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Abstract. The paper aims to design a distributed algorithm for players in games such
that the players can learn Nash equilibriums of non-cooperative games in finite time.
We first consider the quadratic non-cooperative games and design estimate protocols
for the players such that they can estimate all the other players’ actions in distributed
manners. In order to make the players track all the other players’ real actions in finite
time, a bounded gradient dynamics is designed for players to update their actions by
using the estimate information. Then the algorithm is extended to more general non-
cooperative games and it is proved that players’ estimates can converge to all the other
players’ real actions in finite time and all players can learn the unique Nash equilib-
rium in finite time under mild assumptions. Finally, simulation examples are provided
to verify the validity of the proposed finite-time distributed Nash equilibrium seeking
algorithms.
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1 Introduction

Non-cooperative game is an important branch of game in which the cost function of each
player relies on its action and other players’ actions and each player wants to minimize its
cost function selfishly. Nash equilibrium seeking problem as one of research emphases of
non-cooperative games, aims to find a strategy combination under which no player can
minimize its cost function by changing its strategy individually [1].
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In recent years, various distributed Nash equilibrium seeking algorithms have been
proposed under the problem setting where the players only know part of the decision
information (see [2–4] and references therein). The players have limited decision infor-
mation in networked games while their cost functions depend on global decision infor-
mation concluding all players’ strategies. For non-cooperative games, global decision
information is the prerequisite for each player to make the best response to other play-
ers’ strategies. In the existing literature for non-cooperative games with partial-decision
information setting, a common idea is to use the estimation of global decision informa-
tion to update players’ strategies. To be more specific, the networked players exchange
their estimates of all other players’ strategies based on the underlying communication
graph. Then, the consensus idea is used to make the estimated information converge to
the real global decision information, and the gradient strategy is used to make the actions
of players converge to Nash equilibrium.

The main difference between distributed optimization and non-cooperative game lies
in that agents aim to minimize a sum of their local objective functions cooperatively [5,6]
in distributed optimization while players want to minimize their own objective func-
tions selfishly in non-cooperative games, i.e., the purpose of distributed optimization is
to solve

min
x

N

∑
i=1

fi(x),

while the purpose of players in non-cooperative games is

min
xi

fi(x), ∀i=1,··· ,N.

At present, some literatures have studied the problem of finite-time optimization (e.g.,
[7–9] and references therein). Although some authors have studied the accelerated Nash
equilibrium seeking algorithm, for example, [10] proposed an accelerated version of the
gradient play algorithm with a faster convergence for Nash equilibrium seeking problem
and [11] investigated Nash equilibrium seeking problem via alternating direction method
of multipliers, these works still stay on the results of asymptotic convergence.

Motivated by finite-time distributed optimization, in this paper we aim to solve the
finite-time Nash equilibrium seeking problem. In this paper, the players still keep esti-
mates on all the other players’ actions and update their actions by employing these esti-
mates. Gradient play is still adopted here. Firstly, in order to make the estimates track
players’ real actions in finite time, we make some improvements on the basis of gradient
play to ensure the update rate of players’ actions is bounded. Secondly, we combine sign
function and the idea of consensus to design update algorithm for players’ estimates.
The analysis of finite-time Nash equilibrium seeking is carried out in two stages: (1) the
estimates converge to players’ actions in limited time under the assumption of connected
communication graph; (2) all players’ actions converge to Nash equilibrium in finite time
after the first stage under some assumptions.
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The rest of this paper is organized as follows. Some basic notations are given and
non-cooperative game model and basic assumptions are introduced in Section 2. Section
3 proposes a finite-time distributed Nash equilibrium seeking algorithm for quadratic
games and proves that the estimates converge to players’ actions in limited time and
all players learn the Nash equilibrium in finite time. In Section 4, more general non-
cooperative games are considered and the finite-time Nash equilibrium seeking problem
is solved under the proposed distributed algorithm. Section 5 gives some examples to
illustrate that these two proposed algorithms are valid. Section 6 concludes this paper.

2 Preliminaries and problem formulation

2.1 Graph theory and basic notations

Let R
n and R

m×n be n-dimensional column vectors space and m×n-dimensional matrices
space, respectively. xT and AT denote the transpose of vector x∈R

n and matrix A∈R
m×n.

‖·‖1 and ‖·‖2 represent 1-norm and 2-norm of vectors or matrices, respectively. For
x ∈ R

n, ‖x‖2 ≤ ‖x‖1. For a real symmetrical matrix A, ρ(A) = ‖A‖2 where ρ(A) is the
spectral radius of matrix A. Let λmin(A) and λmax(A) denote respectively the minimum
and maximum eigenvalues of matrix A. sign(·) is the standard sign function. 1n and
0n are n-dimensional column vectors with all elements equal 1 and 0, respectively. IN is
N-dimensional identity matrix. ⊗ is Kronecker product. Sometimes, a vector x is also
represented by [xi]vec with xi being its component.

An undirected graph can be modelled as G=(V,E) with nodes set V={1,··· ,N} and
edges set E⊆V×V. The adjacency matrix of G is defined as A=[aij ]N×N with aij=aji>0 if
there is an edge between nodes i and j, i.e., i and j can deliver information with each other
directly and they are neighbors with each other. aij = aji = 0, otherwise. The Laplacian

matrix of the adjacency matrix A is defined as L=[lij]N×N with lii =∑
N
i=1 aij and lij =−aij

for i 6= j. G is called connected if there is path between any two distinct nodes i, j∈V. For
undirected and connected graph G, the Laplacian matrix L has a simple zero eigenvalue
with 1N being its eigenvector and the other eigenvalues are positive.

2.2 Problem formulation

Consider N players in a non-cooperative game with xi ∈R
ni being player i’s action. Let

N ={1,··· ,N} denote the set of players and x=[xT
1 ,··· ,xT

N ]
T be a strategy combination of

all players’ actions. The cost function of player i is represented by fi(x) that is a function
of player i’s action and other players’ actions. Let x−i = [xT

1 ,··· ,xT
i−1,xT

i+1,··· ,xT
N]

T is a
vector consisting of all the other players’ actions except xi. In the absence of ambiguity,
x = (xi,x−i) and fi(x) can also be written as fi(xi,x−i) in this paper. All players have
the intention to minimize their cost functions selfishly. Nash equilibrium is a special
strategy combination under which each player will pay more cost if it changes its strategy
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individually. A rigorous mathematical definition of a Nash equilibrium is given in the
following.

Definition 2.1. x∗=(x∗i ,x∗−i) is a Nash equilibrium if and only if the following holds,

fi(x∗i ,x∗−i)≤ fi(xi,x
∗
−i), ∀i∈N . (2.1)

Remark 2.1. According to the definition of Nash equilibrium, one knows that
∂ fi(x∗)

∂xi
=0

for any i∈N .

In the problem setting, however, the players have no access to non-neighboring play-
ers’ actions. Player i needs to achieve the information about x−i or estimate information
of x−i before changing its own action to minimize it cost. Let yij be player i’s estimate

on xj and yi = [yT
i1,··· ,yT

iN ]
T denote player i’s estimate on x. The players can exchange

estimate information with their neighbors to track the real actions of other players and
the communication topology of players is represented by undirected graph G. The play-
ers update their actions by using their estimates yi, i ∈N . Our purpose is to design a
distributed Nash equilibrium seeking algorithm such that the players learn the Nash
equilibrium in finite time by using only local information.

In order to ensure the existence of Nash equilibrium, the sufficient existence assump-
tion is given.

Assumption 2.1. fi(x) is convex on xi for given x−i and fi(x) is twice continuous differ-
entiable with x for any i∈N .

In order to ensure each player’s action can be tracked by all the other players, the
following assumption is also needed.

Assumption 2.2. The communication topology G is undirected and connected.

Remark 2.2. Assumptions 2.1 and 2.2 are a common set of assumptions in the study of
non-cooperative game over networks (see, e.g. [3, 4] and reference therein). Assumption
2.1 is easily satisfied in some scenarios, such as the coordination problems in mobile
sensor networks [14] and the energy consumption control of the plug-in hybrid electric
vehicles [15].

3 Distributed finite-time Nash equilibrium seeking for

quadratic non-cooperative games

In this section, we consider Nash equilibrium seeking problem for a simple quadratic
non-cooperative game and propose a distributed algorithm for players such that their
estimates can track all the other players’ real actions in finite time and the players can
also learn the Nash equilibrium in finite time.
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For quadratic games, players’ cost functions can be represented as

fi(x)=
1

2

N

∑
j=1

N

∑
k=1

xT
j Hi

jkxk+
N

∑
j=1

hiT

j xj+vi, (3.1)

where Hi
jk ∈R

nj×nk is constant matrix satisfying Hi
jk

T
=Hi

kj, and hi
j ∈R

nj and vi ∈R
ni are

constant vectors for i∈N .
Let Γ(x)=

[

∂ f1(x)
∂x1

T ∂ f2(x)
∂x2

T ··· ∂ fN(x)
∂xN

T ]T
, then we have Γ(x)=Hx+h where

H=











H1
11 H1

12 ··· H1
1N

H2
21 H2

22 ··· H2
2N

...
...

. . .
...

HN
N1 HN

N2 ··· HN
NN











, h=
[

h1T

1 h2T

2 ··· hNT

N

]T
. (3.2)

Let Γ(x)= 0, if H is invertible, we can get the unique Nash equilibrium x∗=−H−1h by
direct calculation [1, Proposition 4.5].

Assumption 3.1. Hi
ii >0, Hi

ij

T
=H

j
ji and H is strictly diagonally dominant.

Remark 3.1. Note that a game satisfying Assumption 3.1 can be seen as a potential game
[16] with the potential function being strictly convex about x. Assumption 3.1 ensures
the uniqueness of Nash equilibrium and H is a symmetric positive definite matrix.

The distributed Nash equilibrium seeking algorithm for player i, i∈N is designed as
follows:

ẋi=−αi

∂ fi(yi)
∂xi

∥

∥

∥

∂ fi(yi)
∂xi

∥

∥

∥

2

,

ẏij =−δisign

(

N

∑
k=1

aik(yij−ykj)+aij(yij−xj)

)

,

(3.3)

where αi >0, δi >0 and
∂ fi(yi)

∂xi
= ∂ fi(x)

∂xi

∣

∣

x=yi
and aik is (i,k)-th entry of the adjacency matrix

A corresponding to communication topology G. It should be noticed that for a vector
x∈R

n, define x
‖x‖2

=0n if x=0n.

From Eq. (3.3), we know that ẋi is bounded and ‖ẋi‖2 = αi. Furthermore, ‖ẋ‖2 ≤
∑

N
i=1‖ẋi‖2 =∑

N
i=1αi where x=[xT

1 ,··· ,xT
N ]

T. In order to simplify analysis, we assume that
xi∈R, ∀i∈N in the rest of this paper. For xi∈R

ni (ni>1), the analysis is similar.

Theorem 3.1. If the undirected graph G is connected and there is a constant µ > 0 such that
‖ẋ‖2 ≤µ, then for any i, j∈N , the estimate yij can converge to xj in finite time by choosing δi

satisfying mini∈N {δi}>
√

Nµ.



X. Fang, J. Lü and G. Wen / CSIAM Trans. Appl. Math., 2 (2021), pp. 162-174 167

Proof. It follows from the definition of the Laplacian matrix that L1N = 0N . Let y =
[

yT
1 yT

2 ··· yT
N

]T
, then the estimate dynamics of players in compactness form can

be written as
ẏ=−δsign((L⊗ IN+B)(y−1N⊗x)), (3.4)

where δ=diag{δi}⊗ IN , i=1,··· ,N and B=diag{[a11,··· ,a1N ,··· ,aN1,··· ,aNN ]}.
Since G is undirected and connected, then 0 is a simple eigenvalue of the Laplacian

matrix L, according to Gershgorin’s disc theorem, L⊗ IN+B is symmetric and positive
definite. Construct the candidate Lyapunov function as

V=
1

2
(y−1N⊗x)T(L⊗ IN+B)(y−1N⊗x). (3.5)

Then we have

1

2
λmin(L⊗ IN+B)‖y−1N⊗x‖2

2≤V≤ 1

2
λmax(L⊗ IN+B)‖y−1N⊗x‖2

2 . (3.6)

Taking the derivative of V with respect to time t,

V̇=(y−1N⊗x)T (L⊗ IN+B)[−δsign((L⊗ IN+B)(y−1N⊗x))−1N⊗ ẋ]

≤−min
i∈N

{δi}‖(L⊗ IN+B)(y−1N⊗x)‖1+‖(L⊗ IN+B)(y−1N⊗x)‖2‖1N⊗ ẋ‖2

≤−min
i∈N

{δi}‖(L⊗ IN+B)(y−1N⊗x)‖2+‖(L⊗ IN+B)(y−1N⊗x)‖2‖1N⊗ ẋ‖2

≤−
(

min
i∈N

{δi}−
√

Nµ

)

‖(L⊗ IN+B)(y−1N⊗x)‖2

≤−
(

min
i∈N

{δi}−
√

Nµ

)

λmin(L⊗ IN+B)‖(y−1N⊗x)‖2

≤−
(

min
i∈N

{δi}−
√

Nµ

)

λmin(L⊗ IN+B)

√

2V

λmax(L⊗ IN+B)
. (3.7)

Since mini∈N {δi}>
√

Nµ, it follows that V̇≤0 and the equation is satisfied if and only if
V=0. Further,

V̇√
V
≤−

(

min
i∈N

{δi}−
√

Nµ

)

√

2λ2
min(L⊗ IN+B)

λmax(L⊗ IN+B)
. (3.8)

Integrating both sides of Eq. (3.8) from t0=0 to t, we have

2
√

V(t)−2
√

V(0)≤−
(

min
i∈N

{δi}−
√

Nµ

)

√

2λ2
min(L⊗ IN+B)

λmax(L⊗ IN+B)
t. (3.9)

Therefore, for any i, j∈N , the estimate information yij converges to xj in finite time

T1≤
√

V(0)
(

min{δi}−
√

Nµ
)×

√

2λmax(L⊗ IN+B)

λ2
min(L⊗ IN+B)

.

In other words, yij = xj for t≥T1.
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Remark 3.2. Note that mini∈N {δi}>
√

Nµ is a sufficient condition but not necessary
condition in Theorem 3.1. Moreover, it follows from the expression of the upper bound of
T1 that for given N and µ, T1 can be small enough by choosing mini∈N {δi} large enough.

On the basis of Theorem 3.1, we have the following Nash equilibrium convergence
theorem for finite time.

Theorem 3.2. Suppose that Assumptions 2.1-3.1 are satisfied. Then the players’ actions can
converge to the unique Nash equilibrium for quadratic non-cooperative game under distributed
algorithm (3.3).

Proof. It follows from Theorem 3.1 that yij can converge to xj in finite time T1 by choosing
appropriate δi, which means that yi = x for any i∈N when t≥T1. Therefore, for ∀t≥T1,
the dynamics of players’ actions in Eq. (3.3) becomes

ẋi=−αi

∂ fi(x)
∂xi

∥

∥

∥

∂ fi(x)
∂xi

∥

∥

∥

2

, ∀i∈N . (3.10)

Let

Γ̂(x)=





∂ f1(x)
∂x1

T

∥

∥

∥

∥

∂ f1(x)
∂x1

∥

∥

∥

∥

2

∂ f2(x)
∂x2

T

∥

∥

∥

∥

∂ f2(x)
∂x2

∥

∥

∥

∥

2

···
∂ fN(x)

∂xN

T

∥

∥

∥

∥

∂ fN(x)
∂xN

∥

∥

∥

∥

2





T

,

then the compactness form of the dynamics of players’ actions can be written as

ẋ(t)=−αΓ̂(x), t≥T1, (3.11)

where α=diag{αi} is a positive definite matrix due to αi>0, ∀i∈N .
According to Assumption 3.1, matrix H is symmetric and positive definite. In order

to analyze the stability of Nash equilibrium, the following candidate Lyapunov function
is constructed,

V1=
1

2
Γ(x)Tα−1H−1Γ(x). (3.12)

The Lyapunov function is reasonably constructed because Γ(x)=Hx+h=0N holds if and
only if x= x∗ where x∗ is the unique Nash equilibrium. Take the derivative of Γ(x) with
respect to t, then Γ̇(x)=−HαΓ̂(x).

Therefore, for t≥T1, we can get that

V̇1=Γ(x)Tα−1H−1
(

−HαΓ̂(x)
)

=−Γ(x)TΓ̂(x)

=−
N

∑
i=1

∥

∥

∥

∥

∂ fi(x)

∂xi

∥

∥

∥

∥

2

≤−‖Γ(x)‖2

≤−
√

2V1

λmax(α−1H−1)
. (3.13)



X. Fang, J. Lü and G. Wen / CSIAM Trans. Appl. Math., 2 (2021), pp. 162-174 169

Similarly, one has

2
√

V1(t)−2
√

V1(T1)≤−
√

2

λmax(α−1H−1)
(t−T1), (3.14)

which indicates that there is a finite time T2 ≤
√

2V1(T1)λmax(α−1H−1) such that x= x∗

for t≥T1+T2.

4 Distributed finite-time Nash equilibrium seeking for general

non-cooperative games

In this section, we will consider the finite-time Nash equilibrium seeking problem for
more general non-cooperative games. Suppose that there are N players and their cost
functions satisfy Assumption 2.1. To simplify analysis, we still consider that xi∈R for all
i∈N in this section.

First, define a matrix as

∂Γ(x)

∂x
=H(x)=

















∂2 f1(x)
∂x2

1

∂2 f1(x)
∂x1∂x2

··· ∂2 f1(x)
∂x1∂xN

∂2 f2(x)
∂x2∂x1

∂2 f2(x)

∂x2
2

··· ∂2 f2(x)
∂x2∂xN

...
...

. . .
...

∂2 fN(x)
∂xN∂x1

∂2 fN(x)
∂xN∂x2

··· ∂2 fN(x)
∂x2

N

















. (4.1)

Assumption 4.1. There is constant m>0 such that the matrix H(x) satisfies that HT(x)+
H(x)≥2mIN for any x∈R

N .

Since fi(x) is twice continuous differentiable, combine Assumption 4.1 and Lagrange

mean value theorem we can obtain that (x−y)T(Γ(x)−Γ(y))≥m‖x−y‖2
2 holds for any

x,y∈R
N [12], which means that Nash equilibrium of non-cooperative game is unique [13].

Assumption 4.1 provides a sufficient condition to guarantee the strong monotonicity of
the mapping Γ(x). Similar to the strong convexity requirement of objective function in the
optimization algorithms [6], the strong monotonicity of mapping Γ(x) plays an important
role in the analysis of the convergence of the Nash equilibrium seeking algorithms.

In order to address finite-time Nash equilibrium seeking problem, the following dis-
tributed Nash equilibrium seeking algorithm is proposed:

ẋi =−Pūi
ui

(

∂ fi(yi)

∂xi

)

,

ẏij =−δisign

(

N

∑
k=1

aik(yij−ykj)+aij(yij−xj)

)

,

(4.2)
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where δi>0 and ūi≥ui>0, ∀i∈N and Pūi
ui
(·) is defined as

Pūi
ui
(v)=sign(v)











ūi, |v|> ūi,

|v|, ui≤|v|≤ ūi,

ui, |v|<ui.

The main idea of our proposed algorithm is that the update rate of players’ actions is
not infinite fast to ensure that the estimates can track other players’ real actions, and
the update rate of players’ actions is not infinite slow to guarantee that players’ actions
converge to Nash equilibrium in finite time. Therefore, we designed a function Pūi

ui
(·) to

limit the actions’ update rate.

Theorem 4.1. Suppose that Assumptions 2.1, 2.2, 4.1 are satisfied, then the players can learn the
unique Nash equilibrium in finite time under distributed algorithm (4.2).

Proof. Obviously, ‖ẋi‖2 ≤ ūi and ‖ẋ‖2 ≤∑
N
i ūi, It follows from Theorem 3.1 that there is

a finite time T1 > 0 such that yij = xj when t≥T1 for all i, j∈N by choosing δi satisfying

mini∈N {δi}>
√

N∑
N
i ūi. As mentioned in Remark 3.2 that mini∈N {δi}>

√
N∑

N
i ūi is a

sufficient condition but not necessary condition.
Next, we prove that the actions of players can converge to the unique Nash equilib-

rium in finite time under the proposed algorithm (4.2).
Motivated by [12], the following candidate Lyapunov function is constructed:

V2=
N

∑
i=1

∫

∂ fi(x)
∂xi

0
Pūi

ui
(t)dt. (4.3)

We call this Lyapunov function a reasonable construct because Pūi
ui
(·) is integrable and

it follows from (x−y)T(Γ(x)−Γ(y))≥ m‖x−y‖2
2 and Γ(x∗) = 0N that ‖Γ(x)‖2 ≥ m‖x−

x∗‖2, ∀x∈R
N , which indicates that V2=0 if and only if Γ(x)=0N , i.e., x= x∗.

On the other hand, since

ẋi =−Pūi
ui

(

∂ fi(x)

∂xi

)

, ∀t≥T1,

hence, for t≥T1, we have

V̇2=
N

∑
i=1

Pūi
ui

(

∂ fi(x)

∂xi

)T[
∂

∂x

(

∂ fi(x)

∂xi

)]T

ẋ

=−
[

Pūi
ui

(

∂ fi(x)

∂xi

)]T

vec

H(x)

[

Pūi
ui

(

∂ fi(x)

∂xi

)]

vec

≤−m

∥

∥

∥

∥

[

Pūi
ui

(

∂ fi(x)

∂xi

)]

vec

∥

∥

∥

∥

2

2

. (4.4)
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Obviously,
∥

∥

∥

∥

[

Pūi
ui

(

∂ fi(x)

∂xi

)]

vec

∥

∥

∥

∥

2

=0 if and only if ‖Γ(x)‖2 =0,

i.e., V2=0. Furthermore,
∥

∥

∥

∥

[

Pūi
ui

(

∂ fi(x)

∂xi

)]

vec

∥

∥

∥

∥

2

6=0

implies that there exists at lest one player i ∈N satisfying
∂ fi(x)

∂xi
6= 0. According to the

definition of Pūi
ui
(·), one knows that

∣

∣

∣

∣

Pūi
ui

(

∂ fi(x)

∂xi

)
∣

∣

∣

∣

≥ui if
∂ fi(x)

∂xi
6=0.

Therefore, one can obtain that if
∥

∥

∥

∥

[

Pūi
ui

(

∂ fi(x)

∂xi

)]

vec

∥

∥

∥

∥

2

6=0,

then

min
i∈N

{u2
i }≤

∥

∥

∥

∥

[

Pūi
ui

(

∂ fi(x)

∂xi

)]

vec

∥

∥

∥

∥

2

2

and
V̇2≤−mmin

i∈N
{u2

i }, (4.5)

which means that V2 decays to 0 in finite time, that is to say, x converges to Nash equilib-
rium x∗ in finite time.

5 Simulation examples

Consider a non-cooperative game with 3 players and their cost functions are respectively
as the following:

f1(x)=
1

2
(5x2

1+2x1x2)+4x1,

f2(x)=
1

2
(2x2x1+3x2

2+2x2x3),

f3(x)=
1

2
(2x3x2+4x2

3)+7x3.

(5.1)

Take the first partial derivative of fi(x) with respect to xi, we have

Γ(x)=





5 1 0
1 3 1
0 1 4









x1

x2

x3



+





4
0
7



,
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Figure 1: Communication topology of players.
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Figure 2: The actions of players under algorithm
(3.3).
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Figure 3: The actions of players under algorithm
(4.2).
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Figure 4: The estimates on x1 of players under algo-
rithm (3.3).
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Figure 5: The estimates on x1 of players under algo-
rithm (4.2).

by simple calculation, we get the unique Nash equilibrium x∗=[−1, 1, −2]T .

Next, we verify the effectiveness of the proposed two Nash equilibrium seeking
algorithms. For algorithm (3.3), take [α1, α2, α3] = [5, 4, 3]. For algorithm (4.2), take
[ūi, ui] = [5, 3] for i = 1, 2, 3. And take [δ1, δ2, δ3] = [10, 5, 8], x(0) = [10, −2, 6] and
y(0) = [1, 2, 3, −2, 2, −4, −1, 2, 0] for both of these two algorithms. The players’ com-
munication topology is shown as Fig. 1. Fig. 2 and Fig. 3 show that the evolution of 3
players’ actions under Nash equilibrium seeking algorithms (3.3) and (4.2), respectively.
In order to verify that the estimates can converge to the players actions, Fig. 4 and Fig. 5
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show that the evolution of players’ estimates on x1 under Nash equilibrium seeking algo-
rithms (3.3) and (4.2), respectively. From Figs. 2-5, one can see that the estimates converge
to x1 in two seconds and x converges to x∗ in four seconds under both algorithms (3.3)
and (4.2).

6 Conclusion

In this paper, we investigated finite-time Nash equilibrium seeking problem and de-
signed distributed algorithms for quadratic and general non-cooperative games. It was
proved that players’ estimates could track the real actions in finite time by choosing ap-
propriated parameters and the actions of players converged to Nash equilibrium in finite
time under proposed algorithm. From the asymptotic convergence to the finite time con-
vergence, it may be enlightening to accelerate the Nash equilibrium seeking. The future
directions are to study how to further improve the convergence speed of Nash equilib-
rium seeking algorithm on the basis of guaranteed finite time convergence and consider
finite-time distributed generalized Nash equilibrium seeking problem.
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