COMMUNICATIONS IN MATHEMATICAL RESEARCH **32**(1)(2016), 47–56

Normality Criteria of Meromorphic Functions Concerning Shared Analytic Function

Yang Qi

(School of Mathematics Science, Xinjiang Normal University, Urumqi, 830054)

Communicated by Ji You-qing

Abstract: In this paper, we use Pang-Zalcman lemma to investigate the normal family of meromorphic functions concerning shared analytic function, which improves some earlier related results.

Key words: meromorphic function, entire function, shared function, normal family

2010 MR subject classification: 30D35, 30D45

Document code: A

Article ID: 1674-5647(2016)01-0047-10 **DOI:** 10.13447/j.1674-5647.2016.01.03

1 Introduction and Main Results

Let D be a domain in \mathbb{C} , and \mathcal{F} be a family of meromorphic functions defined in the domain D. \mathcal{F} is said to be normal in D if any sequence $\{f_n\} \subset \mathcal{F}$ contains a subsequence f_{n_j} , which converges spherically locally uniformly in D to a meromorphic function or ∞ (see [1]–[5]).

Let f(z) be a mermorphic function in a domain D and $z_0 \in D$. If $f(z_0) = z_0$, we say that z_0 is the fixed-point of f(z). Let f(z) and g(z) denote two meromorphic functions in D. If $f(z) - \psi(z)$ and $g(z) - \psi(z)$ have the same zeros (or ignoring multiplicity), then we say that f(z) and g(z) share $\psi(z)$ CM (or IM).

In 1998, Wang and Fang^[6] proved the following result:

Theorem 1.1 Let k and $n \ge k+1$ be two positive integers, and f be a transcendental merimorphic function. Then $(f^n)^{(k)}$ assumes every finite nonzero value infinitely often.

Corresponding to Theorem 1.1, there are the following theorems about normal families.

Theorem 1.2^[7] Let k and $n \ge k + 3$ be two positive integers and \mathcal{F} be a family of meromorphic functions defined in a domain D. If $(f^n)^{(k)} \ne 1$ for every function $f \in \mathcal{F}$, then \mathcal{F} is normal in D.

Received date: May 27, 2014.

Foundation item: The NSF (11461070) of China. E-mail address: yangqi_8138@126.com (Yang Q).

In 2009, Li and Gu^[8] proved:

Theorem 1.3 Let \mathcal{F} be a family of meromorphic functions defined in a domain D. Let $k, n \geq k + 2$ be positive integers and $a \neq 0$ be a finite complex number. For each pair $(f,g) \in \mathcal{F}$, if $(f^n)^{(k)}$ and $(g^n)^{(k)}$ share a in D, then \mathcal{F} is normal in D.

Lately, many authors studied the functions of the form $f(f^{(k)})^n$. Hu and Meng^[9] proved:

Theorem 1.4 Take positive integers n and k with $n, k \geq 2$, and take a non-zero complex number a. Let \mathcal{F} be a family of meromorphic functions in the plane domain D such that each $f \in \mathcal{F}$ has all its zeros of multiplicity at least k. For each pair $(f, g) \in \mathcal{F}$, if $f(f^{(k)})^n$ and $g(g^{(k)})^n$ share a IM, then \mathcal{F} is normal in D.

Recently, Jiang and Gao^[10] extended Theorem 1.4 as follows:

Theorem 1.5 Let $m \geq 0$, $n \geq 2m + 2$ and $k \geq 2$ be three positive integers and m be divisible by n+1. Suppose that $a(z) (\not\equiv 0)$ is a holomorphic function with zeros of multiplicity m in a domain D. Let \mathcal{F} be a family of meromorphic functions in a domain D, and for each $f \in \mathcal{F}$, f has all its zeros of multiplicity $\max\{k+m, 2m+2\}$ at least. For each pair $(f, g) \in \mathcal{F}$, if $f(f^{(k)})^n$ and $g(g^{(k)})^n$ share a(z) IM, then \mathcal{F} is normal in D.

A natural question is: What can be said if the function $f(f^{(k)})^n$ in Theorem 1.5 is replaced by the function $f^d(f^{(k)})^n$? In this paper, we answer this question by proving the following theorem:

Theorem 1.6 Let \mathcal{F} be a family of meromorphic functions defined in a domain D, and $m \geq 0$, $n \geq 2m+2$, $k \geq 2$, $d \geq 1$, $p \geq 1$ be five integers and m be divisible by n+d. Let $\psi(z) \not\equiv 0$ be an analytic function with zeros of multiplicity m in a domain D. Suppose that every $f \in \mathcal{F}$ has all its zeros of multiplicity at least $p \geq \max\left\{k + \frac{m}{d}, 2m + 2\right\}$. For each pair $(f, g) \in \mathcal{F}$, if $f^d(f^{(k)})^n$ and $g^d(g^{(k)})^n$ share $\psi(z)$ IM, then \mathcal{F} is normal in D.

Remark 1.1 Obviously, from Theorem 1.6, we can get Theorem 1.5 when d = 1.

2 Some Lemmas

In order to prove Theorem 1.6, we require the following results.

Lemma 2.1^[11] Let \mathcal{F} be a family of meromorphic functions on the unit disc satisfying all zeros of functions in \mathcal{F} have multiplicity $\geq p$ and all poles of functions in \mathcal{F} have multiplicity $\geq q$. Let α be a real number satisfying $-q < \alpha < p$. Then \mathcal{F} is not normal at 0 if and only if there exist

- a) $a \ number \ 0 < r < 1;$
- b) points z_n with $|z_n| < r$;

- c) functions $f_n \in \mathcal{F}$;
- d) positive numbers $\rho_n \to 0$

such that $g_n(\zeta) := \rho_n^{-\alpha} f_n(z_n + \rho_n \zeta)$ converges spherically uniformly on each compact subset of \mathbf{C} to a non-constant meromorphic function $g(\zeta)$, whose all zeros have multiplicity $\geq p$ and all poles have multiplicity $\geq q$ and order is at most 2.

Lemma 2.2 Let $m \ge 0$, $k, n \ge 2$, $d \ge 1$ be four integers, $H(z) = a_m z^m + a_{m-1} z^{m-1} + \cdots + a_0$ be a polynomial, where $a_m(\ne 0)$, a_{m-1} , \cdots , a_0 are constants. If f is a non-constant polynomial, and the multiplicity of its all zeros is at least $k + \frac{m}{d}$, then $f^d(z)(f^{(k)}(z))^n - H(z)$ has at least two distinct zeros, and $f^d(z)(f^{(k)}(z))^n - H(z) \not\equiv 0$.

Proof. Since f is a non-constant polynomial with zeros of multiplicity $k + \frac{m}{d}$ at least, we know that the degree of f is $k + \frac{m}{d}$ at least, and

$$\deg(f^d(z)(f^{(k)}(z))^n) > \deg(H(z)).$$

Then $f^{d}(z)(f^{(k)}(z))^{n} - H(z)$ has at least one zero.

If $f^{d}(z)(f^{(k)}(z))^{n} - H(z)$ has only one zero, we may assume that

$$f^{d}(z)(f^{(k)}(z))^{n} - H(z) = \lambda(z - z_{0})^{l},$$

where λ is a non-zero constant, l is a positive integer. Compare the degrees of H(z) and f(z), we have

$$l = \deg(f^d(z)(f^{(k)}(z))^n) > m + 1.$$

Then

$$(f^{d}(z)(f^{(k)}(z))^{n})^{(m)} - \lambda \cdot l \cdot (l-1) \cdots (l-m+1)(z-z_{0})^{l-m} = H^{(m)}(z) = m! a_{m} \neq 0,$$

$$(f^{d}(z)(f^{(k)}(z))^{n})^{(m+1)} = \lambda \cdot l \cdot (l-1) \cdots (l-m)(z-z_{0})^{l-m-1}.$$

Thus z_0 is the unique zero of $(f^d(z)(f^{(k)}(z))^n)^{(m+1)}$. Since f is a non-constant polynomial with zeros of multiplicity $k + \frac{m}{d}$ at least, we know that z_0 is a zero of f. Thus

$$(f^d(f^{(k)})^n)^{(m)}(z_0) = 0,$$

it contradicts with

$$(f^d(f^{(k)})^n)^{(m)}(z_0) = H^{(m)}(z_0) \neq 0.$$

Thus, $f^d(z)(f^{(k)}(z))^n - H(z)$ has at least two distinct zeros.

Lemma 2.3 Let $m \geq 0$, $n \geq 2m + 2$, $k, d \geq 1$ be four integers, $H(z) = a_m z^m + a_{m-1} z^{m-1} + \cdots + a_0$ be a polynomial, where $a_m \neq 0$, a_{m-1}, \cdots, a_0 are constants. If f is a non-polynomial rational function, and the multiplicity of its all zeros is at least 2m + 2, then $f^d(z)(f^{(k)}(z))^n - H(z)$ has at least two distinct zeros, and $f^d(z)(f^{(k)}(z))^n - H(z) \neq 0$.

Proof. Since f is a non-polynomial rational function, it is obvious that

$$f^{d}(z)(f^{(k)}(z))^{n} - H(z) \not\equiv 0.$$

Let

$$f^{d}(f^{(k)})^{n} = \frac{A(z-\alpha_{1})^{m_{1}}(z-\alpha_{2})^{m_{2}}\cdots(z-\alpha_{s})^{m_{s}}}{(z-\beta_{1})^{n_{1}}(z-\beta_{2})^{n_{2}}\cdots(z-\beta_{t})^{n_{t}}},$$
(2.1)

where A is a non-zero constant, $s, t \ge 1$, $m_i \ge 2m + 2$ $(i = 1, 2, \dots, s)$, $n_i \ge n(k+1) + d$ $(j=1,2,\cdots,t)$. For simplicity, we denote

$$M = m_1 + m_2 + \dots + m_s \ge (2m + 2)s, \tag{2.2}$$

$$N = n_1 + n_2 + \dots + n_t \ge [d + n(k+1)]t > (2m+2)t.$$
(2.3)

By differentiating both sides of (2.1) step by step, we have

$$(f^d(f^{(k)})^n)^{(m+1)}$$

$$=\frac{A(z-\alpha_1)^{m_1-(m+1)}(z-\alpha_2)^{m_2-(m+1)}\cdots(z-\alpha_s)^{m_s-(m+1)}g_1(z)}{(z-\beta_1)^{n_1+(m+1)}(z-\beta_2)^{n_2+(m+1)}\cdots(z-\beta_t)^{n_t+(m+1)}},$$
(2.4)

where $q_1(z)$ is a non-constant polynomial with $\deg(q_1) < (m+1)(s+t-1)$.

Now, we discuss two cases.

Case 1. If
$$f^d(z)(f^{(k)}(z))^n - H(z)$$
 has a unique zero z_0 , then we set
$$f^d(f^{(k)})^n = H(z) + \frac{B(z-z_0)^l}{(z-\beta_1)^{n_1}(z-\beta_2)^{n_2}\cdots(z-\beta_t)^{n_t}} = \frac{P(z)}{Q(z)}, \tag{2.5}$$
 where B is a non-zero constant and l is a positive integer, P and Q are polynomials with

degree M and N, also P and Q have no common factors.

Here we discuss two subcases.

Subcase 1.1. m > l.

By differentiating both sides of (2.5), we have

$$(f^d(f^{(k)})^n)^{(m+1)}$$

$$=H^{(m+1)}(z)+\frac{g_2(z)}{(z-\beta_1)^{n_1+(m+1)}(z-\beta_2)^{n_2+(m+1)}\cdots(z-\beta_t)^{n_t+(m+1)}}, \qquad (2.6)$$
 where $g_2(z)$ is a polynomial with $\deg(g_2)\leq (m+1)t-(m-l+1)$. By (2.1) and (2.5), since

 $m \geq l$, one has

$$N+m \leq M$$
.

From (2.4) and (2.6),

$$M - (m+1)s \le (m+1)t - (m-l+1).$$

Then

$$l - m \ge M - (m+1)(s+t) + 1$$

$$> M - (m+1) \left(\frac{M}{2m+2} + \frac{N}{2m+2}\right) + 1$$

$$> M - (m+1) \left(\frac{M}{2m+2} + \frac{M}{2m+2}\right) + 1$$

$$= 1,$$

it contradicts with $m \geq l$.

Subcase 1.2. m < l.

By differentiating both sides of (2.5), we have

$$(f^d(f^{(k)})^n)^{(m+1)}$$

$$=H^{(m+1)}(z)+\frac{(z-z_0)^{l-(m+1)}g_3(z)}{(z-\beta_1)^{n_1+(m+1)}(z-\beta_2)^{n_2+(m+1)}\cdots(z-\beta_t)^{n_t+(m+1)}},$$
 (2.7)

where $g_3(z)$ is a polynomial with $deg(g_3) \leq (m+1)t$.

By differentiating both sides of (2.5) step by step for m times, we can get that z_0 is a zero of $(f^d(f^{(k)})^n)^{(m)} = H^{(m)}$. Since $H^{(m)} = a_m \neq 0$, one has

$$z_0 \neq \alpha_i, \qquad i = 1, 2, \cdots, s.$$

Here we discuss in two subcases.

Subcase 1.2.1. $l \neq N + m$.

From (2.1) and (2.5), we obtain $\deg(P) \ge \deg(Q)$, that is, $M \ge N$. Since $z_0 \ne \alpha_i$ $(i = 1, 2, \dots, s)$, (2.4) and (2.7) imply

$$\sum_{i=1}^{s} [m_i - (m+1)] = M - (m+1)s \le \deg(g_3) \le (m+1)t.$$

So

$$M \le (m+1)(s+t).$$

By using (2.2) and (2.3), we obtain

$$\begin{split} M &\leq (m+1)(s+t) \\ &< (m+1) \Big(\frac{M}{2m+2} + \frac{N}{2m+2} \Big) \\ &\leq (m+1) \Big(\frac{M}{2m+2} + \frac{M}{2m+2} \Big) \\ &= M, \end{split}$$

which is a contradiction.

Subcase 1.2.2. l = N + m.

We further distinguish two subcases.

(i) $M \geq N$.

By (2.4) and (2.7), we obtain

$$M - (m+1)s < (m+1)t$$
.

Similar to Subcase 1.2.1, we obtain a contradiction M < M.

(ii) M < N.

By using (2.4) and (2.7) again, we obtain

$$l-m-1 < \deg(q_1) < (m+1)(s+t-1).$$

Hence

$$N = l - m$$

$$\leq (m+1)(s+t-1) + (m+1) - m$$

$$\leq (m+1)(s+t)$$

$$< (m+1)\left(\frac{M}{2m+2} + \frac{N}{2m+2}\right)$$

$$< N.$$

which is a contradiction.

Case 2. If $f^d(f^{(k)})^n - H(z)$ has no zero, then l = 0 in (2.5). Proceeding as in the proof of Case 1, we get a contradiction.

Lemma 2.3 is proved.

Lemma 2.4^[12] Suppose that f(z) is a transcendental meromorphic function, n, k, d are three positive integers. Then, when $k \geq 1$, $n, d \geq 2$, $f^d(f^{(k)})^n - \varphi(z)$ has infinitely many zeros, where $\varphi(z) \not\equiv 0$, $T(r, \varphi) = S(r, f)$.

3 Proof of Theorem 1.6

From Theorem 1.5, when d = 1, Theorem 1.6 holds.

Next, we prove the case $d \geq 2$.

For any point $z_0 \in D$, either $\psi(z_0) = 0$ or $\psi(z_0) \neq 0$.

Case 1. $\psi(z_0) = 0$.

We may assume $z_0 = 0$ and $\psi(z) = z^m + a_{m+1}z^{m+1} + \cdots = z^m h(z)$, where a_{m+1} , a_{m+2} , \cdots are constants, h(0) = 1, and m can be divisible by n + d.

Let

$$\mathcal{F}_1 = \left\{ F_j : F_j(z) = \frac{f_j(z)}{z^{\frac{m}{n+d}}} \middle| f_j \in \mathcal{F} \right\}.$$

If \mathcal{F}_1 is not normal at 0, by Lemma 2.1, there exist a sequence $\{z_j\}$ of complex numbers with $z_j \to z_0$ and a sequence $\{\rho_j\}$ of positive numbers with $\rho_j \to 0$ such that

$$g_j(\xi) = \rho_j^{-\frac{kn}{n+d}} F_j(z_j + \rho_j \xi) \to g(\xi)$$

locally uniformly on compact subsets of \mathbf{C} , where $g(\xi)$ is a non-constant meromorphic function in \mathbf{C} , all of whose zeros have multiplicity at least $p \ge \max\left\{k + \frac{m}{d}, 2m + 2\right\}$. Moreover, $g(\xi)$ has order at most 2.

Here we distinguish two cases.

Case 1.1. Suppose that $\frac{z_j}{\rho_j} \to c$, c is a finite complex number. Then

$$\phi_{j}(\xi) = \frac{f_{j}(\rho_{j}\xi)}{\rho_{j}^{\frac{m+kn}{n+d}}} = \frac{F\left(z_{j} + \rho_{j}\left(\xi - \frac{z_{j}}{\rho_{j}}\right)\right)}{\rho_{j}^{\frac{kn}{n+d}}} \frac{(\rho_{j}\xi)^{\frac{m}{n+d}}}{\rho_{j}^{\frac{m}{n+d}}} \to \xi^{\frac{m}{n+d}}g(\xi - c) = H(\xi)$$

locally uniformly on compact subsets of ${\bf C}$ disjoint from the poles of g, where $H(\xi)$ is a non-constant meromorphic function in ${\bf C}$, all of whose zeros have multiplicity at least $p \geq \max\left\{k + \frac{m}{d}, \ 2m + 2\right\}$. Moreover, $H(\xi)$ has order at most 2. So

$$\phi_j^d(\xi)(\phi_j^{(k)}(\xi))^n - \frac{\psi(\rho_j \xi)}{\rho_j^m} = \frac{f_j^d(\rho_j \xi)(f_j^{(k)}(\rho_j \xi))^n - \psi(\rho_j \xi)}{\rho_j^m} \to H^d(\xi)(H^{(k)}(\xi))^n - \xi^m$$

spherically locally uniformly in ${\bf C}$ disjoint from the poles of g.

If $H^d(\xi)(H^{(k)}(\xi))^n \equiv \xi^m$, since H has zeros with multiplicity at least $p \geq \max \left\{ k + \frac{m}{d}, 2m+2 \right\}$, obviously there is a contradiction. Hence $H^d(\xi)(H^{(k)}(\xi))^n \not\equiv \xi^m$.

Since the multiplicity of all zeros of H is at least $p \ge \max \left\{k + \frac{m}{d}, 2m + 2\right\}$, by Lemmas 2.2, 2.3 and 2.4, $H^d(\xi)(H^{(k)}(\xi))^n - \xi^m$ has at least two distinct zeros.

Suppose that ξ_0 , ξ_0^* are two distinct zeros of $H^d(\xi)(H^{(k)}(\xi))^n - \xi^m$. We choose a positive number δ small enough such that $D_1 \cap D_2 = \emptyset$ and $H^d(\xi)(H^{(k)}(\xi))^n - \xi^m$ has no other zeros

in $D_1 \bigcup D_2$ except for ξ_0 and ξ_0^* , where

$$D_1 = \{ \xi \in \mathbf{C} \mid |\xi - \xi_0| < \delta \},$$

$$D_2 = \{ \xi \in \mathbf{C} \mid |\xi - \xi_0^*| < \delta \}.$$

By Hurwitz's theorem, there exists a subsequence of $f_j^d(f_j^{(k)})^n - \psi(z_j + \rho_j \xi)$, we still denote it as $f_j^d(f_j^{(k)})^n - \psi(z_j + \rho_j \xi)$, then there exist points $\xi_j^* \to \xi_0^*$ and points $\xi_j \to \xi_0$ such that when j is large enough,

$$f_j^d(\rho_j \xi_j^*) (f_j^{(k)}(\rho_j \xi_j^*))^n - \psi(\rho_j \xi_j^*) = 0,$$

$$f_j^d(\rho_j \xi_j) (f_j^{(k)}(\rho_j \xi_j))^n - \psi(\rho_j \xi_j) = 0.$$

Since, by the assumption in Theorem 1.6, $f_m^d(f_m^{(k)})^n$ and $f_j^d(f_j^{(k)})^n$ share $\psi(z)$, it follows that

$$f_m^d(\rho_j \xi_j^*) (f_m^{(k)}(\rho_j \xi_j^*))^n - \psi(\rho_j \xi_j^*) = 0,$$

$$f_m^d(\rho_j \xi_j) (f_m^{(k)}(\rho_j \xi_j))^n - \psi(\rho_j \xi_j) = 0.$$

Fix m and let $j \to \infty$, note $\rho_j \xi_j \to 0$, $\rho_j \xi_j^* \to 0$, we obtain

$$f_m^d(0)(f_m^{(k)}(0))^n - \psi(0) = 0.$$

Since the zeros of $f_m^d(\xi)(f_m^{(k)}(\xi))^n - \psi(\xi)$ has no accumulation point, for sufficiently large j, we have

$$\rho_j \xi_j = 0, \qquad \rho_j \xi_i^* = 0.$$

Thus, when j is large enough, $\xi_0 = \xi_0^*$. This contradicts with the facts $\xi_n \in D_1$, $\xi_n^* \in D_2$, $D_1 \cap D_2 = \emptyset$. Thus \mathcal{F}_1 is normal at 0.

Case 1.2. Suppose that $\frac{z_j}{\rho_j} \to \infty$. We have

$$f_j^{(k)}(z) = z^{\frac{m}{n+d}} F_j^{(k)}(z) + \sum_{l=1}^k C_k^l (z^{\frac{m}{n+d}})^{(l)} F_j^{(k-l)}(z)$$
$$= z^{\frac{m}{n+d}} F_j^{(k)}(z) + \sum_{l=1}^k c_l z^{\frac{m}{n+d}-l} F_j^{(k-l)}(z),$$

where

$$c_{l} = \begin{cases} C_{k}^{l} \frac{m}{n+d} \left(\frac{m}{n+d} - 1 \right) \cdots \left(\frac{m}{n+d} - l + 1 \right), & l \leq \frac{m}{n+d}; \\ 0, & l > \frac{m}{n+d}. \end{cases}$$

Thus we have

$$\begin{split} f_j^d(z)(f_j^{(k)}(z))^n &= \left(z^{\frac{m}{n+d}}F_j^{(k)}(z) + \sum_{l=1}^k c_l z^{\frac{m}{n+d}-l}F_j^{(k-l)}(z)\right)^n z^{\frac{md}{n+d}}F_j^d(z) \\ &= \left(z^{\frac{m}{n+d} + \frac{md}{(n+d)n}}F_j^{(k)}(z)F_j^{\frac{d}{n}}(z) \right. \\ &+ \sum_{l=1}^k c_l z^{\frac{m}{n+d} + \frac{md}{(n+d)n}-l}F_j^{(k-l)}(z)F_j^{\frac{d}{n}}(z)\right)^n, \\ &\frac{f_j^d(z)(f_j^{(k)}(z))^n}{\psi(z)} &= \left(z^{\frac{m}{n+d} + \frac{md}{(n+d)n} - \frac{m}{n}}F_j^{(k)}(z)F_j^{\frac{d}{n}}(z)\right) \end{split}$$

$$+\sum_{l=1}^{k} c_{l} z^{\frac{m}{n+d} + \frac{md}{(n+d)n} - \frac{m}{n} - l} F_{j}^{(k-l)}(z) F_{j}^{\frac{d}{n}}(z) \Big)^{n} \frac{1}{h(z)}$$

$$= \left(F_{j}^{(k)}(z) F_{j}^{\frac{d}{n}}(z) + \sum_{l=1}^{k} c_{l} \frac{F_{j}^{(k-l)}(z) F_{j}^{\frac{d}{n}}(z)}{z^{l}} \right)^{n} \frac{1}{h(z)}.$$

$$F_{j}^{(k-l)} = \rho_{j}^{\frac{kn}{n+d} - (k-l)} q_{j}^{(k-l)},$$

Since

we have

$$\frac{f_j^d(z_j + \rho_j \xi)(f_j^{(k)}(z_j + \rho_j \xi))^n}{\psi(z_j + \rho_j \xi)} \\
= \left(g_j^{(k)}(\xi)g_j^{\frac{d}{n}}(\xi) + \sum_{l=1}^k c_l \frac{g_j^{(k-l)}(\xi)g_j^{\frac{d}{n}}(\xi)}{\left(\frac{z_j}{\rho_j} + \xi\right)^l}\right)^n \frac{1}{h(z_j + \rho_j \xi)}.$$

On the other hand, for $l = 1, 2, \dots, k$, we have

$$\lim_{j \to \infty} \frac{c_l}{\left(\frac{z_j}{\rho_j} + \xi\right)^l} = 0, \qquad \lim_{j \to \infty} \frac{1}{h(z_j + \rho_j \xi)} = 1.$$

Thus we have

$$\frac{f_j^d(z_j + \rho_j \xi)(f_j^{(k)}(z_j + \rho_j \xi))^n}{\psi(z_j + \rho_j \xi)} - 1 \to g^d(\xi)(g^{(k)}(\xi))^n - 1$$

spherically locally uniformly in \mathbf{C} disjoint from the poles of q.

If $g^d(\xi)(g^{(k)}(\xi))^n \equiv 1$, then g has no zeros. Of course, g also has no poles. Since g is a non-constant Meromorphic function of order at most 2, there exist constants c_i (i = 1, 2), $(c_1, c_2) \neq (0, 0)$, and $g(\xi) = e^{c_0 + c_1 \xi + c_2 \xi^2}$. Obviously, this is contrary to the case $g^d(\xi)(g^{(k)}(\xi))^n \equiv 1$. Hence

$$g^d(\xi)(g^{(k)}(\xi))^n \not\equiv 1.$$

Since the multiplicity of all zeros of g is at least $p \ge \max\left\{k + \frac{m}{d}, 2m + 2\right\}$, by Lemmas 2.2, 2.3 and 2.4, $g^d(\xi)(g^{(k)}(\xi))^n - 1$ has at least two distinct zeros.

Suppose that ξ_1 , ξ_1^* are two distinct zeros of $g^d(\xi)(g^{(k)}(\xi))^n - 1$. We choose a positive number δ small enough such that $D_1 \cap D_2 = \emptyset$ and $g^d(\xi)(g^{(k)}(\xi))^n - 1$ has no other zeros in $D_1 \cup D_2$ except for ξ_1 and ξ_1^* , where

$$D_1 = \{ \xi \in C \mid |\xi - \xi_1| < \delta \},$$

$$D_2 = \{ \xi \in C \mid |\xi - \xi_1^*| < \delta \}.$$

By Hurwitz's theorem, there exists a subsequence of $f_j^d(z_j + \rho_j \xi)(f_j^{(k)}(z_j + \rho_j \xi))^n - \psi(z_j + \rho_j \xi)$, we still denote it as $f_j^d(z_j + \rho_j \xi)(f_j^{(k)}(z_j + \rho_j \xi))^n - \psi(z_j + \rho_j \xi)$. Then there exist points $\widehat{\xi}_j \to \xi_1$ and points $\widetilde{\xi}_j \to \xi_1^*$ such that when j is large enough,

$$f_j^d(z_j + \rho_j \hat{\xi}_j) (f_j^{(k)}(z_j + \rho_j \hat{\xi}_j))^n - \psi(z_j + \rho_j \hat{\xi}_j) = 0,$$

$$f_j^d(z_j + \rho_j \tilde{\xi}_j) (f_j^{(k)}(z_j + \rho_j \tilde{\xi}_j))^n - \psi(z_j + \rho_j \tilde{\xi}_j) = 0.$$

Similar to the proof of Case 1.1, we get a contradiction. Then, \mathcal{F}_1 is normal at 0.

From Cases 1.1 and 1.2, we know that \mathcal{F}_1 is normal at 0, and there exist $\Delta = \{z : |z| < \rho\}$ and a subsequence of F_j , we still denote it as F_j , such that F_j converges spherically locally uniformly to a meromorphic function F(z) or ∞ in Δ .

Here we distinguish two cases.

Case (i). When j is large enough, $f_j(0) \neq 0$. Then $F(0) = \infty$. Thus, for each $F_j(z) \in \mathcal{F}_1$, there exists a $\delta > 0$ such that if $F(z) \in \mathcal{F}_1$, then |F(z)| > 1 for all $z \in \Delta_\delta = \{z : |z| < \delta\}$. Thus, for sufficiently large j, $|F_j(z)| \geq 1$, $\frac{1}{f_j}$ is holomorphic in Δ_δ . Therefore, for all $f_j \in \mathcal{F}$, when $|z| = \delta/2$, we have

$$\left|\frac{1}{f_j}\right| = \left|\frac{1}{F_j(z)z^{\frac{m}{n+d}}}\right| \le \left(\frac{2}{\delta}\right)^{\frac{m}{n+d}}.$$

By Maximum Principle and Montel's Theorem, \mathcal{F} is normal at z=0.

Case (ii). There exists a subsequence of f_j , we still denote it as f_j , such that $f_j(0) = 0$. Since $f \in \mathcal{F}$, the multiplicity of all zeros of f is at least $p \ge \max\left\{k + \frac{m}{d}, \ 2m + 2\right\}$, then F(0) = 0. Thus, there exists $0 < r < \rho$ such that F(z) is holomorphic in $\Delta_r = \{z : |z| < r\}$ and has a unique zero z = 0 in Δ_r . Then F_j converges spherically locally uniformly to a holomorphic function F(z) in Δ_r . f_j converges spherically locally uniformly to a holomorphic function $F(z)z^{\frac{m}{n+d}}$ in Δ_r . Hence \mathcal{F} is normal at z = 0.

By Cases (i) and (ii), \mathcal{F} is normal at z=0.

Case 2. $\psi(z_0) \neq 0$.

Suppose that \mathcal{F} is not normal at z_0 . By Lemma 2.1 there exist a sequence $\{z_j\}$ of complex numbers with $z_j \to z_0$, a sequence $\{\rho_n\}$ of positive numbers with $\rho_j \to 0$ such that

$$g_j(\xi) = \rho_j^{-\frac{kn}{n+d}} F_j(z_j + \rho_j \xi) \to g(\xi)$$

locally uniformly on compact subsets of \mathbf{C} , where $g(\xi)$ is a non-constant meromorphic function in \mathbf{C} , all of whose zeros have multiplicity at least $p \ge \max\left\{k + \frac{m}{d}, \ 2m + 2\right\}$. Moreover, $g(\xi)$ has order at most 2.

Hence, by Lemmas 2.2, 2.3 and 2.4, similar to the proof of Case 1.1, we get a contradiction. Thus \mathcal{F} is normal at z_0 .

References

- [1] Hayman W H. Meromorphic Functions. Oxford: Clarendon Press, 1964.
- [2] Tse C K, Yang C J. On the value distribution of $f^l(f^{(k)})^n$. Kodai Math. J., 1994, 17: 163–169.
- [3] Yang C J, Hu P C. On the value distribution of $ff^{(k)}$, Kodai Math. J., 1996, 19: 157–167.
- [4] Yang C J, Yang L, Wang Y F. On the zeros of $f(f^{(k)})^n a$. Chinese Sci. Bull., 1993, 38: 2125–2128.
- [5] Fang M L, Zalcman L. On value distribution of $f + a(f')^n$ (in Chinese). Sci. China, 2008, 38A(3): 279–285.
- [6] Wang Y F, Fang M L. Picard values and normal families of meromorphic functions with multiple zeros. *Acta Math. Sinica* (*Chin. Ser.*), 1998, **41**(4): 743–748.
- [7] Schwick W. Normality criteria for families of meromorphic function. J. Anal. Math., 1989, 52: 241–289.

- [8] Li Y T, Gu Y X. On normal families of meromorphic functions. J. Math. Anal. Appl., 2009, 354: 421–425.
- [9] Hu P C, Meng D W. Normality of meromorphic functions with multiple zeros. J. Math. Anal. Appl., 2009, 357: 323–329.
- [10] Jiang Y B, Gao Z S. Normal families of meromorphic functions sharing a holomorphic function and the converse of function Bloch principle. *Acta Math. Sci.*, 2012, **32B**(4): 1503–1512.
- [11] Zalman L. Normal families: new perspectives. Bull. Amer. Math. Soc., 1998, 35(3): 215–230.
- [12] Li G W, Su X F, Xu D J. On the zeros of $f^m(f^{(k)})^n \varphi(z)$. J. Chongqing Norm. Univ (Nat. Sci), 2013, **30**(4): 73–76.