗, y∗).

Since H is increasing, we have

B(B−1H(x∗, y∗)) = H(x∗, y∗)) ≺ H(B−1H(x∗, y∗)),

and hence B−1H(x∗, y∗) ∈M1.

Since (x∗, y∗) is the maximal element of M1, we have

B(B−1H(x∗, y∗)) = H(x∗, y∗) ≺ B(x∗, y∗),

and therefore

H(x∗, y∗) = B(x∗, y∗),

i.e., (x∗, y∗) is a solution of the nonlinear operator equation (∗).

By Lemma 2.1, that is,

Nx∗ = G(x∗, y∗), Ny∗ = G(y∗, x∗).
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It follows from Lemma 2.3 that

Nx∗ = A(x∗, y∗), Ny∗ = A(y∗, x∗).

Therefore, (x∗, y∗) is a coupled solution of the equation (1.1). The proof is completed.

Theorem 3.2 Assume that all conditions of Theorem 3.1 are satisfied. Then the nonlin-

ear operator equation (1.1) has a coupled minimal-maximal solution (x∗, y∗) ∈ D.

Proof. Let

F (H) = {(x, y) ∈ D|H(x, y) = B(x, y)}.

Theorem 3.1 implies that F (H) is nonempty. Let

S
.
= {[(u, v), (v, u)]|B(u, v) ≺ H(u, v), (u, v) ∈ D,F (H) ⊂ [(u, v), (v, u)]},

where [(u, v), (v, u)] is an ordered interval in E ×E. Then S 6= ∅ ( since D ∈ S). Define the

relation “ ≤1 ” in S as follows:

I1, I2 ∈ S, I1 ≤1 I2 ⇐⇒ I1 ⊂ I2.

It is easy to see that “ ≤1 ” is a partial order in S.

Next we show that S has a minimal element.

Step 1. Suppose that Γ = {[(uα, vα), (vα, uα)]|α ∈ Λ} is any totally order subset of S,

where Λ is an index set. Let

R1 = {(uα, vα)|α ∈ Λ}, R2 = {(vα, uα)|α ∈ Λ}.

Then R1 and R2 are totally ordered subsets of D. It follows from the mixed monotonicity

of G that G(Ri) (i = 1, 2) are totally ordered subsets of G(D).

Let K1 = R1 and K2 = R2 be the same as in Theorem 3.1. Then by similar proofs of

Steps 1–3 of Theorem 3.1, we know that there exist q̄i ∈ co(G(Ri)) (i = 1, 2) with Nw̄i = q̄i

such that

(uα, vα) ≺ (w̄1, w̄2), α ∈ Λ.

On the other hand, for any (uα, vα) ∈ R1, we have (vα, uα) ∈ R2. Thus

(uα, vα) ≺ (w̄1, w̄2), (vα, uα) ≻ (w̄2, w̄1). (3.3)

It follows from the mixed monotonicity for G that

G(uα, vα) ≤ G(w̄1, w̄2), G(vα, uα) ≥ G(w̄2, w̄1).

By Lemma 2.2, for Nw̄i = q̄i ∈ co(G(Ri)) (i = 1, 2), we have

Nw̄1 ≤ G(w̄1, w̄2), G(w̄2, w̄1) ≤ Nw̄2,

i.e.,

B(w̄1, w̄2) = (Nw̄1, Nw̄2) ≺ (G(w̄1, w̄2), G(w̄2, w̄1)) = H(w̄1, w̄2). (3.4)

Step 2. Given any (uα, vα) ∈ R1, we have (vα, uα) ∈ R2. Let (x, y) ∈ F (H). By the

definition of S, one has

(uα, vα) ≺ (x, y) ≺ (vα, uα).

The mixed monotonicity for G implies that

G(uα, vα) ≤ G(x, y) ≤ G(vα, uα).

Since q̄i ∈ co(G(Ri)) (i = 1, 2), by Lemma 2.2, we have

Nw̄1 ≤ G(x, y) ≤ Nw̄2, (3.5)
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Similarly to the proof of (3.5), we also get

Nw̄1 ≤ G(y, x) ≤ Nw̄2. (3.6)

Thus,

(Nw̄1, Nw̄2) ≺ (G(x, y), G(y, x)) = H(x, y) = (Nx,Ny)

and

(Nw̄2, Nw̄1) ≻ (G(x, y), G(y, x)) = H(x, y) = (Nx,Ny).

Therefore

(w̄1, w̄2) ≺ (x, y) ≺ (w̄2, w̄1), (x, y) ∈ F (H). (3.7)

Let I = [(w̄1, w̄2), (w̄2, w̄1)]. Then it follows from (3.4) and (3.7) that I ∈ S. (3.3) shows

that if (x, y) ∈ I, then (x, y) ∈ [(uα, vα), (vα, uα)], i.e., I ⊂ [(uα, vα), (vα, uα)]. Hence,

I ≤1 [(uα, vα), (vα, uα)], α ∈ Λ.

I is a lower bound of Γ in S. By Zorn’ Lemma, S contains a minimal element denoted as

I∗ = [(x∗, y∗), (y∗, x∗)].

Step 3. By the definition of S, we have

B(x∗, y∗) ≺ H(x∗, y∗) = B(B−1H(x∗, y∗)),

i.e.,

(x∗, y∗) ≺ B−1H(x∗, y∗). (3.8)

The monotonicity of H implies that

H(x∗, y∗) = B(B−1H(x∗, y∗)) ≺ H(B−1H(x∗, y∗)). (3.9)

For any (x, y) ∈ F (H), the monotonicity of H and the definition of S show that

H(x∗, y∗) ≺ H(x, y) = B(x, y) ≺ H(y∗, x∗).

Hence,

B(B−1H(x∗, y∗)) ≺ B(B−1H(x, y)) = B(x, y) ≺ B(B−1H(y∗, x∗)).

Therefore,

B−1H(x∗, y∗) ≺ (x, y) ≺ B−1H(y∗, x∗),

i.e.,

F (H) ⊂ [B−1H(x∗, y∗), B−1H(y∗, x∗)]. (3.10)

From (3.9) and (3.10) we know that [B−1H(x∗, y∗), B−1H(y∗, x∗)] ∈ S.

By virtue of the minimality of I∗, we get

I∗ ≤1 [B−1H(x∗, y∗), B−1H(y∗, x∗)],

i.e.,

(x∗, y∗) ≻ B−1H(x∗, y∗). (3.11)

(3.8) and (3.11) indicate that

(x∗, y∗) = B−1H(x∗, y∗),

i.e.,

B(x∗, y∗) = H(x∗, y∗).
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On the other hand, for any (x, y) ∈ F (H) ⊂ I∗, it is easy to see that

(x∗, y∗) ≺ (x, y) ≺ (y∗, x∗).

This shows that (x∗, y∗) is a minimal solution of the equation (∗).

By Lemma 2.1, (x∗, y∗) is a coupled minimal-maximal solution of

Nx = G(x, x).

It follows from Lemma 2.3 that

Nx∗ = A(x∗, y∗), Ny∗ = A(y∗, x∗).

Therefore, (x∗, y∗) is a coupled minimal-maximal solution of the equation (1.1). The proof

is completed.

Remark 3.1 In Theorems 3.1 and 3.2, we do not assume that the operators are contin-

uous or compact, and the results hold in partial ordered linear topology space. Therefore

our conclusions generalize or improve some corresponding results of [3, 5, 8, 11–12].
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