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1 Introduction

Throughout this paper, unless specifically stated, R always denotes a prime ring with center

Z(R), Q its Martindale quotient ring. Note that Q is also a prime ring and the center

C of Q, which is called the extended centroid of R, is a field (we refer the readers to [1]

for the definitions and related properties of these notions). For any x, y ∈ R, the symbol

[x, y] stands for the commutator xy − yx. For subsets A, B of R, [A,B] is the additive

subgroup generated by all [a, b] with a ∈ A and b ∈ B. An additive subgroup L of R is

said to be a Lie ideal of R if [l, r] ∈ L for all l ∈ L and r ∈ R. A Lie ideal L is called

noncommutative if [L, L] ̸= 0. Let L be a noncommutative Lie ideal of R. It is well known

that [R[L, L]R, R] ⊆ L (see the proof of Lemma 1.3 in [2]). Since [L, L] ̸= 0, we have

0 ̸= [I, R] ⊆ L for I = R[L, L]R a nonzero ideal of R. Recall that a ring R is called prime

if for any x, y ∈ R, xRy = 0 implies that either x = 0 or y = 0. An additive mapping

d : R −→ R is called a derivation if d(xy) = d(x)y + xd(y) holds for all x, y ∈ R. Given any
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automorphism σ of R, an additive mapping d : R → R satisfying

d(xy) = d(x)y + σ(x)d(y), x, y ∈ R

is called a σ-derivation of R, or a skew derivation of R with respect to σ, denoted by (d, σ).

It is easy to see that if σ = 1R, the identity map of R, then a σ-derivation is merely an

ordinary derivation. And if σ ̸= 1R, then σ − 1R is a skew derivation. Thus the concept of

skew derivations can be regarded as a generalization of derivations. When d(x) = σ(x)b−bx

for some b ∈ Q, then (d, σ) is called an inner skew derivation, and otherwise it is outer. Any

skew derivation (d, σ) extends uniquely to a skew derivation of Q (see [3]) via extensions

of both maps to Q. Thus we may assume that any skew derivation of R is the restriction

of a skew derivation of Q. Recall that σ is called an inner automorphism if when acting on

Q, σ(q) = uqu−1 for some invertible u ∈ Q. When σ is not inner, then it is called an outer

automorphism. The skew derivations have been extensively studied by many researchers

from various views (see for instance [4]–[7] where further references can be found).

A well-known paper of Herstein[2] states that if I is a right ideal of R such that xn = 0

for all x ∈ I, then I = 0. Chang and Lin[8] studied a more general case when d(x)xn = 0

and xnd(x) = 0 for all x ∈ I, where d is a nonzero derivation and I is a nonzero right

ideal of a prime ring R. Dhara and De Filippis[9] proved the following: Let R be a prime

ring, F a generalized derivation of R and L a noncommutative Lie ideal of R. Suppose that

xsF (x)xt = 0 for all x ∈ L, where s ≥ 0, t ≥ 0 are fixed integers, then F = 0 except when

charR = 2 and R satisfies s4.

In this paper, we continue to investigation on Lie ideals of prime rings, involving a

skew derivation (d, σ) with a nontrivial associated automorphism σ. Here we examine what

happens replacing the generalized derivation F by a skew derivation (d, σ) in the result of

[9].

2 Main Results

Theorem 2.1 Let R be a 2-torsion free prime ring and L be a noncommutative Lie ideal

of R. Suppose that (d, σ) is a skew derivation of R such that xsd(x)xt = 0 for all x ∈ L,

where s, t are fixed non-negative integers. Then d = 0.

Proof. Suppose that d ̸= 0. We divide the proof into two cases.

Case 1. Suppose that (d, σ) is X-outer. Set I = R[L, L]R. Then 0 ̸= [I, R] ⊆ L. By

the assumption, we have [x, y]s(d([x, y]))[x, y]t = 0 for all x, y ∈ I and also for all x, y ∈ Q

by Theorem 2 in [10]. By Theorem 1 in [11], we get

[x, y]s(zy + σ(x)w − wx− σ(y)z)[x, y]t = 0, x, y, z, w ∈ Q. (2.1)

Subcase 1.1. If σ is X-inner, that is, σ(x) = gxg−1 for some g ∈ Q − C since σ is

nontrivial. This implies that

[x, y]s(zy + gxg−1w − wx− gyg−1z)[x, y]t = 0, x, y, z, w ∈ Q. (2.2)

Letting z = 0 and replacing w by gw in (2.2), we find that

[x, y]sg[x, w][x, y]t = 0,
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and, in particular, when w = y, we have

[x, y]sg[x, y][x, y]t = 0, x, y ∈ Q. (2.3)

Set F (x) = gx for all x ∈ R. It is easy to see that F is a generalized derivation of R. Using

Theorem 1 in [9], we find that F = 0, that is, g = 0, a contradiction.

Subcase 1.2. Suppose that σ is X-outer. By (2.1), we find that

[x, y]s(zy +mw − wx− nz)[x, y]t = 0, x, y, z,m, n,w ∈ Q. (2.4)

Letting z = 0 and replacing m by x in (2.4), we get

[x, y]s[x, w][x, y]t = 0, x, y, w ∈ Q.

In particular,

[x, y]s[x, y][x, y]t = 0, x, y ∈ Q.

Using Theorem 1 in [9] again, we conclude that 1 = 0, a contradiction.

Case 2. Suppose that d is X-inner, that is, d(x) = σ(x)b− bx with 0 ̸= b ∈ Q.

Subcase 2.1. If σ is X-inner, then there exists an invertible element q ∈ Q such that

σ(x) = qxq−1, where q ∈ Q− C. So Q satisfies the generalized polynomial identity

[x, y]s(q[x, y]q−1b− b[x, y])[x, y]t = 0, x, y ∈ Q. (2.5)

Let dimC V = ∞ and recall that as Lemma 2 in [12]. The set [Q, Q] is dense in Q and so

from

[x, y]s(q[x, y]q−1b− b[x, y])[x, y]t = 0, x, y ∈ [Q, Q], (2.6)

we have

xs(qxq−1b− bx)xt = 0, x ∈ Q.

Let v ∈ V such that {v, q−1bv} is linearly C-independent. Therefore there exist v1, · · · , vt,
w ∈ V such that {v, q−1bv, v1, · · · , vt, w} is linearly C-independent. By the density of Q,

there exists an r ∈ Q such that

rvi = vi+1, i = 1, · · · , t− 1, rvt = v,

rv = 0, r(q−1bv) = q−1w, rw = w.

Thus we get the contradiction

0 = rs(qrq−1b− br)rtv1 = w.

Hence {v, q−1bv} is linearly C-dependent for all v ∈ V and a standard argument shows that

q−1b ∈ C, that is, d = 0.

Let dimC V = k be a finite integer, that is, Q = Mk(C) for k ≥ 2. Denote p = q−1b. Let

i ̸= j and choose [x, y] = eii−ejj in (2.5). Both left multiplying by ejj and right multiplying

by eii it follows

ejjqeiipeii − ejjqejjpeii − ejjbeii = 0,

in particular,

qjipii − qjjpji − bji = 0. (2.7)

Let ϕ and ξ be the following automorphisms of Mk(C):

ϕ(x) = x+ eijx− xeij − eijxeij ,

ξ(x) = x− eijx+ xeij − eijxeij .
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Since ϕ(q), ϕ(p), ξ(q) and ξ(p) satisfy the same property of q and p, it follows that

ϕ(q)jiϕ(p)ii − ϕ(q)jjϕ(p)ji − ϕ(b)ji = 0,

and also

ξ(q)jiξ(p)ii − ξ(q)jjξ(p)ji − ξ(b)ji = 0,

which means that

qji(pii + pji)− (qjj − qji)pji − bji = 0,

and also

qji(pii − pji)− (qjj + qji)pji − bji = 0.

Comparing these last two relations we get 4qjipji = 0, that is,

qjipji = 0, i ̸= j. (2.8)

If k ≥ 3, then by Proposition 1 in [13], it follows that either p ∈ C or q ∈ C. In the first case

we get d = 0. On the other hand, if q ∈ C then d(x) = [x, b] and the result follows as an

application of main theorem in [14]. Let k = 2, that is, Q ∼= M2(C). Assume that neither q

nor p is a diagonal matrix in M2(C). Without loss of generality, we consider p21 ̸= 0. Thus,

by (2.8), it follows q21 = 0, then q12 ̸= 0 and so p12 = 0. Moreover, since q is invertible, we

also have q22 ̸= 0. Notice that, if u ∈ [Q, Q] is an invertible matrix, then by (2.6) it follows

that

X = qup− bu = 0.

For u = e11− e22 and by computations it follows that the (2, 1)-entry of the matrix X is

q22p21 + b21 = 0. (2.9)

On the other hand, for u = e12 + e21, it follows that the (2, 2)-entry of the matrix X is

b21 = 0. Thus, by (2.9) we get the contradiction q22p21 = 0. The previous contradiction

means that either q or p is diagonal. In this case, a standard argument shows that either q

or p is central and we are done as above.

Subcase 2.2. If σ is X-outer, then

[x, y]s([σ(x), σ(y)]b− b[x, y])[x, y]t = 0.

So by Kharchenko[15] we find that

[x, y]s([m, n]b− b[x, y])[x, y]t = 0, x, y,m, n ∈ Q.

Setting m = 0, we get

[x, y]s(b[x, y])[x, y]t = 0, x, y ∈ Q.

Repeating the same argument already used after (2.3) we get b = 0, which is a contradiction.
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