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Abstract: In this paper, we study a nonlinear parabolic system with variable expo-

nents. The existence of classical solutions to an initial and boundary value problem

is obtained by a fixed point theorem of the contraction mapping, and the blow-up

property of solutions in finite time is obtained with the help of the eigenfunction of

the Laplace equation and a delicated estimate.
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1 Introduction

In this paper, we study the existence and blow-up of solutions to the nonlinear parabolic

system 
ut = ∆u+ αf(v), (x, t) ∈ QT ,

vt = ∆v + βg(u), (x, t) ∈ QT ,

u(x, t) = 0, v(x, t) = 0, (x, t) ∈ ST ,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω ,

(1.1)

where α > 0, β > 0 are constants, Ω ⊂ RN is a bounded domain with smooth boundary

∂Ω and QT = Ω × [0, T ) with 0 < T < ∞, ST denotes the lateral boundary of the cylinder

QT , and

f(v) = vp1(x), g(u) = up2(x)

are source terms. We also assume that the exponents

p1(x), p2(x) : Ω → (1,+∞)
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satisfy the following conditions:

1 < p−1 = inf
x∈Ω

p1(x) 6 p1(x) 6 p+1 = sup
x∈Ω

p1(x) < +∞, (1.2)

1 < p−2 = inf
x∈Ω

p2(x) 6 p2(x) 6 p+2 = sup
x∈Ω

p2(x) < +∞. (1.3)

When p1, p2 are constants, Escobedo and Herrero[1] investigated the boundedness and

blow up of solutions to the problem (1.1). Furthermore, the authors also studied the unique-

ness and global existence for some solutions (see [2]), and there have been also many results

about the existence, boundedness and blow up property of the solutions (see [3–6]).

The motivation of our work is mainly due to [7], where the authors studied the following

parabolic problem involving a variable exponent:
ut = ∆u+ f(u), (x, t) ∈ Ω × [0, T ),

u(x, 0) = u0(x), x ∈ Ω ,

u(x, t) = 0, (x, t) ∈ ∂Ω × [0, T ),

(1.4)

where Ω ∈ Rn is a bounded domain with smooth boundary ∂Ω , and the source term is of

the form

f(u) = a(x)up(x)

or

f(u) = a(x)

∫
Ω

uq(x)(y, t)dy.

The parabolic problems with sources as the one in (1.4) can be used to model chemical

reactions, heat transfer or population dynamic, etc. The readers can refer to [8–14] and the

references therein.

However, to the best of our knowledge, there are no results about the existence, blow-up

properties of solutions to the systems of parabolic equations with variable exponents. Our

main aim in this paper is to study the problem (1.1) and to obtain the existence and blow

up results of the solutions.

Our main results are stated in the next section, including some preliminary results and

local existence of solutions to the problem (1.1). The blow-up of solutions is obtained and

proved in Section 3.

2 Existence of Solutions

This section is devoted to the proof of existence of solutions to the problem (1.1). We give

the following definition.

Definition 2.1 We say that the solution (u(x, t), v(x, t)) for the problem (1.1) blows up

in finite time if there exists an instant T ∗ < ∞ such that

∥|(u, v)|∥ → ∞ as t → T ∗,

where

∥|(u, v)|∥ = sup
t∈[0,T )

{∥u(t)∥∞ + ∥v(t)∥∞},
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and

∥u(t)∥∞ = ∥u(·, t)∥L∞(Ω), ∥v(t)∥∞ = ∥v(·, t)∥L∞(Ω).

Our first result is the following theorem.

Theorem 2.1 Let Ω ⊂ RN be a bounded smooth domain. Assume that p1(x) and p2(x)

satisfy the conditions (1.2)-(1.3), and u0(x) and v0(x) are nonnegative, continuous and

bounded. Then there exists a T 0 with 0 < T 0 ≤ ∞ such that the problem (1.1) has a

nonnegative and bounded solution (u, v) in QT 0 .

Proof. Let us consider the equivalence systems of (1.1)
u(x, t) =

∫
Ω

g1(x, y, t)u0(y)dy + α

∫ t

0

∫
Ω

g1(x, y, t− s)vp1(y)(y, s)dyds,

v(x, t) =

∫
Ω

g2(x, y, t)v0(y)dy + β

∫ t

0

∫
Ω

g2(x, y, t− s)up2(y)(y, s)dyds,

where gi(x, y, t) (i = 1, 2) are the corresponding Green functions. Then the existence and

uniqueness of solutions for a given (u0(x), v0(x)) could be obtained by a fixed point theorem.

We introduce the following iteration scheme:

u1(x, t) = 0,

v1(x, t) = 0,

un+1(x, t) =

∫
Ω

g1(x, y, t)u0(y)dy + α

∫ t

0

∫
Ω

g1(x, y, t− s)vp1(x)
n (y, s)dyds,

vn+1(x, t) =

∫
Ω

g2(x, y, t)v0(y)dy + β

∫ t

0

∫
Ω

g2(x, y, t− s)up2(x)
n (y, s)dyds.

The convergence of the sequence {(un, vn)} follows by showing that
Φ1(v) = α

∫ t

0

∫
Ω

g1(x, y, t− s)vp1(y)(y, s)dyds,

Φ2(u) = β

∫ t

0

∫
Ω

g2(x, y, t− s)up2(y)(y, s)dyds,

is a contraction mapping in the set ET which will be defined later. Now, we define

Ψ(u, v) = (Φ1(v),Φ2(u)),

where

Φ1(v) = α

∫ t

0

∫
Ω

g1(x, y, t− s)vp1(y)(y, s)dyds,

Φ2(u) = β

∫ t

0

∫
Ω

g2(x, y, t− s)up2(y)(y, s)dyds.

We also denote

Ψ(u, v)−Ψ(w, z) = (Φ1(v)− Φ1(z), Φ2(u)− Φ2(w)).

For an arbitrary T > 0, define

ET = {C1,2(ΩT ) ∩ C(ΩT ) | ∥|(u, v)|∥ ≤ M},
where ΩT = Ω × [0, T ], M > ∥|(u0(x), v0(x))|∥ is a fixed positive constant.
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Then we claim that Ψ is a strict contraction on ET . In fact, for any fixed x ∈ Ω , we

have

ξ
p1(x)
1 − η

p1(x)
1 = p1(x)w

p1(x)−1
1 (ξ1 − η1)

and

ξ
p2(x)
2 − η

p2(x)
2 = p2(x)w

p2(x)−1
2 (ξ2 − η2),

where

w1 = s1ξ1 + (1− s1)η1, s1 ∈ (0, 1)

and

w2 = s2ξ2 + (1− s2)η2, s2 ∈ (0, 1).

And we always have

∥|pi(x)wpi(x)−1
i (ξi − ηi)|∥ ≤ p+i (2M)p

+
i −1∥ξi − ηi∥∞, i = 1, 2. (2.1)

Now, we define

µi(t) = sup
x∈Ω, 0≤τ<t

∫ τ

0

∫
Ω

gi(x, y, t− s)dyds, i = 1, 2.

It is obvious that

µi(t) → 0 as t → 0+.

Then by (2.1), we get

∥Φ1(v)− Φ1(z)∥∞ + ∥Φ2(u)− Φ2(w)∥∞

≤ α
∥∥∥∫ t

0

∫
Ω

g1(x, y, τ − s)(vp1(x)
n − zp1(x)

n )dyds
∥∥∥
∞

+ β
∥∥∥∫ t

0

∫
Ω

g2(x, y, τ − s)(up2(x)
n − wp2(x)

n )dyds
∥∥∥
∞

≤ (µ1(t) + µ2(t))Γ (2M)max{p+
1 ,p+

2 }−1(∥p1∥∞ + ∥p2∥∞)(∥v − z∥∞ + ∥u− w∥∞)

≤ (µ1(t) + µ2(t))Γ (2M)max{p+
1 ,p+

2 }−1(∥p1∥∞ + ∥p2∥∞) sup
t∈[0,T )

(∥v − z∥∞ + ∥u− w∥∞)

= (µ1(t) + µ2(t))Γ (2M)max{p+
1 ,p+

2 }−1(∥p1∥∞ + ∥p2∥∞)∥|(v − z, u− w)|∥,
where Γ = max{α, β}. Since µi(t) (i = 1, 2) are sufficiently small as t → 0, we get

∥|Ψ(u, v)−Ψ(w, z)|∥

= ∥(Φ1(v)− Φ1(z),Φ2(u)− Φ2(w))∥

≤ sup
t∈[0,T )

{∥Φ1(v)− Φ1(z)∥∞ + ∥Φ2(u)− Φ2(w)∥∞}

≤ (µ1(t) + µ2(t))Γ (2M)max{p+
1 p+

2 }−1(∥p1∥∞ + ∥p2∥∞)∥|(v − z, u− w)|∥.
Hence, Ψ is a strict contraction mapping. This completes the proof.

3 Blow up of Solutions

This section is devoted to the blow up of solutions to the problem (1.1). We first give the

following lemma.
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Lemma 3.1 Let y(t) be a solution of

y′(t) ≥ ayr(t), y(0) > 0,

where r > 1 and a > 0. Then y(t) cannot be globally defined, and

y(t) ≥
(
y(0)1−r − r − 1

a
t
)−1/(r−1)

.

This lemma follows by a direct integration, and gives an upper bound for the blow up

time. The following theorem gives the main result of this section.

Theorem 3.1 Let Ω ⊂ RN be a bounded smooth domain and (u, v) a positive solution

of the problem (1.1) with p1(x) and p2(x) satisfying the conditions (1.2)-(1.3). Then for a

sufficiently large initial datum (u0(x), v0(x)), there exists a finite time T ∗ > 0 such that

sup
0≤t≤T∗

∥|(u, v)|∥ = +∞.

Proof. Let λ1 be the first eigenvalue of

−∆φ = λφ, x ∈ Ω

with homogeneous Dirichlet boundary condition and φ a positive eigenfunction satisfying∫
Ω

φdx = 1.

Set

η(t) =

∫
Ω

(u+ v)φdx.

We get

η′(t) =

∫
Ω

(ut + vt)φdx

=

∫
Ω

(∆u+∆v)φdx+

∫
Ω

(αvp1(x) + βup2(x))φdx

= − λη +

∫
Ω

(αvp1(x) + βup2(x))φdx.

We now deal with the term ∫
Ω

(αvp1(x) + βup2(x))φdx.

For each t > 0, we divide Ω into the following four sets:

Ω11 = {x ∈ Ω : v(x, t) < 1, u(x, t) < 1},

Ω12 = {x ∈ Ω : v(x, t) < 1, u(x, t) ≥ 1},

Ω21 = {x ∈ Ω : v(x, t) ≥ 1, u(x, t) < 1},

Ω22 = {x ∈ Ω : v(x, t) ≥ 1, u(x, t) ≥ 1}.
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Then, we have∫
Ω

(αvp1(x) + βup2(x))φdx

=

∫
Ω11

(αvp1(x) + βup2(x))φdx+

∫
Ω12

(αvp1(x) + βup2(x))φdx

+

∫
Ω21

(vαp1(x) + βup2(x))φdx+

∫
Ω22

(αvp1(x) + βup2(x))φdx

≥
∫
Ω12

βupφdx+

∫
Ω21

αvpφdx+

∫
Ω22

(αvp + βup))φdx

≥
∫
Ω12

βupφdx+

∫
Ω21

αvpφdx+

∫
Ω

(αvp + βup))φdx

−
∫
Ω12

(αvp + βup)φdx−
∫
Ω21

(αvp + βup)φdx−
∫
Ω11

(αvp + βup))φdx

≥ Γ

∫
Ω

(vp + up)φdx− Γ

∫
Ω12

vpφdx− Γ

∫
Ω21

upφdx− Γ

∫
Ω11

(vp + up))φdx

≥ Γ

∫
Ω

(vp + up)φdx− 4Γ

∫
Ω

φdx,

where

p = min{p−1 , p
−
2 }, Γ = min{α, β}.

In view of the convex property of

f(w) = wr, r > 1

and by using Jensen’s inequality again, we obtain∫
Ω

(αvp1(x) + βup2(x))φdx

≥ Γ

∫
Ω

(vp + up)φdx− 4Γ

∫
Ω

φdx

≥ Γ

∫
Ω

2
(v + u

2

)p

φdx− 4Γ

∫
Ω

φdx

≥ Γ

2p−1
ηp(t)− 4Γ .

Then, we get

η′(t) ≥ −λ1η(t) +
Γ

2p−1
ηp(t)− 4Γ .

Since

η(t) =

∫
Ω

(u+ v)φdx

≤ (∥u( · , t)∥L∞(Ω) + ∥v( · , t)∥L∞(Ω))

∫
Ω

φdx

≤ ∥|(u, v)|∥,
we know that the result follows from Lemma 3.1 for η(0) large enough. The proof is com-

pleted.

Remark 3.1 Assume that the source terms in (1.1) are of the form

f(v) =

∫
Ω

vp1(x)dx, g(u) =

∫
Ω

up2(x)dx.
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Then Theorem 3.1 also holds.

In fact, defining

η(t) =

∫
Ω

(u+ v)φdx

and repeating the previous argument, we can obtain the same result.
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