Cofiniteness of Local Cohomology Modules with Respect to a Pair of Ideals

Gu Yan

(Department of Mathematics, Soochow University, Suzhou, Jiangsu, 215006)

Communicated by Du Xian-kun

Abstract: Let R be a commutative Noetherian ring, I and J be two ideals of R, and M be an R-module. We study the cofiniteness and finiteness of the local cohomology module $H_{I,J}^i(M)$ and give some conditions for the finiteness of $\operatorname{Hom}_R(R/I, H_{I,J}^s(M))$ and $\operatorname{Ext}_R^1(R/I, H_{I,J}^s(M))$. Also, we get some results on the attached primes of $H_{I,J}^{\dim M}(M)$.

 ${\bf Key}$ words: local cohomology, cofinite module, attached prime

2000 MR subject classification: 13D45, 13E15

Document code: A

Article ID: 1674-5647(2014)01-0033-08

1 Introduction

Throughout this paper, we always assume that R is a commutative Noetherian ring, I and J are two ideals of R, and M is an R-module. Takahashi *et al.*^[1] introduced the concept of local cohomology module $H_{I,J}^i(M)$ with respect to a pair of ideals (I, J). The set of elements x of M such that $I^n \subseteq \operatorname{Ann}(x) + J$ for some integer $n \gg 1$ is said to be (I, J)-torsion submodule of M and is denoted by $\Gamma_{I,J}(M)$. For an integer $i \ge 0$, the local cohomology functor $H_{I,J}^i$ with respect to (I, J) is defined to be the *i*-th right derived functor of $\Gamma_{I,J}$. Note that, if J = 0, then $H_{I,J}^i(\cdot)$ coincides with $H_I^i(\cdot)$. When M is finitely generated, we know that $H_{I,J}^i(M) = 0$ for $i > \dim M$ from Theorem 4.7 in [1].

Hartshorne^[2] defined an R-module M to be I-cofinite if

 $\operatorname{Supp} M \subseteq V(I)$ and $\operatorname{Ext}^{i}_{R}(R/I, M)$

is finitely generated for all $i \ge 0$. Also, he asked the following question:

Question If M is finitely generated, when is $\operatorname{Ext}_{R}^{j}(R/I, H_{I}^{i}(M))$ finitely generated for

Received date: April 15, 2011.

Foundation item: The NSF (BK2011276) of Jiangsu Province, the NSF (10KJB110007, 11KJB110011) for Colleges and Universities in Jiangsu Province and the Research Foundation (Q3107803) of Pre-research Project of Soochow University.

E-mail address: guyan@suda.edu.cn (Gu Y).

all $i \geq 0$ and $j \geq 0$ (considering $\operatorname{Supp}(H_I^i(M)) \subseteq V(I)$, so $\operatorname{Ext}_R^j(R/I, H_I^i(M))$ is finitely generated if and only if $H_I^i(M)$ is *I*-cofinite).

Hartshorne^[2] showed that if (R, \mathfrak{m}) is a complete regular local ring and M is finitely generated, then $H_I^i(M)$ is *I*-cofinite in two cases:

(a) I is a non-zero principal ideal;

(b) I is a prime ideal with $\dim R/I = 1$.

Yoshida^[3], Delfino and Marley^[4] extended (b) to all dimension one ideals I of any local ring R, and Kawasaki^[5] proved (a) for any ring R.

Let

$$W(I, J) = \{ p \in \operatorname{Spec}(R) \mid I^n \subseteq J + p \text{ for an integer } n \gg 1 \}.$$

As a generalization of *I*-cofinite module, we give the following definition:

Definition 1.1 An *R*-module *M* is said to be (I, J)-cofinite if $\text{Supp} M \subseteq W(I, J)$ and $\text{Ext}^{i}_{R}(R/I, M)$ is finitely generated for all $i \geq 0$.

For an R-module M, the cohomological dimension of M with respect to I and J is defined as

$$cd(I, J, M) = \sup\{i \in \mathbf{Z} \mid H^i_{I,J}(M) \neq 0\}$$

When J = 0, then cd(I, J, M) coincides with cd(I, M).

In this paper, we mainly consider the (I, J)-cofiniteness of $H^i_{I,J}(M)$. Since

$$\operatorname{Supp}(H^i_{I,J}(M)) \subseteq W(I,J)$$

we focus on the finiteness of $\operatorname{Ext}_{R}^{j}(R/I, H_{L,I}^{i}(M))$.

In Section 2, we discuss the finiteness of $\operatorname{Hom}_R(R/I, H^s_{I,J}(M))$ (see Theorem 2.1), which generalizes Theorem 2.1 in [6] and Theorem B(β) in [7]. In addition, when M is finitely generated and I is a principal ideal or $\operatorname{cd}(I, J, M) = 1$, we get the (I, J)-cofiniteness of $H^i_{I,J}(M)$ for all $i \geq 0$, which generalizes the corresponding results in [5] and [9], respectively. In Proposition 2.3(iii) of [10], it is proved that if

$$H_I^i(M) = 0, \qquad 0 \le i < s,$$

then

$$\operatorname{Hom}(R/I, H_I^s(M)) \cong \operatorname{Ext}_R^s(R/I, M).$$

In this paper, we get the corresponding result for the local cohomology module with respect to (I, J). In Section 3, we prove the (I, J)-cofiniteness of $H_{I,J}^{\dim M}(M)$, which is a generalization of Theorem 3 in [4].

2 The Cofiniteness of $H^s_{I,J}(M)$

First, we give a theorem which is a generalization of Theorem 2.1 in [6] and Theorem $B(\beta)$ in [7]. It is also a main result of this paper.

Theorem 2.1 Assume that M is an R-module, and s is a non-negative integer, such that $\operatorname{Ext}_{R}^{s}(R/I, M)$ is finitely generated. If $H_{I,J}^{i}(M)$ is (I, J)-cofinite for all i < s, then $\operatorname{Hom}_{R}(R/I, H_{I,J}^{s}(M))$ is finitely generated. In particular, $\operatorname{Ass}(H_{I,J}^{s}(M)) \cap V(I)$ is a finite set.

Proof. We use induction on s. Let s = 0. Then

 $\operatorname{Hom}_{R}(R/I, H^{0}_{I,J}(M)) \cong \operatorname{Hom}_{R}(R/I, M).$

This result is clear. Now we assume that s > 0, and the result has been proved for smaller values of s. Since $H^0_{I,J}(M)$ is (I, J)-cofinite, $\operatorname{Ext}^i_R(R/I, H^0_{I,J}(M))$ is finitely generated for all $i \ge 0$. The short exact sequence

$$0 \to H^0_{I,J}(M) \to M \to M/H^0_{I,J}(M) \to 0$$

induces the exact sequence

$$\operatorname{Ext}_{R}^{s}(R/I, M) \to \operatorname{Ext}_{R}^{s}(R/I, M/H_{I,J}^{0}(M)) \to \operatorname{Ext}_{R}^{s+1}(R/I, H_{I,J}^{0}(M)).$$

we get that $\operatorname{Ext}_{R}^{s}(R/I, M/H_{I,J}^{0}(M))$ is finitely generated.

It is easy to see that

$$H^0_{I,J}(M/H^0_{I,J}(M)) = 0, \qquad H^i_{I,J}(M/H^0_{I,J}(M)) \cong H^i_{I,J}(M), \quad i > 0.$$
 way assume that

So, we may assume that

$$H^0_{I,J}(M) = 0.$$

Then

Then

$$H_I^0(M) = 0$$

Let E be an injective hull of M and put
$$N = E/M$$
. Then
 $H^0_{I,J}(E) = 0$ and $\operatorname{Hom}_R(R/I, E) = 0$.

From the short exact sequence

 $0 \to M \to E \to N \to 0,$

we have that

$$\operatorname{Ext}_{R}^{i}(R/I, N) \cong \operatorname{Ext}_{R}^{i+1}(R/I, M)$$

and

$$H^i_{I,J}(N) \cong H^{i+1}_{I,J}(M), \qquad i \ge 0.$$

Applying the inductive hypothesis to N, it yields the finiteness of $\operatorname{Hom}_R(R/I, H^{s-1}_{I,J}(N))$. Hence $\operatorname{Hom}_R(R/I, H^s_{I,J}(M))$ is finitely generated. It follows that $\operatorname{Ass}(H^s_{I,J}(M)) \cap V(I)$ is a finite set.

Proposition 2.1 Assume that M is an R-module, and s is a non-negative integer, such that $\operatorname{Ext}_{R}^{s+1}(R/I, M)$ is finitely generated. If $\operatorname{Ext}_{R}^{s+2-i}(R/I, H_{I,J}^{i}(M))$ is finitely generated for all i < s, then $\operatorname{Ext}_{R}^{1}(R/I, H_{I,J}^{s}(M))$ is finitely generated.

Proof. We prove the result by induction on s. When s = 0, from the short exact sequence $0 \to H^0_{I,J}(M) \to M \to M/H^0_{I,J}(M) \to 0$,

we get the exact sequence

$$0 = \operatorname{Hom}_{R}(R/I, \ M/H^{0}_{I,J}(M)) \to \operatorname{Ext}^{1}_{R}(R/I, \ H^{0}_{I,J}(M)) \to \operatorname{Ext}^{1}_{R}(R/I, \ M) \to 0.$$

VOL. 30

Then we have that $\operatorname{Ext}^{1}_{R}(R/I, H^{0}_{I,J}(M))$ is finitely generated.

Now we suppose that s > 0, and the claim has been proved for smaller values of s. From the exact sequence

 $\operatorname{Ext}_{R}^{s+1}(R/I, M) \to \operatorname{Ext}_{R}^{s+1}(R/I, M/H_{I,J}^{0}(M)) \to \operatorname{Ext}_{R}^{s+2}(R/I, H_{I,J}^{0}(M)),$ we get that $\operatorname{Ext}_{R}^{s+1}(R/I, M/H_{I,J}^{0}(M))$ is finitely generated. By using the similar argument to that of Theorem 2.1 and setting N = E(M)/M, we get that $\operatorname{Ext}_{R}^{s}(R/I, N)$ is finitely generated and

 $\operatorname{Ext}_{R}^{s+1-i}(R/I, \ H_{I,J}^{i}(N)) \cong \operatorname{Ext}_{R}^{s+1-i}(R/I, \ H_{I,J}^{i+1}(M)), \qquad i < s-1.$

So $\operatorname{Ext}^1_R(R/I, \ H^{s-1}_{I,J}(N))$ is finitely generated by the inductive hypothesis. Therefore, we get that $\operatorname{Ext}^1_R(R/I, \ H^s_{I,J}(M))$ is finitely generated.

Proposition 2.2 Assume that M is finitely generated, and s is a non-negative integer, such that $H_{I,J}^i(M)$ is Artinian for all i < s. Then $H_{I,J}^i(M)$ is (I, J)-cofinite for all i < s.

Proof. We use induction on *i*. When i = 0, since *M* is finitely generated, the result is clear. Now we suppose that i > 0, and the result has been proved for smaller values of *i*. By the inductive hypothesis, $H_{I,J}^j(M)$ is (I, J)-cofinite for all j < i. Hence, $\operatorname{Hom}_R(R/I, H_{I,J}^i(M))$ is finitely generated by Theorem 2.1, that is, $0 :_{H_{I,J}^i(M)} I$ is finitely generated, and thus $\lambda(0 :_{H_{I,J}^i(M)} I) < \infty$.

Since $H^i_{I,I}(M)$ is an (I, J)-torsion, we have that

 $\lambda(H^k(a_1, a_2, \cdots, a_t, H^i_{I,J}(M))) < \infty,$

where $I = (a_1, a_2, \dots, a_t)$ for all $k \ge 0$ by Theorem 5.1 in [8]. By the same proof with Theorem 5.5 in [9], we deduce that

 $\lambda(\operatorname{Ext}_{R}^{k}(R/I, H_{I,J}^{i}(M)) < \infty, \qquad k \ge 0.$

Hence $H^i_{I,J}(M)$ is (I, J)-cofinite. Therefore, we get that $H^i_{I,J}(M)$ is (I, J)-cofinite for all i < s.

By Theorem 2.1 and Proposition 2.2, we have the following results.

Proposition 2.3 Assume that M is finitely generated, and s is a non-negative integer, such that $H^i_{I,J}(M)$ is Artinian for all i < s. Then $\operatorname{Hom}_R(R/I, H^s_{I,J}(M))$ is finitely generated. In particular, $\operatorname{Ass}(H^s_{I,J}(M)) \cap V(I)$ is a finite set.

Proposition 2.4 Assume that M is an R-module, and s is a non-negative integer, such that $\operatorname{Ext}_{R}^{j}(R/I, H_{I,J}^{i}(M))$ is finitely generated for all i and j (respectively for $i \leq s$ and all j). Then $\operatorname{Ext}_{R}^{i}(R/I, M)$ is finitely generated for all i (respectively for $i \leq s$).

Proof. The case s = 0 is clear. Now we suppose that s > 0 and the case s - 1 is settled. Set $N = M/H_{I,J}^0(M)$. Then we have the long exact sequence

$$\cdots \to \operatorname{Ext}^{i}_{B}(R/I, H^{0}_{I,I}(M)) \to \operatorname{Ext}^{i}_{B}(R/I, M) \to \operatorname{Ext}^{i}_{B}(R/I, N) \to \cdots$$

and

$$H^{i}_{I,J}(N) \cong \begin{cases} 0, & i = 0; \\ H^{i}_{I,J}(M), & i > 0. \end{cases}$$

So we assume that $H^0_{I,J}(M) = 0$. By the same proof as in Theorem 2.1 and setting L = E(M)/M, we get

 $\operatorname{Ext}_{R}^{i}(R/I, L) \cong \operatorname{Ext}_{R}^{i+1}(R/I, M), \quad H_{I,J}^{i}(L) \cong H_{I,J}^{i+1}(M), \quad i \geq 0.$ Furthermore, we get the finiteness of $\operatorname{Ext}_{R}^{i}(R/I, L)$ for all *i* (respectively for $i \leq s - 1$) by the inductive hypothesis. So $\operatorname{Ext}_{R}^{i}(R/I, M)$ is finitely generated for all *i* (respectively for $i \leq s$). The proof is completed.

Corollary 2.1 Assume that M is an R-module, and s is a non-negative integer, such that $H^i_{I,J}(M)$ is (I, J)-cofinite for all i (respectively for all $i \leq s$). Then $\operatorname{Ext}^i_R(R/I, M)$ is finitely generated for all i (respectively for all $i \leq s$).

Proposition 2.5 Assume that M is an R-module, s is a non-negative integer, such that $\operatorname{Ext}_{R}^{i}(R/I, M)$ is finitely generated for all $i \geq 0$, and $H_{I,J}^{i}(M)$ is (I, J)-cofinite for all $i \neq s$. Then $H_{I,J}^{s}(M)$ is (I, J)-cofinite.

Proof. We prove the result by induction on s. Let $N = M/H_{I,I}^0(M)$. Then we have that

$$H^{i}_{I,J}(N) \cong \begin{cases} 0, & i = 0; \\ H^{i}_{I,J}(M), & i > 0. \end{cases}$$

When s = 0, $H^i_{I,J}(N)$ is (I, J)-cofinite for all $i \ge 0$. Then $\operatorname{Ext}^i_R(R/I, N)$ is finitely generated for all $i \ge 0$ by Corollary 2.1. From the short exact sequence

 $0 \to H^0_{I,J}(M) \to M \to N \to 0,$

we get the following long exact sequence:

 $\cdots \to \operatorname{Ext}^{i}_{R}(R/I, \ H^{0}_{I,J}(M)) \to \operatorname{Ext}^{i}_{R}(R/I, \ M) \to \operatorname{Ext}^{i}_{R}(R/I, \ N) \to \cdots,$ which implies that $\operatorname{Ext}^{i}_{R}(R/I, \ H^{0}_{I,J}(M))$ is finitely generated for all $i \geq 0$, that is, $H^{0}_{I,J}(M)$ is (I, J)-cofinite.

Now we assume that s > 0 and the claim holds for s - 1. We see that $\operatorname{Ext}_{R}^{i}(R/I, N)$ is finitely generated for all $i \geq 0$. By using the above long exact sequence and similar argument to that of Theorem 2.1 and letting L = E(M)/M, we can get

 $\operatorname{Ext}^i_R(R/I,\ L) \cong \operatorname{Ext}^{i+1}_R(R/I,\ M), \quad H^i_{I,J}(L) \cong H^{i+1}_{I,J}(M), \qquad i \ge 0.$

So $H^{s-1}_{I,J}(L)$ is (I, J)-cofinite by the inductive hypothesis. Then $H^s_{I,J}(M)$ is (I, J)-cofinite. The proof is completed.

Corollary 2.2 Assume that M is a finitely generated R-module, and cd(I, J, M) = 1. Then $H_{I,J}^i(M)$ is (I, J)-cofinite for all $i \ge 0$.

Proposition 2.6 Assume that M is a finitely generated R-module, and I is a principal ideal. Then $H^i_{I,J}(M)$ is (I,J)-cofinite for all $i \ge 0$.

Proof. Note that
$$H^i_{I,J}(M) = 0$$
 for all $i > \operatorname{ara}(I\overline{R})$ by Proposition 4.11 in [1], where $\overline{R} = R/\sqrt{J + \operatorname{Ann}M}$.

So when I is a principal ideal, $H^i_{I,J}(M) = 0$ for all i > 1. Since $H^0_{I,J}(M)$ is finitely generated, $H^i_{I,J}(M)$ is (I, J)-cofinite for all $i \neq 1$. The result is clear.

38

Proposition 2.7 Assume that M is an R-module. Then we have $\operatorname{Hom}(R/I, H^1_{I,J}(M)) \cong \operatorname{Ext}^1_R(R/I, M/H^0_{I,J}(M)).$

Proof. Let E be the injective hull of $M/H^0_{I,J}(M)$. Put $N = E/(M/H^0_{I,J}(M))$. Since $H^0_{I,J}(M/H^0_{I,J}(M)) = 0$,

we have

$$H^{0}_{I,I}(E) = 0$$
 and $\text{Hom}_{R}(R/I, E) = 0.$

From the exact sequence

$$0 \to M/H^0_{I,J}(M) \to E \to N \to 0,$$

we have

$$\operatorname{Hom}(R/I, N) \cong \operatorname{Ext}^{1}_{R}(R/I, M/H^{0}_{I,I}(M)),$$

and

$$H^0_{I,J}(N) \cong H^1_{I,J}(M/H^0_{I,J}(M)).$$

Hence

$$\operatorname{Hom}(R/I, H^1_{I,J}(M)) \cong \operatorname{Hom}(R/I, \ H^1_{I,J}(M/H^0_{I,J}(M)))$$
$$\cong \operatorname{Hom}(R/I, \ H^0_{I,J}(N))$$
$$\cong \operatorname{Hom}(R/I, \ N)$$
$$\cong \operatorname{Ext}^1_R(R/I, \ M/H^0_{I,J}(M)).$$

Next we give a proposition, which generalizes Proposition 2.3(iii) of [10].

Proposition 2.8 Assume that M is an R-module, and s is a positive integer such that $H^i_{I,I}(M) = 0, \qquad 0 \le i < s.$

Then

$$\operatorname{Hom}(R/I, H^s_{I,J}(M)) \cong \operatorname{Ext}^s_R(R/I, M).$$

Proof. When s = 1, $H^0_{I,J}(M) = 0$. The result is clear, since Hom $(R/I, H^0_{I,J}(M)) \cong \operatorname{Hom}_R(R/I, M)$.

Suppose that s > 1 and the claim holds for s - 1. Let E be an injective hull of M. Put N = E/M. Since $H^0_{I,J}(M) = 0$, we have $H^0_{I,J}(E) = 0$. By the exact sequence

 $0 \to M \to E \to N \to 0,$

we have

$$\operatorname{Ext}_{R}^{i-1}(R/I, N) \cong \operatorname{Ext}_{R}^{i}(R/I, M), \quad H_{I,J}^{i-1}(N) \cong H_{I,J}^{i}(M), \qquad i > 0$$

So

$$H_{I,J}^i(N) = 0, \qquad 0 \le i < s - 1.$$

Thus

$$\operatorname{Hom}(R/I, \ H^{s-1}_{I,J}(N)) \cong \operatorname{Ext}_R^{s-1}(R/I, \ N)$$

by the induction hypothesis. Hence

 $\operatorname{Hom}(R/I, H^s_{I,J}(M)) \cong \operatorname{Ext}^s_R(R/I, M).$

3 The Cofiniteness of $H_{I,J}^{\dim M}(M)$

In this section, we always assume that (R, \mathfrak{m}) is a commutative Noetherian local ring, I and J are two ideals of R, and M is an R-module.

Assume that M is finitely generated. We know that $H_{I,J}^{\dim M}(M)$ is Artinian by Theorem 2.1 in [11]. Next, we discuss $\operatorname{Att}(H_{I,J}^{\dim M}(M))$ and the cofiniteness of $H_{I,J}^{\dim M}(M)$.

Lemma 3.1^[12] Suppose that M is a non-zero finitely generated R-module of dimension n. Then

 $\operatorname{Att}(H^n_{I,J}(M)) = \{ p \in \operatorname{Ass}M \mid \operatorname{cd}(I, R/p) = n, J \subseteq p \}.$

Next, we show the cofiniteness of $H_{I,J}^{\dim M}(M)$. The following proposition is the key for this fact.

Proposition 3.1 Assume that R is a complete ring and M is a finitely generated R-module of dimension n. Then

$$\operatorname{Att}(H^n_{I,J}(M)) = \{ p \in V(\operatorname{Ann}(M)) \mid \dim R/p = n, \ \sqrt{I+p} = \mathfrak{m}, \ J \subseteq p \}.$$

Proof. Since $H^n_I(M)$ is Artinian, we have

$$\operatorname{Att}(H_I^n(M)) = \operatorname{Ass}D(H_I^n(M)) = \operatorname{Coass}(H_I^n(M)).$$

Hence

 $\{p \in AssM \mid cd(I, R/p) = n\} = \{p \in V(Ann(M)) \mid dim R/p = n, \sqrt{I+p} = \mathfrak{m}\}$ by Theorem A in [13] and Lemma 3 in [4], therefore

$$\{ p \in \operatorname{Ass} M \mid \operatorname{cd}(I, R/p) = n, J \subseteq p \}$$

= $\{ p \in V(\operatorname{Ann}(M)) \mid \operatorname{dim} R/p = n, \sqrt{I+p} = \mathfrak{m}, J \subseteq p \}.$

Now the result is clear by Lemma 3.1.

_

Next, we give the main result of this section.

Theorem 3.1 Assume that M is a finitely generated R-module of dimension n. Then $H^n_{I,J}(M)$ is (I, J)-cofinite. In fact, $\operatorname{Ext}^i_R(R/I, H^n_{I,J}(M))$ has finite length for all $i \geq 0$.

Proof. Considering that $H^n_{I,J}(M)$ is Artinian, we know that $\operatorname{Ext}^i_R(R/I, H^n_{I,J}(M))$ is Artinian and

$$\operatorname{Ext}_{R}^{i}(R/I, \ H_{I,J}^{n}(M)) \cong \operatorname{Ext}_{\hat{R}}^{i}(\hat{R}/I\hat{R}, \ H_{I\hat{R}}^{n}_{I\hat{R}}(\hat{M})), \qquad i \ge 0.$$

So we assume that R is complete. We know that $D(H^n_{I,J}(M))$ is finitely generated and $Att(H^n_{I,J}(M))$ is a finite set. Suppose that

$$\operatorname{Att}(H^n_{I,J}(M)) = \{p_1, \cdots, p_k\}$$

Then

$$\operatorname{Supp} D(H^n_{I,J}(M)) = V(p_1 \cap \cdots \cap p_k).$$

From Matlis Duality Theorem, we get

 $\lambda(\operatorname{Ext}^i_R(R/I,\ H^n_{I,J}(M))) < \infty \ \Leftrightarrow \ \lambda(D(\operatorname{Ext}^i_R(R/I,\ H^n_{I,J}(M)))) < \infty.$

$$D(\operatorname{Ext}_{R}^{i}(R/I, H_{I,J}^{n}(M))) \cong \operatorname{Tor}_{i}^{R}(R/I, D(H_{I,J}^{n}(M)))$$

by Theorem 11.57 in [14], it is enough for us to show that

 $\operatorname{SuppTor}_{i}^{R}(R/I, \ D(H^{n}_{I,J}(M))) \subseteq \{\mathfrak{m}\}.$

In fact

$$\operatorname{SuppTor}_{i}^{\mathcal{R}}(R/I, \ D(H_{I,J}^{n}(M))) \subseteq V(I) \cap \operatorname{Supp}D(H_{I,J}^{n}(M))$$
$$= V(I) \cap V(p_{1} \cap \dots \cap p_{k})$$
$$= V(I + p_{1} \cap \dots \cap p_{k})$$
$$= \{\mathfrak{m}\}$$

by Proposition 3.1.

References

- Takahashi R, Yoshino Y, Yoshizawa T. Local cohomology based on a nonclosed support defined by a pair of ideals. J. Pure Appl. Algebra, 2009, 213: 582–600.
- [2] Hartshorne R. Affine duality and cofiniteness. Invent. Math., 1970, 9: 145-164.
- [3] Yoshida K I. Cofiniteness of local cohomology modules for ideals of dimension one. Nagoya Math. J., 1997, 147: 179–191.
- [4] Delfino D, Marley T. Cofinite modules and local cohomology. J. Pure Appl. Algebra, 1997, 121: 45–52.
- [5] Kawasaki K I. Cofiniteness of local cohomology modules for principal ideals. Bull. London Math. Soc., 1998, 30: 241–246.
- [6] Dibaei M, Yassemi S. Associated primes and cofiniteness of local cohomology modules. Manuscripta Math., 2005, 117: 199–205.
- [7] Khashyarmanesh K, Salarian S. On the associated primes of local cohomology modules. Comm. Algebra, 1999, 27: 6191–6198.
- [8] Melkersson L. Some applications of a criterion for artinianness of a module. J. Pure Appl. Algebra, 1995, 101: 291–303.
- [9] Melkersson L. Modules cofinite with respect to an ideal. J. Algebra, 2005, 285: 649–668.
- [10] Hassanzadeh S H, Vahidi A. On vanishing and cofiniteness of generalized local cohomology modules. Comm. Algebra, 2009, 37: 2290–2299.
- [11] Chu L Z, Wang Q. Some results on local cohomology modules defined by a pair of ideals. J. Math. Kyoto. Univ., 2009, 49: 193–200.
- [12] Chu L Z. Top local cohomology modules with respect to a pair of ideals. Proc. Amer. Math. Soc., 2011, 139: 777–782.
- [13] Dibaei M T, Yassemi S. Attached primes of the top local cohomology modules with respect to an ideal. Arch. Math., 2005, 84: 292–297.
- [14] Rotman J. An Introduction to Homological Algebra. Orlando, FL: Academic Press, 1979.