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Abstract: In this article, we define the ℓ-adic homology for a morphism of schemes

satisfying certain finiteness conditions. This homology has these functors similar to

the Chow groups: proper push-forward, flat pull-back, base change, cap-product,

etc. In particular, on singular varieties, this kind of ℓ-adic homology behaves much

better than the classical ℓ-adic cohomology. As an application, we give a much easier

approach to construct the cycle maps for arbitrary algebraic schemes over fields. And

we prove that these cycle maps kill the algebraic equivalences and commute with the

Chern action of locally free sheaves.
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1 Introduction

The étale cohomology, especially the ℓ-adic cohomology, is one of the most important tools

of modern algebraic and arithmetic geometry, which allows us to construct a “good” coho-

mology theory for varieties over fields of arbitrary characteristic. More specifically, people

use the ℓ-adic cohomology H∗(Xét,Zℓ) to substitute for singular cohomology on varieties of

arbitrary characteristic. On a nonsingular varieties, the cohomology H∗(Xét,Zℓ) has very

good properties and produces rich results. But on singular varieties or more generally on

arbitrary schemes, the cohomology H∗(Xét,Zℓ) behaves not so good, and many important

constructions and results are not valid. So on singular varieties, the étale homology is more

suitable than the étale cohomology.

In this paper, we generalize the étale homology defined in [1] in the following three

facets. First, we define the étale homology in adic coefficients, which we call the ℓ-adic

homology. Secondly, our theory of ℓ-adic homology is defined over schemes separated and of

∗Received date: Nov. 25, 2010.
Foundation item: The NSF (10626036) of China.
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finite type over base schemes satisfying certain finiteness conditions, not just the algebraic

schemes over separably closed fields as in [1]. In particular, algebraic schemes over fields

which are not necessarily separably closed, are considered by us. Since our theory is based

on the adic formalism created by Ekedahl[2], the ℓ-adic homology over base schemes of

certain finiteness conditions shares almost the same good functorial properties, with that

over separably closed base fields. Thirdly, the ℓ-adic homology groups H∗(X,F ) defined by

us take value in arbitrary bounded complex F , not just Zℓ, Qℓ or Z/nZ as in [1]. And

almost all functors and properties are preserved when extending to complexes. Basing on

this homology, we also extend the cycle maps defined in [1], from separably closed base

fields, to arbitrary base fields of finite ℓ-adic cohomological dimension.

In Section 2, we briefly reiterate the categoryDc(Xét, R•) together with the Grothendieck’s

six operations in [2].

In Section 3, we recite the properties of the functor Rf ! and use the language of [2] to

rewrite the trace morphisms introduced in [3, 4].

In Section 4, we define the ℓ-adic homology groups Hn(X/Y,N ) and Hn(X/Y,N ) for a

morphismX → Y of schemes satisfying certain finiteness conditions. These homology groups

behave similarly in many facets to the bivariant Chow groups A−n(X → Y ) defined in Ch.

17 of [5]. We define two maps: the push-forward maps f∗ and the pull-back maps f∗, for the

ℓ-adic homology groups, which correspond to these maps on Chow groups CH∗(X) defined

in §1.4 and §1.7 of [5]; and most important, we prove that these two maps commute (see

Theorem 4.1), which is essential to construct various cycle maps basing on ℓ-adic homology.

Moreover, we define the base change maps on the ℓ-adic homology.

In Section 5, we apply the ℓ-adic homology in Section 4 to define the cycle map

clX,ℓ : CH∗(X)→ H∗(X,Zℓ)

for arbitrary algebraic scheme X over a field of finite cohomological dimension at ℓ. We

prove that the cycle map clX,ℓ commutes with the push-forward map f∗ and the pull-back

map f∗. And we prove that the cycle maps kill the algebraic equivalence of algebraic cycles.

In Section 6, we prove that the cycle map clX,ℓ commutes with the Chow action ci(E )∩ •

by locally free sheaves.

The following notations and conventions would be used.

Let N be the set of natural numbers, Z the domain of integers, and Q the field of the

rational numbers. Let Zℓ and Qℓ be the ℓ-adic completions of Z and Q respectively.

A morphism f : X → Y of schemes is said to flat (resp. smooth) of relative dimension n

if f is flat (resp. smooth) and all fibers of f are n-equidimensional.

A morphism f : X → Y of Noetherian schemes is said to be compactifiable if it factors

as f = f̄ ◦ j where j : X ↪→ X̄ is an open immersion, and f̄ : X̄ → Y is a proper morphism.

By Theorem 4.1 of [6], f is compactifiable if and only if it is separated and of finite type.

An algebraic scheme over a field k is a scheme separated, of finite type over k. A variety

over k is an integral algebraic scheme over k.

If A is a Noetherian ring, we use D(A) to denote the derived category of A-modules, and

define Dfg(A) to be the full subcategory of D(A) consisting of complexes cohomologically
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finitely generated.

IfX is a scheme and R is a ring, we use RX to denote the constant sheaf onXét associated

to R.

If F • is a complex of sheaves on Xét, we let F •[r] be the shift of F • to left by r, and

F •(r) := F • ⊗ µ⊗r
n the Tate twist, and we write F •⟨r⟩ := F •(r)[2r].

Let A and B be categories. If F : A → B and G : B → A is a pair of adjoint functors,

then we write F ⊣ G for the adjunction. We also say that F is left adjoint to G, and G is

right adjoint to F .

The notation := means being defined as;
∼−→ means isomorphism; and the notation � in

commutative diagrams means Cartesian square.

2 The ℓ-adic Sheaves

In this section, we briefly reiterate the theory of Ekedahl[2] about the category Dc(Xét, R•)

together with the Grothendieck’s six operations (see [7, 8]).

Fix a prime number ℓ, and let R be the integral closure of Zℓ in a finite extension field

of Qℓ.

Let X be a Noetherian scheme. We denote by S(XN
ét , R•) the abelian category of inverse

systems

· · · → Fn+1
pn−→ Fn → · · · → F2

p1−→ F1

such that each Fn is a sheaf of Rn-modules on Xét. Set

D(XN
ét , R•) := D(S(XN

ét , R•));

and let Dc(X
N
ét , R•) be the full subcategory of D(XN

ét , R•) consisting of complexes coho-

mologically AR-adic and constructible. Let Dc(Xét, R•) be the quotient of Dc(X
N
ét , R•) by

inverting AR-quasi-isomorphisms.

If f : X → Y is a morphism of Noetherian schemes, then we have a triangulated functor

f∗ : Dc(Yét, R•)→ Dc(Xét, R•).

As to other five operations, we must add some restrictions on the underlying schemes.

We consider the following condition (†) related to a scheme X:

(†) X is Noetherian, quasi-excellent, of finite Krull dimension; ℓ is invertible on X and

cdℓ(X) <∞.

From the Gabber’s finitenes theorem for étale cohomology in [9], we know the following

facts:

(1) If X satisfies (†), then any scheme of finite type over X satisfies (†).
(2) Let R be a quasi-excellent, Henselian local ring with residue field k such that cdℓ(k) <

∞. Then SpecR satisfies (†).
(3) If ℓ ̸= 2, then the affine scheme SpecZ[1/ℓ] satisfies (†) (see X, 6.1 of [3]).

(4) If f : X → Y is a compactifiable morphism of schemes satisfying (†), then both Rf∗

and Rf ! are of finite cohomological amplitude.
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In particular, if X is a scheme satisfying (†), then Xét satisfies the condition A) in [2],

and thus we have two bi-triangulated functors

•⊗L
R

• : D−
c (Xét, R•)×D−

c (Xét, R•)→ D−
c (Xét, R•),

RHomR(•, •) : D−
c (Xét, R•)

opp ×D+
c (Xét, R•)→ D+

c (Xét, R•).

And if f : X → Y is a compactifiable morphism of schemes satisfying (†), then there are

triangulated functors

Rf∗ : Dc(Xét, R•)→ Dc(Yét, R•),

Rf! : Dc(Xét, R•)→ Dc(Yét, R•),

Rf ! : Dc(Yét, R•)→ Dc(Xét, R•).

For each scheme X satisfying (†), each object F in Dc(Xét, R•), and each n ∈ N, we

define

Hn(Xét,F ) := HomDc(Xét,R•)(RX ,F [n]).

Note that this definition is compatible with the continuous étale cohomology Hncont(Xét,F )

defined in [10].

When we consider the schemes of finite type over a separably closed field, the following

Theorem is essential.

Theorem 2.1 The right derived functors of (Mn) 7→ lim←−Mn and the left derived functors

of M 7→ (M ⊗R Rn) define a natural equivalence of categories between Dc(R•) and Dfg(R).

Proof. See Proposition 2.2.8 of [7].

Now we fix a separably closed field k. Note that

Dc((Speck)ét, R•) = Dc(R•) = Dfg(R).

Let X be an algebraic scheme over k, and p : X → Speck the structural morphism. Put

RΓ (Xét, •) := Rp∗ : Dc(Xét, R•)→ Dfg(R),

RΓ!(Xét, •) := Rp! : Dc(Xét, R•)→ Dfg(R).

Then for each q ∈ Z, we have

Hq(Xét, •) = Hq ◦RΓ (Xét, •).

And we define

Hqc(Xét, •) := Hq ◦RΓ!(Xét, •).

Theorem 2.2(The Künneth Formula) Let X and Y be two algebraic schemes over k,

Z := X ×k Y , f : Z → X and g : Z → Y the projections. Then for each F ∈ D−
c (Xét, R•)

and G ∈ D−
c (Yét, R•), there are two natural isomorphisms in D−

fg(R) :

RΓ (Xét,F )⊗L
R RΓ (Yét,G )

∼−→ RΓ (Zét, f
∗F ⊗L

R g
∗G ),

RΓ!(Xét,F )⊗L
R RΓ!(Yét,G )

∼−→ RΓ!(Zét, f
∗F ⊗L

R g
∗G ).

Moreover, there are two exact sequences of R-modules

0→
⊕

i+j=n

Hi(Xét,F )⊗R Hj(Yét,G )→ Hn(Zét, f
∗F ⊗L

R g
∗G )
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→
⊕

i+j=n+1

TorR1 (H
i(Xét,F ),Hj(Yét,G ))→ 0,

0→
⊕

i+j=n

Hic(Xét,F )⊗R Hjc(Yét,G )→ Hnc (Zét, f
∗F ⊗L

R g
∗G )

→
⊕

i+j=n+1

TorR1 (H
i
c(Xét,F ),Hjc(Yét,G ))→ 0.

For convenience to study the cycle map, we introduce the following notation. Let X be

a scheme satisfying (†). For F ∈ Dc(Xét, R•) and n ∈ Z, we write

Hn(X,F ) := H0(Xét,F ⟨n⟩) = H2n(Xét,F (n)).

Then H∗(X,R) :=
∞⊕
n=0

Hn(X,R) is a commutative graded R-algebras.

3 The Functor Rf ! and the Trace Morphisms from SGA

4 & 4
1

2

Proposition 3.1 Let f : X → Y be a compactifiable morphism of schemes satisfying (†)
such that all fibers of f are of dimensions 6 d. Then for each a ∈ Z, Rf ! sends D>a

c (Xét, R•)

to D>a−2d
c (Xét, R•).

Proof. See XVIII, 3.1.7 of [3].

Lemma 3.1 Let f : X → Y be a compactifiable morphism of schemes satisfying (†). Then
for every pair of objects F and G in D−

c (Yét, R•), there is a natural morphism

Rf !F ⊗L
R f

∗G → Rf !(F ⊗L
R G )

in D−
c (Xét, R•) which is functorial in F and G .

Proof. First we have a composite morphism

Rf!(Rf
!F ⊗L

R f
∗G )

φ−→
∼

Rf!(Rf
!F )⊗L

R G
ψ−→ F ⊗L

R G ,

where φ is induced by the projection formula for Rf!, and ψ is induced by the adjunction.

Since Rf! is left adjoint to Rf !, the above morphism induces the required morphism

Rf !F ⊗L
R f

∗G → Rf !(F ⊗L
R G ).

Proposition 3.2 Let f : X → Y and g : Y → Z be two compactifiable morphisms of

schemes satisfying (†). For every pair of objects F and G in D−
c (Zét, R•), there is a natural

morphism

Rf ! ◦ g∗F ⊗L
R f

∗ ◦Rg!G → R(g ◦ f)!(F ⊗L
R G )

in Dc(Xét, R•) which is functorial in F and G .

Proof. We have

Rf ! ◦ g∗F ⊗L
R f

∗ ◦Rg!G −→ Rf !(g∗F ⊗L
R Rg!G )

−→ Rf ! ◦Rg!(F ⊗L
R G )

∼−→ R(g ◦ f)!(F ⊗L
R G ).
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Proposition 3.3 Let

X ′ f ′
//

p

��
�

Y ′

q

��
X

f
// Y

be a Cartesian square of schemes satisfying (†). Assume that f is compactifiable.

(1) For each object F in Dc(Xét, R•), there is a natural morphism in Dc(Y
′
ét, R•)

q∗ ◦Rf∗F → Rf ′∗ ◦ p∗F ;

(2) For each object G in Dc(Yét, R•), there is a natural morphism in Dc(X
′
ét, R•)

p∗ ◦Rf !G → Rf ′! ◦ q∗G ;

(3) Assume that Y is an algebraic scheme over a field k, and there exists a k-scheme T

such that Y ′ = Y ×k T . Then the morphisms in (1) and (2) are both isomorphisms.

(4) For each object F in Dc(Xét, R•), there is a natural isomorphism in Dc(Y
′
ét, R•)

q∗ ◦Rf!F
∼−→ Rf ′! ◦ p∗F ;

(5) For each object G in Dc(Y
′
ét, R•), there is a natural isomorphism in Dc(Xét, R•)

Rp∗ ◦Rf ′!G
∼−→ Rf ! ◦Rq∗G .

Proof. (1) is induced by the classical base change morphisms.

(2) is from [3], XVIII, 3.1.14.2.

(3) is by Th. Finitude, 1.9 of [4].

(4) is by XVII, 5.2.6 of [3].

(5) is by XVIII, 3.1.12.3 of [3].

Now we review the trace morphisms.

Definition 3.1 A morphism f : X → Y of schemes is said to be flat at dimension d if

there exists a nonempty open subset U of X satisfying the following conditions:

(1) f : U → Y is flat;

(2) for each point y ∈ Y , Uy is either empty or d-dimensional;

(3) every fiber of X \ U → Y is of dimension < d.

By XVIII, 2.9 of [3], for every compactifiable morphism f : X → Y of schemes satisfying

(†) which is flat at dimension d, and for every object G in Dc(Yét, R•), we have a trace

morphism:

Trf : Rf! ◦ f∗G ⟨d⟩ → G .

Since Rf ! is right adjoint to Rf!, the morphism Trf induces a canonical morphism in

Dc(Xét, R•):

tf : f
∗G ⟨d⟩ → Rf !G .
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Moreover, we have a commutative diagram

Rf! ◦ f∗G ⟨d⟩
Rf!(tf ) //

Trf ))SSSSSSSSSSSSSSSSS Rf! ◦Rf !G

��
G

(3.1)

By XVIII, 3.2.5 of [3], we have

Proposition 3.4 Let f : X → Y be a compactifiable smooth morphism of relative di-

mension d of schemes satisfying (†). Then for any object G in Dc(Yét, R•), the canonical

morphism

tf : f
∗G ⟨d⟩ ∼−→ Rf !G

is an isomorphism in Dc(Xét, R•).

The following Propositions 3.5–3.7 are deduced from XVIII, 2.9 of [3].

Proposition 3.5 Let

X ′ f ′
//

p

��
�

Y ′

q

��
X

f
// Y

be a Cartesian square of schemes satisfying (†). Assume that f is compactifiable and flat at

dimension d. Then f ′ is also flat at dimension d, and for each object G in Dc(Yét, R•) we

have

(1) the composite morphism

(Rf ′! ) ◦ f ′∗ ◦ q∗G ⟨d⟩ = (Rf ′! ) ◦ p∗ ◦ f∗G ⟨d⟩
φ−→
∼

q∗ ◦ (Rf!) ◦ f∗G ⟨d⟩
q∗(Trf )−−−−−→ q∗G

is equal to Trf ′ , where the isomorphism φ is defined in Proposition 3.3(4);

(2) the composite morphism

f ′∗ ◦ q∗G ⟨d⟩ = p∗ ◦ f∗G ⟨d⟩ p∗(tf )−−−−→ p∗ ◦Rf !G → Rf ′! ◦ q∗G
is equal to tf ′ , where the last morphism is defined in Proposition 3.3(2).

Proposition 3.6 Let f : X → Y and g : Y → Z be two compactifiable morphisms of

schemes satisfying (†) which are flat at dimension d and e respectively, and H be an object

in Dc(Zét, R•). Then we have

(1) the composite morphism

R(g ◦ f)! ◦ (g ◦ f)∗H ⟨d+ e⟩ ∼−→ (Rg!) ◦ (Rf!) ◦ f∗ ◦ g∗H ⟨d+ e⟩
Rg!(Trf )−−−−−−→ (Rg!) ◦ g∗H ⟨e⟩

Trg−−→H

is equal to Trg◦f ;

(2) the composite morphism

f∗g∗H ⟨d+ e⟩ tf−→ Rf ! ◦ g∗H ⟨e⟩ Rf !(tg)−−−−−→ Rf ! ◦Rg!H ∼−→ R(g ◦ f)!H
is equal to tg◦f .
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Proposition 3.7 Let f : X → Y be a finite morphism of schemes satisfying (†) such that

f∗OX is a locally free OY -module of degree d. Then for each object F in Dc(Yét, R•), the

composite morphism

F → f∗f
∗F

Trf−−→ F

is equal to the multiplication by n.

The following proposition shows that the trace morphism is essentially determinated by

the generic points. Let A be a Noetherian ring (in particular, A = Rn).

Proposition 3.8 Let X be an n-dimensional algebraic scheme over k, X1, X2, · · · , Xr

be all irreducible components of dimension n of X, and F be an A-module. For each i, let

Yi ≠ ∅ be an open subset of X contained Xi \
∪
j ̸=i

Xj and regard Yi as a reduced subscheme

of X. For each i, let xi be the generic point of Xi and put ai := length(OX,xi). Then there

is a canonical isomorphism ω of A-modules which makes a commutative diagram
r⊕
i=1

H2n
c (Yi,ét, F (n))

ω
∼=

//

r⊕
i=1

ai·Tri %%LLLLLLLLLLL
H2n

c (Xét, F (n))

Tr

zzuuuuuuuuuuuu

F

4 ℓ-adic Homology for Morphisms of Algebraic Schemes

Let f : X → Y be a compactifiable morphism of schemes satisfying (†). For each object N

in Dc(Yét, R•) and for each n ∈ Z, we define the n-th ℓ-adic homology associated to f to be

Hn(X
f−→ Y,N ) := H−n(Xét, Rf

!N )

= HomDc(Xét,R•)(RX , Rf
!N [−n]),

which is an R-module.

For convenience to define pull-backs along flat morphisms and cycle maps, we also define

Hn(X
f−→ Y,N ) := H2n(X

f−→ Y,N (−n))

= HomDc(Xét,R•)(RX , Rf
!N ⟨−n⟩).

We set

H∗(X
f−→ Y,N ) :=

⊕
n∈Z

Hn(X
f−→ Y,N ),

H∗(X
f−→ Y,N ) :=

⊕
n∈Z

Hn(X
f−→ Y,N ).

We also use Hn(X/Y, N ) (resp. Hn(X/Y, N )) to denote Hn(X
f−→ Y, N ) (resp.

Hn(X
f−→ Y, N )) if no confusion arises.

If X is an algebraic schemes over a separably closed field k and N is an object in Dfg(R),

we write

Hn(X,N) := Hn(X → Speck,N),

Hn(X,N) := Hn(X → Speck,N).
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By Proposition 3.4 we have

Lemma 4.1 Let f : X → Y be a compactifiable morphism of schemes satisfying (†) which
is flat at dimension d. Then for each object N in Dc(Yét, R•) and for n ∈ Z, the morphism

tf induces a canonical homomorphism of R-modules:

Hd−n(X, f∗N )→ Hn(X
f−→ Y,N ).

Moreover, if f is smooth of relative dimension d, then the above homomorphism is an iso-

morphism.

Proposition 4.1 Let f : X → S be a compactifiable morphism of schemes satisfying (†),
Y be a closed subscheme of X and U := X \ Y . Then we have a long exact sequence

· · · → Hn(Y/S,N )→ Hn(X/S,N )→ Hn(U/S,N )→ Hn−1(Y/S,N )→ · · ·

Proof. Put M := Rf !N . Then the proposition follows from the distinguished triangle

i∗i
!M →M → j∗j

∗M → i∗i
!M [1],

where i : Y ↪→ X and j : U ↪→ X are the inclusions.

Proposition 4.2(Mayer-Vietoris Sequence) Let f : X → S be a compactifiable morphism

of schemes satisfying (†), X1 and X2 be two closed subschemes of X such that X = X1∪X2

(as sets). Then we have a long exact sequence

· · · → Hn((X1 ×X X2)/S,N )→ Hn(X1/S,N )⊕Hn(X2/S,N )→ Hn(X/S,N )

→ Hn−1((X1 ×X X2)/S,N )→ · · ·

Proof. Put M := Rf !N . Then the proposition follows from the distinguished triangle

i∗ ◦Ri!M → i1,∗ ◦Ri!1M ⊕ i2,∗ ◦Ri!2M →M → i∗ ◦Ri!M [1],

where i : X1 ×X X2 ↪→ X, i1 : X1 ↪→ X, i2 : X2 ↪→ X are the inclusions.

Proposition 4.3(Vanishing) Let f : X → Y be a compactifiable morphism of schemes

satisfying (†) and such that all fibers of f are of dimensions 6 d, and N be an object in

D>a
c (Yét, R•). Then Hn(X/Y,N ) = 0 whenever n > 2d− a.

Proof. By Proposition 3.1, Rf !N [−n] ∈ D>a−2d+n
c (Xét, R•). Thus if a− 2d+n > 0, then

Hn(X
f−→ Y,N ) = HomDc(Xét,R•)(RX ,Rf

!N [−n]) = 0.

Proposition 4.4 Let f : X → S be a compactifiable morphism of schemes satisfying (†),
Y be a closed subscheme of X such that dimYs 6 d for all s ∈ S, and X ′ := X \ Y , N

be an object in D>a
c (Sét, R•). Then for each integer n > 2d + 1 − a, there is a canonical

isomorphism of R-modules

Hn(X/S,N )
∼−→ Hn(X

′/S,N ).

Proof. Apply Propositions 4.1 and 4.3.
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Let f : X → Y be a compactifiable morphism of schemes satisfying (†). For each object

G in Dc(Yét, R•), we define

δf : G → Rf∗ ◦ f∗G , θf : Rf! ◦Rf !G → G

to be the canonical morphisms induced by the adjunctions f∗ ⊣ Rf∗ and Rf! ⊣ Rf ! respec-

tively.

The following map is a kind of variant of the Gysin homomorphism.

Definition 4.1(Push-forward) Let p : X → S and q : Y → S be two compactifiable mor-

phisms of schemes satisfying (†), and f : X → Y a proper S-morphism. For every object N

in Dc(Sét, R•) and for every n ∈ Z, we define a homomorphism of R-modules

f∗ : Hn(X/S,N )→ Hn(Y/S,N )

as follows. For each α ∈ Hn(X/S,N ), f∗(α) is defined to be the composition

RY
δf−→ Rf∗RX

Rf∗(α)−−−−−→ Rf∗ ◦Rp!N [−n] ∼−→ Rf∗ ◦Rf ! ◦Rq!N [−n] θf−→ Rq!N [−n].

Proposition 4.5 Let X
f−→ Y

g−→ Z
h−→ S be a sequence of morphisms of schemes

satisfying (†) and such that f and g are proper, and h is compactifiable. Then for all

N ∈ Dc(Sét, R•) and n ∈ Z, we have

(g ◦ f)∗ = g∗ ◦ f∗ : Hn(X/S,N )→ Hn(Z/S,N ).

Proof. This comes from the following simple lemma.

Lemma 4.2 Let f : X → Y and g : Y → Z be two compactifiable morphisms of schemes

satisfying (†), and H be an object in Dc(Zét, R•). Then we have

(1) the following composition is equal to δg◦f :

H
δg−→ Rg∗ ◦ g∗H

Rg∗(δf )−−−−−→ Rg∗ ◦Rf∗ ◦ f∗ ◦ g∗H
∼−→ R(g ◦ f)∗ ◦ (g ◦ f)∗H ;

(2) the following composition is equal to θg◦f :

R(g ◦ f)! ◦R(g ◦ f)!H ∼−→ Rg! ◦Rf! ◦Rf ! ◦Rg!H
Rg!(θf )−−−−−→ Rg! ◦Rg!H

θg−→H .

Definition 4.2(Pull-back) Let p : X → S and q : Y → S be two compactifiable morphisms

of schemes satisfying (†), and f : X → Y an S-morphism which is flat at dimension d. For

every object N in Dc(Sét, R•) and for every n ∈ Z, we define a homomorphism of R-modules

f∗ : Hn(Y/S,N )→ Hn+d(X/S,N )

as follows. For each β ∈ Hn(Y/S,N ), f∗(β) is defined to be the composition

RX
tf−→ Rf !RY ⟨−d⟩

Rf !(β)−−−−→ Rf ! ◦Rq!N ⟨−(n+ d)⟩ ∼−→ Rp!N ⟨−(n+ d)⟩.

Proposition 4.6 Let X
f−→ Y

g−→ Z → S be a sequence of compactifiable morphisms of

schemes satisfying (†) and such that f and g are flat at dimension d and e respectively.

Then for all N ∈ Dc(Sét, R•) and n ∈ Z, we have

(g ◦ f)∗ = f∗ ◦ g∗ : Hn(Z/S,N )→ Hn+d+e(X/S,N ).

Proof. This follows from Proposition 3.6(2).
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Theorem 4.1 Let S be a scheme satisfying (†), and r : Y → S a compactifiable mor-

phism. Let

X ′ f ′
//

p

��
�

Y ′

q

��
X

f
// Y

be a Cartesian square of schemes such that f is proper and q is compactifiable and flat at

dimension d, N be an object in Dc(Sét, R•) and n ∈ Z. Then we have

q∗ ◦ f∗ = f ′∗ ◦ p∗ : Hn(X/S,N )→ Hn+d(Y ′/S,N ).

Proof. Put M := Rr!N . Let α ∈ Hn(X/S,N ). Then q∗◦f∗(α) is equal to the composition

RY ′
tq−→ Rq!RY ⟨−d⟩

Rq!(δf )−−−−−→ Rq! ◦Rf∗RX⟨−d⟩
Rq!◦Rf∗(α)−−−−−−−−→

Rq! ◦Rf∗ ◦Rf !M ⟨−(n+ d)⟩ Rq!(θf )−−−−−→ Rq!M ⟨−(n+ d)⟩;
and f ′∗ ◦ p∗(α) is equal to the composition

RY ′
δf′
−−→ Rf ′∗ ◦ f ′∗RY ′ = Rf ′∗ ◦ p∗RX

Rf ′
∗(tp)−−−−−→ Rf ′∗ ◦Rp!RX⟨−d⟩

Rf ′
∗◦Rp

!(α)−−−−−−−−→

Rf ′∗ ◦Rp! ◦Rf !M ⟨−(n+ d)⟩ = Rf ′∗ ◦Rf ′! ◦Rq!M ⟨−(n+ d)⟩
θf′
−−→ Rq!M ⟨−(n+ d)⟩.

After applying Proposition 3.5(2) to tp, we obtain that the morphism f ′∗ ◦ p∗(α) is equal to
the composition

RY ′
δf′
−−→ Rf ′∗ ◦ f ′∗RY ′ = Rf ′∗ ◦ f ′∗ ◦ q∗RY

Rf ′
∗◦f

′∗(tq)−−−−−−−−→ Rf ′∗ ◦ f ′∗ ◦ q!RY ⟨−d⟩

→ Rf ′∗ ◦Rp! ◦ f∗RY ⟨−d⟩ = Rf ′∗ ◦Rp!RX⟨−d⟩
Rf ′

∗◦Rp
!(α)−−−−−−−−→

Rf ′∗ ◦Rp! ◦Rf !M ⟨−(n+ d)⟩ = Rf ′∗ ◦Rf ′! ◦Rq!M ⟨−(n+ d)⟩
θf′
−−→ Rq!M ⟨−(n+ d)⟩.

Consider the following diagram

RY ′
tq //

δf′

��
�

Rq!RY ⟨−d⟩

δf′

��

Rq!(δf ) //

(a)

Rq! ◦Rf∗RX⟨−d⟩

∼=
��

Rq!◦Rf∗(α) //

�
Rf ′∗ ◦ f ′∗RY ′

Rf ′
∗◦f

′∗(tq)

// Rf ′∗ ◦ f ′∗ ◦Rq!RY ⟨−d⟩ // Rf ′∗ ◦Rp! ◦ f∗RY ⟨−d⟩
Rf ′

∗◦Rp
!(α)

//

Rq! ◦Rf∗ ◦Rf !M ⟨−(n+ d)⟩

∼=
��

Rq!(θf ) //

(b)

Rq!M ⟨−(n+ d)⟩

Rf ′∗ ◦Rp! ◦Rf !M ⟨−(n+ d)⟩ Rf ′∗ ◦Rf ′! ◦Rq!M ⟨−(n+ d)⟩
θf′

// Rq!M ⟨−(n+ d)⟩

where � means commutative square. The commutativity of (a) and (b) are by the following

simple Lemma 4.3. So the whole diagram is commutative. Note that the composition along

the direction
• // •

��
•

in the above diagram is equal to q∗ ◦f∗(α), and the composition along

•

��
• // •

is equal to f ′∗ ◦ p∗(α). Thus

q∗ ◦ f∗(α) = f ′∗ ◦ p∗(α).
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Lemma 4.3 Let

X ′ f ′
//

p

��
�

Y ′

q

��
X

f
// Y

be a Cartesian square of schemes satisfying (†) with all morphisms compactifiable. Then we

have

(1) For each object G in Dc(Yét, R•), the diagram

Rq!G
Rq!(δf ) //

δf′

��

Rq! ◦Rf∗ ◦ f∗G

φ∼=
��

Rf ′∗ ◦ f ′∗ ◦Rq!G
Rf ′

∗(ψ) // Rf ′∗ ◦Rp! ◦ f∗G
is commutative in Dc(X

′
ét, R•), where φ is defined in Proposition 3.3(5) and ψ is defined in

Proposition 3.3(2).

(2) Assume that f is proper. Then for each object G in Dc(Yét, R•), the diagram

Rf ′∗ ◦Rp! ◦Rf !G

Rf ′
∗(β)

∼=
��

α
∼=

// Rq! ◦Rf∗ ◦Rf !G

Rq!(θf )

��
Rf ′∗ ◦Rf ′! ◦Rq!G θf′

// Rq!G

is commutative in Dc(Y
′
ét, R•), where α is defined in Proposition 3.3(5) and β is induced by

the composition

Rp! ◦Rf ! ∼−→ R(f ◦ p)! = R(q ◦ f ′)! ∼−→ Rf ′! ◦Rq!.

Definition 4.3(Base Change) Let

X ′ f ′
//

p

��
�

S′

u

��
X

f
// S

be a Cartesian square of schemes satisfying (†) with f compactifiable. For every object N

in Dc(Sét, R•) and for every n ∈ Z, we define a homomorphism of R-modules

u∗ : Hn(X/S,N )→ Hn(X
′/S′, u∗N )

as follows. For each α ∈ Hn(X/S,N ), u∗(α) is defined to be the composition

RX′ = p∗RX
p∗(α)−−−→ p∗ ◦Rf !N [−n] φ−→ Rf ′! ◦ u∗N [−n],

where φ is defined in Proposition 3.3(2).

We have the following three obvious propositions about the base change homomorphisms.

Proposition 4.7 Let k ⊆ K be two separably closed fields, f : X → S be a morphism of

algebraic schemes over k, and u : SK → S be the projection. Then for each object N in

Dc(Sét, R•) and for each n ∈ Z, the homomorphism

u∗ : Hn(X/S,N )
∼−→ Hn(XK/SK , u

∗N )
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is an isomorphism.

Proof. It follows from Proposition 3.3(3) and Theorem 2.1.

Proposition 4.8 Let

X ′′ //

��
�

X ′ //

��
�

X

��
S′′

v
// S′

u
// S

be a commutative diagram of schemes satisfying (†) with both squares Cartesian, and all

three vertical arrows being compactifiable. Then for all N ∈ Dc(Sét, R•) and n ∈ Z, we

have

(u ◦ v)∗ = v∗ ◦ u∗ : Hn(X/S,N )→ Hn(X
′′/S′′, (u ◦ v)∗N ).

Proposition 4.9 Let

X ′ f ′
//

��
�

Y ′ //

��
�

S′

u

��
X

f
// Y // S

be a commutative diagram of schemes satisfying (†) with both squares Cartesian, and all

level arrows being compactifiable. Let N be an object in Dc(Sét, R•) and n ∈ Z. Then we

have

(1) If f is proper, then

u∗ ◦ f∗ = f ′∗ ◦ u∗ : Hn(X/S,N )→ Hn(Y
′/S′, u∗N );

(2) If f is flat at dimension d, then

u∗ ◦ f∗ = f ′∗ ◦ u∗ : Hn(Y/S, N )→ Hn+d(X ′/S′, u∗N ).

Definition 4.4(Galois action) Let k0 be a field, k the separably closed field of k0, G :=

Gal(k/k0), X be an algebraic scheme over k, Y0 be an algebraic scheme over k0, Y :=

Y0 ⊗k0 k, N0 be an object in Dc(Y0,ét, R•) and N the pull-back of N0 on Y . Then there is

an action of G on Hn(X/Y,N ) defined by

(g, α) 7→ (idY0 ⊗ g)∗(α), g ∈ G, α ∈ Hn(X/Y, N ).

In particular, if N ∈ Dfg(R) and n ∈ Z, then there is a Galois action of G on Hn(X,N).

The following theorem is used to prove that cycle maps eliminate algebraic equivalent

classes.

Theorem 4.2 Let f : X → Y be a morphism of algebraic schemes over a separably closed

field k, Z be a nonsingular variety over k, N be an object in Dc(Yét, R•),

α ∈ Hn
(
(X ×k Z)/(Y ×k Z), pr∗1N

)
.

For each z ∈ Z(k), put
jz := idY × z : Y → Y ×k Z.

Then z 7→ j∗z (α) is a constant map from Z(k) to Hn(X/Y, N ).
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Proof. By Proposition 4.7 we may assume that k is algebraically closed. Since every two

rational points of Z can be jointed by a series of nonsingular curves, we may further assume

that Z is a complete nonsingular curve. First we have a commutative diagram with both

squares Cartesian:

X ×k Z
f ′

//

p

��
�

Y ×k Z
v //

u

��
�

Z

r

��
X

f
// Y q

// Spec k

By Proposition 3.3, we have

Rf ′! ◦ u∗N [−n] ∼−→ p∗Rf !N [−n] = p∗Rf !N [−n]⊗L
R (v ◦ f ′)∗RZ .

Since Z is a complete nonsingular curve over k, we have

H0(Zét, R) ∼= R, H1(Zét, R) ∼= R⊕g,

where g is the genus of Z, and H2(Zét, R)
Tr−→
∼

R are all free R-modules. Now we apply

Theorem 2.2 to obtain an isomorphism:

Hn
(
(X ×k Z)/(Y ×k Z),pr∗1N

) ∼−→ H0(X ×k Z, p∗Rf !N [−n]⊗L
R (v ◦ f ′)∗RZ)

∼−→ Hn(X/Y,N )
⊕(

Hn+1(X/Y,N )⊗R H1(Zét, R)
)⊕(

Hn+2(X/Y,N )⊗R H2(Zét, R)
)
.

Let β ∈ Hn(X/Y,N ) be the image of α induced by above isomorphism. Then

j∗z (α) = β for all z ∈ Z(k).

5 The Cycle Maps for Chow Groups

In this section, we construct the cycle maps for arbitrary algebraic schemes over k, where k

is a field such that

char(k) ̸= ℓ, cdℓ(k) <∞.

Let f : X → Y be a compactifiable morphism of schemes satisfying (†) which is flat at

dimension d. We define

cℓ(X/Y ) := tf : Zℓ,X → Rf !Zℓ,Y ⟨−d⟩ in Db
c (Xét,Zℓ,•),

i.e., cℓ(X/Y ) ∈ Hd(X/Y,Zℓ).

Proposition 5.1 Let X → S and Y → S be two compactifiable morphisms of schemes

satisfying (†), and f : X → Y a morphism of S-schemes. Assume that Y → S and f : X → Y

are flat at dimension n and d respectively. Then we have

f∗cℓ(Y/S) = cℓ(X/S) ∈ Hn+d(X/S, Zℓ).

Proof. This follows from Proposition 3.6(2).

Proposition 5.2 Let p : X → S and q : Y → S be two morphisms of schemes satisfying

(†), both of which are compactifiable and flat at dimension d, and f : X → Y be a finite

S-morphism such that f∗OX is a locally free OY -module of degree n. Then we have

f∗cℓ(X/S) = n · cℓ(Y/S) ∈ Hd(Y,Zℓ).



82 COMM. MATH. RES. VOL. 29

Proof. By the definition of f∗ and Proposition 3.6(2), the element f∗cℓ(X/S) is equal to

the composite morphism

Zℓ,Y
δf−→ f∗Zℓ,X

f∗(tf )−−−−→ f∗ ◦Rf !Zℓ,Y
f∗◦Rf !(tq)−−−−−−−→ f∗ ◦Rf ! ◦Rq!Zℓ,Y

θf−→ Rq!Zℓ,Y .

By Diagram (3.1) and Proposition 3.7, we have a commutative diagram as follows:

Zℓ,Y
δf //

n·id

..

f∗Zℓ,X
f∗(tf ) //

Trf

''OOOOOOOOOOOOOOO f∗ ◦Rf !Zℓ,Y
f∗◦Rf !(tq) //

θf

��

f∗ ◦Rf ! ◦Rq!Zℓ,Y

θf

��
Zℓ,Y

tq // Rq!Zℓ,Y
Thus we get the proof.

Let X → S be a compactifiable morphism of schemes satisfying (†), and i : Y ↪→ X a

closed immersion. Assume that the morphism Y → S is flat at dimension d. Then we define

c̃lX/S,ℓ(Y ) := i∗cℓ(Y/S) ∈ Hd(X/S,Zℓ).
Let X be an algebraic scheme over k. Then for each n ∈ Z, there is a canonical homo-

morphism of groups

c̃lX,ℓ : Zn(X)→ Hn(X,Zℓ),
∑

ai · [Yi] 7→
∑

ai · c̃lX/k,ℓ(Yi).

Proposition 5.3 Let f : X → Y be a proper morphism of algebraic schemes over k. Then

for every n ∈ N, we have a commutative diagram

Zn(X)
c̃lX,ℓ //

f∗

��

Hn(X,Zℓ)

f∗

��
Zn(Y )

c̃lY,ℓ // Hn(Y,Zℓ)

Proof. Let X ′ be an n-dimensional subvariety of X, Y ′ := f(X ′), i : X ′ ↪→ X and j : Y ′ ↪→
Y the inclusion, and g : X ′ → Y ′ the induced morphism. By Proposition 4.5 we have

f∗ ◦ c̃lX,ℓ
(
[X ′]

)
= f∗ ◦ i∗cℓ(X ′/k) = j∗ ◦ g∗cℓ(X ′/k) ∈ Hn(X,Zℓ).

Since f∗[X
′] = deg(X ′/Y ′)[Y ′] (see the section 1.4 of [5]), we have only to prove that

g∗cℓ(X
′/k) = deg(X ′/Y ′) · cℓ(Y ′/k) ∈ Hn(Y ′,Zℓ).

If dimY ′ < n, then

deg(X ′/Y ′) = 0.

And by Proposition 4.3,

Hn(Y ′,Zℓ) = 0.

If dimY ′ = n, we apply the result in Example 3.7 of [11]. Since the morphism g is

generically finite and Y ′ is an integral scheme, there exists an nonempty subscheme V of Y ′

such that g : g−1(V ) → V is a finite morphism and g∗OX′ |V is a locally free OV -module.

Now the proposition follows from Propositions 4.4 and 5.2.

Proposition 5.4 Let X be an algebraic scheme over k, and Y be a n-equidimensional

closed subscheme of X. Then we have

c̃lX/k,ℓ(Y ) = c̃lX,ℓ
(
[Y ]

)
∈ Hn(X,Zℓ).
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Proof. This is easily deduced from Proposition 3.8.

Proposition 5.5 Let f : X → Y be a flat morphism of relative dimension d of algebraic

schemes over k. Then for every n ∈ N, we have a commutative diagram

Zn(Y )
c̃lY,ℓ //

f∗

��

Hn(Y,Zℓ)

f∗

��
Zn+d(X)

c̃lX,ℓ // Hn+d(X,Zℓ)

Proof. Let α ∈ Zn(Y ). We may assume that Y is a variety of dimension n and α = [Y ].

Then we have only to apply Proposition 5.1.

Now we could prove that c̃l annihilates the rational equivalence.

Lemma 5.1 Let X be a nonsingular variety of dimension n over k, and D be an effective

divisor on X. Then

c̃lX/S,ℓ(D) = c1
(
O(D)

)
∈ Hn−1(X,Zℓ) = H1(X,Zℓ).

Proof. See (3.26) of [10].

Theorem 5.1 Let X be an algebraic scheme over k. Then for each n ∈ N,

Ratn(X) ⊆ Ker
(
c̃lX,ℓ : Zn(X)→ Hn(X,Zℓ)

)
,

i.e., the homomorphism c̃lX,ℓ factors through CHn(X). We use clX,ℓ or clℓ or clX to denote

the induced homomorphism CHn(X)→ Hn(X,Zℓ).

Proof. After applying Proposition 1.6 of [5] together with Propositions 5.3 and 5.5, we have

only to prove that

c̃lP1
k,ℓ

(0) = c̃lP1
k,ℓ

(∞) ∈ H0(P
1
k,Zℓ).

This follows from Lemma 5.1.

In the following, we define the degree map for the homology of degree zero.

Definition 5.1 For any proper algebraic scheme X over k, we define degree map degℓ
to be the homomorphism

H0(X,Zℓ)
p∗−→ H0(Spec k, Zℓ) = Zℓ,

where p : X → Spec k is the structural morphism.

Lemma 5.2 Let X be an n-dimensional proper algebraic scheme over k.

(1) We have a commutative diagram

H2n
(
Xét,Zℓ(n)

) (tX)∗ //

TrX &&MMMMMMMMMMM
H0(X,Zℓ)

degℓzzuuu
uuu

uuu
u

Zℓ
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(2) We have a commutative diagram

CH0(X)
clX,ℓ //

deg

��

H0(X,Zℓ)

degℓ

��
Z

� � // Zℓ

Proof. (1) can be proved by the commutative diagram (3.1).

(2) can be proved by Proposition 5.3.

Proposition 5.6 Assume that k is separably closed and let X be a nonsingular complete

variety over k. Then degℓ : H0(X,Zℓ)
∼−→ Zℓ is an isomorphism.

Proof. Put dimX = n. By Proposition 3.4, we have only to prove that

TrX : H2n
(
Xét,Zℓ(n)

)
→ Zℓ

is an isomorphism. This is true by VI, 11.1(a) of [12].

The following theorem shows that the cycle map clX,ℓ annihilate algebraic equivalence

of cycles.

Theorem 5.2 Assume that k is separably closed and let X be an algebraic scheme over

k. Then for each n ∈ N, the cycles in CHn(X) which are algebraically equivalent to zero

(in the sense of 10.3 of [5]) are contained in ker
(
clX,ℓ).

Proof. By Proposition 4.7 we may assume that k is algebraically closed. Let c1, c2 ∈
CHn(X) be such that c1 ∼a c2, T be a nonsingular curve over k, t1, t2 ∈ T (k), and c ∈
CHn+1(X ×k T ) be such that cti = ci for i = 1, 2. Obviously, we may assume that c = [Y ],

where Y is an (n+ 1)-dimensional subvariety of X ×k T such that for all t ∈ T (k), Y is not

contained in

id× ti : X ↪→ X ×k T.

Obviously, the induced morphism Y → T is dominant and flat. Put

α := c̃l(X×kT )/T, ℓ(Y ) ∈ Hn
(
(X ×k T )/T, Zℓ

)
.

By Propositions 4.9 and 3.5(2), we have

t∗i (α) = c̃lX,ℓ(Yti) = clX,ℓ(cti).

So we have only to apply Proposition 4.2.

6 Cap-products and Compatibility with Chern classes

First we define the cap-products for the ℓ-adic homology.

Definition 6.1(Cap-product) Let f : X → Y and g : Y → Z be compactifiable morphisms

of schemes satisfying (†), M and N two objects in D−
c (Zét, R•). For every m,n ∈ Z, there

is a cap-product

Hm(X
f−→ Y, g∗M )×Hn(Y

g−→ Z,N )
∩−→ Hm+n(X

g◦f−−→ Z,M ⊗L
R N ),
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defined as follows: Let α ∈ Hm(X
f−→ Y, g∗M ), β ∈ Hn(Y

g−→ Z,N ). Then we define α ∩ β
to be the composite morphism

RX
α⊗Lf∗β−−−−−→ Rf ! ◦ g∗M [−m]⊗L

R f
∗ ◦Rg!N [−n] φ−→ R(g ◦ f)!(M ⊗L

R N )[−(m+ n)],

where φ is defined in Proposition 3.2.

Similarly, we may define the cap-product for H∗ as follows:

Hm(X
f−→ Y, g∗M )×Hn(Y

g−→ Z,N )
∩−→ Hm+n(X

g◦f−−→ Z,M ⊗L
R N ).

In particular, if X → S is a compactifiable morphisms of schemes satisfying (†), and N

is an object in D−
c (Sét, R•), then for every m,n ∈ Z, there are cap-products

Hm(X,R)×Hn(X/S,N )
∩−→ Hn−m(X/S,N ),

Hm(X,R)×Hn(X/S,N )
∩−→ Hn−m(X/S,N ).

The following Proposition can be directly calculated.

Proposition 6.1(Projection Formula) Let f : X → Y and g : Y → S be morphisms of

schemes satisfying (†) with f proper and g compactifiable, and N an object in Dc(Yét, R•).

Then we have

(1) For every α ∈ Hr(Y,R) and β ∈ Hn(X/S,N ),

α ∩ f∗(β) = f∗
(
f∗(α) ∩ β

)
∈ Hn−r(Y/S,N ).

(2) For every α ∈ Hr(Y,R) and β ∈ Hn(X/S,N ),

α ∩ f∗(β) = f∗
(
f∗(α) ∩ β

)
∈ Hn−r(Y/S,N ).

It may be further showed that the cap-product defined in Definition 6.1 has many similar

properties to bivariant intersection theory defined in Ch. 17 of [5], i.e., has associativity and

is compatible with the Pull-back functor f∗, the push-out functor f∗ and the base change

functor u∗. Since we need not them here, we leave it to the readers.

Next, we review the cycle maps for locally free sheaves. First by (3.26) a) of [10], we

have a homomorphism of groups

cℓ1 : PicX → H1(X,Zℓ) (6.1)

for every scheme X satisfying (†). The following two propositions depict the cycle maps for

locally free sheaves.

Proposition 6.2 Let X be a scheme satisfying (†), E a locally free OX-module of constant

rank r + 1, P := P(E ), and p : P → X be the projection. Then there is a canonical

isomorphism of Zℓ-algebras

H∗(X,Zℓ)[T ]/(T
r+1)

∼−→ H∗(P,Zℓ), T̄ 7→ cℓ1
(
OP (1)

)
.

Proof. See (6.13) of [10] or VII, 2.2.6 of [13].

As a direct application of the above proposition, we have
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Proposition 6.3 Let X be a scheme satisfying (†), E a locally free OX-module of constant

rank m, P := P(E ∨), and p : P → X be the projection, ξ := cℓ1
(
OP (1)

)
. Then for each r ∈ N

there exists a unique element cℓr(E ) ∈ Hr(X,Zℓ) such that
m∑
i=0

cℓi(E )ξm−i = 0,

cℓ0(E ) = 1,

cℓr(E ) = 0 for r > m.

Now we define the trace morphisms for regular immersions of codimension 1. Let X be

a scheme satisfying (†) and i : D ↪→ X a regular closed immersion of codimension 1. By

(3.26) of [10] and its proof, i : D ↪→ X determinates an element

ti ∈ H2
D,cont

(
Xét,Zℓ(1)

)
= HomDc(Dét,Zℓ,•)

(
Zℓ,Ri

!Zℓ⟨1⟩
)
.

Similar to 2.3.1 of the paper (cycle) of [4], we have

Proposition 6.4 Let S be a scheme satisfying (†), f : X → S and g : Y → S be two

compactifiable morphisms which are flat at dimension n and n−1 respectively, and i : Y ↪→ X

be a regular closed immersion of codimension 1 such that f ◦ i = g. Then we have

(1) The composite morphism

Rg!Zℓ
Rg!(ti)−−−−→ Rg! ◦Ri!Zℓ⟨1⟩ = Rf! ◦Ri∗ ◦Ri!Zℓ⟨1⟩

Rf!(θi)−−−−−→ Rf!Zℓ⟨1⟩
Trf−−→ Zℓ⟨−(n− 1)⟩

is equal to Trg;

(2) The composite morphism

Zℓ
ti−→ Ri!Zℓ⟨1⟩

Ri!(tf )−−−−−→ Ri! ◦Rf !Zℓ⟨−(n− 1)⟩ = Rg!Zℓ⟨−(n− 1)⟩
is equal to tg.

Finally, we prove that the cycle maps are compatible with Chern classes. According to

Ch. 3 of [5], if X is an algebraic scheme over k and E is a locally free OX -module, then

there is an operation of Chern classes on each Chow group

CHr(X)→ CHr−i(X), α 7→ ci(E ) ∩ α.

Theorem 6.1 Let X be an algebraic scheme over k, E a locally free OX-module, and

α ∈ CHr(X). Then we have

cℓi(E ) ∩ clX,ℓ(α) = clX,ℓ
(
ci(E ) ∩ α) ∈ Hr−i(X,Zℓ). (6.2)

Proof. By the the projection formulas (Proposition 6.1 and Theorem 3.2(c) of [5]), we

obtain that if f : X ′ → X is a proper morphism and α′ ∈ CHr(X
′) such that f∗(α

′) = α and

the pair (f∗E , α′) satisfies (6.2), then the pair (E , α) also satisfies (6.2). Thus by the splitting

construction (see §3.2 of [5]), we may assume that E = L is an invertible OX -module and

have only to prove that

cℓ1(L ) ∩ clX,ℓ(α) = clX,ℓ
(
c1(L ) ∩ α

)
∈ Hr−1(X,Zℓ). (6.3)

Moreover we may assume that X is a variety of dimension r and α = [X]. After replacing

X with its normalization, we may assume that X is normal. Then we may assume that

L = O(Y ) where Y ↪→ X is a regular closed immersion of codimension 1. Then we have

only to apply Proposition 6.4 to end our proof.
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in Math. 269, 270, 305. Berlin: Springer-Verlag, 1972-73.

[4] Deligne P. Cohomologie étale, SGA 4 1
2
: Lecture Notes in Math., 569. Berlin: Springer-Verlag,

1977.

[5] Fulton W. Intersection Theory. In: Ergebnisse der Mathematik und ihrer Grenzgebiete (3).
vol. 2. Berlin: Springer-Verlag, 1984.

[6] Conrad B. Deligne’s notes on Nagata compactifications. J. Ramanujan Math. Soc., 2007, 22:
205–257.

[7] Behrend K A. Derived l-adic categories for algebraic stacks. Mem. Amer. Math. Soc., 2003,
163: viii+93.

[8] Laszlo Y, Olsson M. The six operations for sheaves on Artin stacks II: Adic coefficients. Publ.
Math. Inst. Hautes Études Sci., 2008, 107: 169–210.
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