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1 Introduction and Main Results

Let D be a domain in C, and F be a family of meromorphic functions defined in the domain
D. F is said to be normal in D if any sequence {f,} C F contains a subsequence f,;, which
converges spherically locally uniformly in D to a meromorphic function or oo (see [1]-[5]).

Let f(z) be a mermorphic function in a domain D and zg € D. If f(z9) = 29, we say
that 2o is the fixed-point of f(z). Let f(z) and g(z) denote two meromorphic functions in
D. If f(z) — ¢(z) and g(z) — ¥(z) have the same zeros (or ignoring multiplicity), then we
say that f(z) and g(z) share ¥(z) CM (or IM).

In 1998, Wang and Fang!® proved the following result:

Theorem 1.1  Let k and n > k + 1 be two positive integers, and f be a transcendental
merimorphic function. Then (f™)*) assumes every finite nonzero value infinitely often.

Corresponding to Theorem 1.1, there are the following theorems about normal families.

Theorem 1.2[7)  Let k and n > k + 3 be two positive integers and F be a family of mero-
morphic functions defined in a domain D. If (f™)*) % 1 for every function f € F, then F
is normal in D.
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In 2009, Li and Gul® proved:

Theorem 1.3  Let F be a family of meromorphic functions defined in a domain D. Let
k,n > k + 2 be positive integers and a # 0 be a finite complex number. For each pair
(f,9) € F, if (f)® and (g*)*) share a in D, then F is normal in D.

Lately, many authors studied the functions of the form f(f (k))". Hu and Meng!®! proved:

Theorem 1.4  Take positive integers n and k with n,k > 2, and take a non-zero complex
number a. Let F be a family of meromorphic functions in the plane domain D such that
each f € F has all its zeros of multiplicity at least k. For each pair (f, g) € F, if f(f*)"
and g(g¥)"™ share a IM, then F is normal in D.

Recently, Jiang and Gaol'® extended Theorem 1.4 as follows:

Theorem 1.5 Let m > 0, n > 2m + 2 and k > 2 be three positive integers and m be
divisible by n+1. Suppose that a(z)(z 0) is a holomorphic function with zeros of multiplicity
m in a domain D. Let F be a family of meromorphic functions in a domain D, and for
each f € F, f has all its zeros of multiplicity max{k + m, 2m + 2} at least. For each pair
(f, 9) € F, if f(f*)™ and g(g*™))" share a(z) IM, then F is normal in D.

A natural question is: What can be said if the function f(f(k))” in Theorem 1.5 is
replaced by the function fo(f (k))”? In this paper, we answer this question by proving the
following theorem:

Theorem 1.6  Let F be a family of meromorphic functions defined in a domain D, and
m>0,n>2m+2, k>2,d>1,p>1 be five integers and m be divisible by n + d. Let
Y(z) Z£ 0 be an analytic function with zeros of multiplicity m in a domain D. Suppose that

every f € F has all its zeros of multiplicity at least p > max {k + %, 2m + 2}, For each

pair (f, g) € F, if fAf®)" and g4(g¥*)™ share 1(z) IM, then F is normal in D.

Remark 1.1  Obviously, from Theorem 1.6, we can get Theorem 1.5 when d = 1.

2 Some Lemmas
In order to prove Theorem 1.6, we require the following results.

Lemma 2.1 Let F be a family of meromorphic functions on the unit disc satisfying all
zeros of functions in F have multiplicity > p and all poles of functions in F have multiplicity
> q. Let « be a real number satisfying —q < a < p. Then F is not normal at 0 if and only
if there erist

a) a number 0 <71 < 1;

b) points z, with |z,| < r;
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¢) functions f, € F;

d) positive numbers p, — 0
such that g, (C) := p;,® fu(2n + pnC) converges spherically uniformly on each compact subset
of C to a non-constant meromorphic function g(¢), whose all zeros have multiplicity > p
and all poles have multiplicity > q and order is at most 2.

Lemma 2.2 Let m >0, k,n > 2, d > 1 be four integers, H(z) = amnz™ + @m_12™" 1 +

-+-+ag be a polynomial, where amy,(# 0), am—1, -+ , ag are constants. If f is a non-constant
polynomial, and the multiplicity of its all zeros is at least k+ %, then fo(2)(f*)(2))*— H(2)

has at least two distinct zeros, and f(z)(f® (2))" — H(z) # 0.

m
Proof.  Since f is a non-constant polynomial with zeros of multiplicity k + ”l at least, we

know that the degree of f is k + % at least, and

deg(f4(z)(f M (2)") > deg(H (2)).
Then f4(2)(f*)(2))™ — H(z) has at least one zero.
If f4(2)(f*)(2))™ — H(z) has only one zero, we may assume that
PP E)" = H(z) = Az = 20)',
where A is a non-zero constant, [ is a positive integer. Compare the degrees of H(z) and
f(2), we have

I =deg(f*(2)(fP ()" >m+1.
Then
FUEAEPE)M™ =X L (1 =1) - (= m A+ 1) (2 = 20)' ™™ = H™ (2) = mlag, #0,
(FU@UE )T =X (1= 1) (= m)(z = z0)' "7
Thus 2o is the unique zero of (f(2)(f*)(z))™)™+1). Since f is a non-constant polynomial
with zeros of multiplicity & + % at least, we know that z( is a zero of f. Thus
(f*N™) ™ (z0) = 0,
it contradicts with
(FAEN™ ™ (20) = H™ (20) # 0.
Thus, f%(2)(f* (2))* — H(2) has at least two distinct zeros.
Lemma 2.3 Let m > 0, n > 2m + 2, k,d > 1 be four integers, H(z) = a,z™ +
Um—12™"Y + -+ + ag be a polynomial, where a,,(# 0), am_1, -+, ag are constants. If f

is a mon-polynomial rational function, and the multiplicity of its all zeros is at least 2m + 2,
then f4(2)(f*) (2))" — H(z) has at least two distinct zeros, and f(z)(f*) (2))* — H(z) # 0.

Proof.  Since f is a non-polynomial rational function, it is obvious that

FU) (W ()" — H(z) # 0.
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Let
Az —o)™(z —ag)™ - (2 —a,)™
pigmy = A l)n ( 21 ( 3 : (2.1)
(2= B1)m(z = B2)m2 - (2 — Be)™
where A is a non-zero constant, s,t > 1, m; > 2m+2 (1 =1,2,--- ,s), n; >n(k+1)+d
(j =1,2,---,t). For simplicity, we denote
M=mi+ma+--+ms>(2m+2)s, (2.2)
N=ny+na+---+n > [d+nlk+1)]t > (2m+ 2)t. (2.3)
By differentiating both sides of (2.1) step by step, we have
(fd(f(k))n)(m-i-l)
_ Al o)™ e 0 s a) )
= (Z — Bl)nl—i-(m—i-l)(z _ ﬂ2>n2+(m+1) .. (Z _ Bt)nt+(m+1) ) .
where g1(z) is a non-constant polynomial with deg(g1) < (m+1)(s +t —1).
Now, we discuss two cases.
Case 1. If f4(2)(f*)(2))" — H(z) has a unique zero zg, then we set
B(z — z)! P
PO = H:) + =) = (25)

(= Bm(e — By (= B Q)

where B is a non-zero constant and [ is a positive integer, P and @) are polynomials with
degree M and N, also P and @ have no common factors.

Here we discuss two subcases.

Subcase 1.1. m > 1.

By differentiating both sides of (2.5), we have

(fAFE)m)emtD
g2(2)

— g(m+1)

- H (2) + o ﬁl)n1+(m+l)(2 _ 52)n2+(m+1) (2 — Bt)nt+(m+1)’ (2.6)
where go(z) is a polynomial with deg(g2) < (m+1)t—(m —1+1). By (2.1) and (2.5), since
m > [, one has

N+m< M.

From (2.4) and (2.6),
M—-—m+1)s<(m+1t—(m—-1+1).
Then
l-m>M—-(m+1)(s+t)+1

M N

M— 1( ) 1

- (m+ D oms Tamsa)t
M M

M— 1( ) 1

- (m+ D om s Tamra)t

it contradicts with m > [.
Subcase 1.2. m < [.
By differentiating both sides of (2.5), we have

(fAFE)memtD

— Hm(z) 4 (z = 20) =gy (2)

(z — Br)mFmFD) (7 — By)ret(m+l) L. (5 — B)net(m+1)”

(2.7)
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where g3(z) is a polynomial with deg(gs) < (m + 1)t.

By differentiating both sides of (2.5) step by step for m times, we can get that 2z is a
zero of (f4(f*)M) (™) = ™) Since H™) = a,, # 0, one has

z0 # aj, 1=1,2,---,s.

Here we discuss in two subcases.

Subcase 1.2.1. [ # N +m.

From (2.1) and (2.5), we obtain deg(P) > deg(Q), that is, M > N. Since zy # o
(1=1,2,---,s), (2.4) and (2.7) imply

D Imi— (m+1)] =M — (m+1)s < deg(gs) < (m + 1)t.

=1

So
M < (m+1)(s+1t).

By using (2.2) and (2.3), we obtain
M< (m+1)(s+1)

which is a contradiction.
Subcase 1.2.2. | = N +m.
We further distinguish two subcases.
(i) M>N.
By (2.4) and (2.7), we obtain
M—(m+1)s < (m+ 1)t
Similar to Subcase 1.2.1, we obtain a contradiction M < M.
(i) M < N.
By using (2.4) and (2.7) again, we obtain
l—m—1<deg(g1) < (m+1)(s+t—1).
Hence
N=I[l-m
<(m+D(s+t—1)+(m+1)—m
< (m+1)(s+1t)
M N
2m + 2 + 2m + 2)

< (m+1)<
<N,

which is a contradiction.

Case 2. If f4(f*))™ — H(2) has no zero, then [ = 0 in (2.5). Proceeding as in the proof
of Case 1, we get a contradiction.

Lemma 2.3 is proved.
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Lemma 2.4112  Suppose that f(2) is a transcendental meromorphic function, n, k, d are
three positive integers. Then, when k > 1, n,d > 2, fA(f*N)™ — ©(2) has infinitely many
zeros, where p(z) £ 0, T(r, ¢) = S(r, f).

3 Proof of Theorem 1.6

From Theorem 1.5, when d = 1, Theorem 1.6 holds.
Next, we prove the case d > 2.
For any point 29 € D, either 1(z9) = 0 or ¥(z¢) # 0.
Case 1. ¥(z9) =0.

We may assume 2o = 0 and ¥(z) = 2™ + ayy12™ T + - - - = 2™A(2), where @y p1, Qmyo,
- are constants, h(0) = 1, and m can be divisible by n + d.
Let
Fi={F i F) = L), F
Zta

If 77 is not normal at 0, by Lemma 2.1, there exist a sequence {z;} of complex numbers

with z; — 2 and a sequence {p;} of positive numbers with p; — 0 such that
kn

9i(&) = p; "TFj(z; + pi€) = g(€)
locally uniformly on compact subsets of C, where g(£) is a non-constant meromorphic func-
tion in C, all of whose zeros have multiplicity at least p > max {k+ %, 2m+2}. Moreover,
g(&) has order at most 2.

Here we distinguish two cases.

Case 1.1. Suppose that N ¢, ¢ is a finite complex number. Then

Pj
(. F<Zj+pj(§_i]:)) )i
$;(€) = fjr(rﬁ? = 1 (pj?h S ertag(e — ) = H()
pj1L+d p;L+d j

locally uniformly on compact subsets of C disjoint from the poles of g, where H(E) is
a non-constant meromorphic function in C, all of whose zeros have multiplicity at least

p > max {k + %, 2m + 2}. Moreover, H (&) has order at most 2. So

) d(,. B¢ e\\n _ ‘
spherically locally uniforriﬂy in C disjoint froni the poles of g.

If H4(&)(H®) (&)™ = ¢™, since H has zeros with multiplicity at least p > max{k +

— HYEHD ()" —¢m

%, 2m + 2}, obviously there is a contradiction. Hence H(¢)(H®) (£))™ # ™.

Since the multiplicity of all zeros of H is at least p > max {k + %, 2m+ 2}, by Lemmas
2.2, 2.3 and 2.4, H(&)(H®)(£))™ — €™ has at least two distinct zeros.

Suppose that &, & are two distinct zeros of HY(€)(H®) (£))™ —¢™. We choose a positive
number ¢ small enough such that Dy () Dy = () and H(¢)(H®) (£))™ —£™ has no other zeros
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in Dy |J Dy except for & and &, where
Dy ={¢e C[|§—&| <},
Dy ={€cC|¢ &l <6}
By Hurwitz’s theorem, there exists a subsequence of f]d(fj(k))” —(zj + p;§), we still denote
it as f]d(fj(k))" —1(2; + p;§), then there exist points §§ — & and points {; — & such that
when j is large enough,
F o) (0, 6))" = los€) =0,
B &) (17 (03 &))" = lps65) = 0.
Since, by the assumption in Theorem 1.6, f2 ( & )) and f (
that

)” share 1(z), it follows

Fa o€ (€)™ = w(pi€5) = 0,

Fpi&) (£ (036)" = ¥ (pj€5) = 0.
Fix m and let j — oo, note p;§; — 0, p;§5 — 0, we obtain

Fn(O)(F5(0)" = (0) = 0.
Since the zeros of f2 (£)( f,gf ) (€)™ — (&) has no accumulation point, for sufficiently large j,
we have
pi& =0,  p§; =0.

Thus, when j is large enough, &, = &;. This contradicts with the facts &, € D1, & € Da,
Dy Dy = 0. Thus F is normal at 0.

Case 1.2. Suppose that — 0o0. We have

PJ
k
1{9(z) = 27¥a +ch O P (2)
= Z"L”Fj(k)(z) + Z czzniw_le(k_l)(z),
=1
where m . . .
! [ 1 T — 1 < .
. Ckn+d(n+d ) <n+d L+ )’ l—n+d’
=
m
0 !
’ ~ n+d
Thus we have
k noo
H@U7 @) = (szf’“)(zHchzw LRkt )) 251 F(z)
=1
B <Zw+d+(n1lj)nF( )( )FJ%(Z)
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k n
m md _m_ k—1 ].
+ E Clz'rt+d+(n+d)n n Fj( )(Z)F (Z)) 7h(z
=1

.k gk e
- (F( Fy +ZClF (zz> X )) h(lz)'

~

Since .
(k=0) _ ara—(k=1) (k—1)
Fj =Pj e 9; ,
we have
k n
5+ 0O (7 (25 + pi6))
b(zj + pi€)
d
(g ic 9 (©gy (5))” 1
i .
’ (2 +§)l h(zj + ;)
Pj
On the other hand, for [ =1,2,--- ,k, we have
. @] 1
1 =0, lim —— =1.
gggo (Zj ! ]ggo h(zj + pjf)
. +§
Pi
Thus we have
£z + 0 (f (2 + ps€))" 4 .
—1= g4 €)™ (E)" -1
¥(zj + p;€) g™ E)

spherically locally uniformly in C disjoint from the poles of g.

If g%(&)(g™ (€)™ = 1, then g has no zeros. Of course, g also has no poles. Since g
is a non-constant Meromorphic function of order at most 2, there exist constants ¢; (i =
1,2), (c1, ¢2) # (0, 0), and g(&) = ecoteréteat®  Obviously, this is contrary to the case
9%(€)(g™(€))" = 1. Hence

9" €)M (©)" # 1.

Since the multiplicity of all zeros of g is at least p > max {k + %, 2m + 2}, by Lemmas
2.2, 2.3 and 2.4, g4(€)(g™(£))™ — 1 has at least two distinct zeros.

Suppose that &;, & are two distinct zeros of g?(£)(g™) (£))™ — 1. We choose a positive
number ¢ small enough such that Dy ( Dy = § and g¢(&)(g® (¢))™ — 1 has no other zeros
in D1 |J Dy except for £ and &5, where

Dy ={¢eC|§—&l <},
={feC|lE-¢&|<d}
By Hurwitz’s theorem, there exists a subsequence of f{(z; +pj§)(f](k) (zj+p;))" = (2+p;€),
we still denote it as fd(z] + pjf)(f(k)(z] + p;€))" — ¥(z; + p;&). Then there exist points
fj — &1 and points 53 — &7 such that when j is large enough,
fd(ZJ + Pyga)(f' (Z] +p]£ﬂ)) —¥(z + p;&) =0,
fi Gz + ijj)(fj Mz 4 &))" — (z + pi&;) = 0.

Similar to the proof of Case 1.1, we get a contradiction. Then, F; is normal at 0.
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From Cases 1.1 and 1.2, we know that F; is normal at 0, and there exist A = {z : |z| < p}
and a subsequence of F};, we still denote it as F};, such that F; converges spherically locally
uniformly to a meromorphic function F'(z) or co in A.

Here we distinguish two cases.

Case (i). When j is large enough, f;(0) # 0. Then F(0) = co. Thus, for each F;(z) € Fi,
there exists a § > 0 such that if F((z) € Fq, then |F(2)] > 1 for all z € As = {z : |2] < J}.

1
Thus, for sufficiently large j, |Fj(z)| > 1, 7 is holomorphic in As. Therefore, for all f; € F,

J
qoN

By Maximum Principle and Montel’s Theorem, F is normal at z = 0.

when |z| = 0/2, we have

1) 1
5= l5m==

Case (ii). There exists a subsequence of f;, we still denote it as f;, such that f;(0) = 0.
Since f € F, the multiplicity of all zeros of f is at least p > max {k‘ + %, 2m + 2}, then
F(0) = 0. Thus, there exists 0 < r < p such that F'(z) is holomorphic in A, = {z: |z| <7}

and has a unique zero z = 0 in A,. Then F}; converges spherically locally uniformly to a
holomorphic function F'(z) in A,.. f; converges spherically locally uniformly to a holomorphic
function F(z)z7+7 in A,. Hence F is normal at z = 0.

By Cases (i) and (ii), F is normal at z = 0.

Case 2. ¥(z9) # 0.

Suppose that F is not normal at z;. By Lemma 2.1 there exist a sequence {z;} of
complex numbers with z; — zp, a sequence {p,} of positive numbers with p; — 0 such that

_ _kn_
9;(§) = p; " Fy(2; + pi€) = 9(§)
locally uniformly on compact subsets of C, where g(£) is a non-constant meromorphic func-

m
tion in C, all of whose zeros have multiplicity at least p > max < k+ R 2m+2}. Moreover,

g(€) has order at most 2.
Hence, by Lemmas 2.2, 2.3 and 2.4, similar to the proof of Case 1.1, we get a contradic-

tion. Thus F is normal at zj.
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