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Abstract. In addition to measurement noises, real world data are often corrupted by
unexpected internal or external errors. Corruption errors can be much larger than
the standard noises and negatively affect data processing results. In this paper, we
propose a method of identifying corrupted data in the context of function approxi-
mation. The method is a two-step procedure consisting of approximation stage and
identification stage. In the approximation stage, we conduct straightforward function
approximation to the entire data set for preliminary processing. In the identification
stage, a clustering algorithm is applied to the processed data to identify the poten-
tially corrupted data entries. In particular, we found k-means clustering algorithm to
be highly effective. Our theoretical analysis reveal that under sufficient conditions the
proposed method can exactly identify all corrupted data entries. Numerous examples
are provided to verify our theoretical findings and demonstrate the effectiveness of the
method.
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1 Introduction

Real world data are never perfect—in addition to standard measurement noises, they are
often corrupted by unexpected and uncontrollable internal or external errors. The causes
of corruption include human processing errors, data transmission or storage errors, ma-
chine malfunction during data collection, etc. The resulting corrupted errors can be large
in magnitude and do not follow certain statistical laws. The presence of data corruptions
thus can significantly impact data analysis results in a negative manner.
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In this paper, we consider the problem of identifying data corruptions in the context
of regression modeling (supervised learning). Our approach is motivated by function ap-
proximation with corruptions [8,30]. Let f (x) be an unknown function defined in a bounded
domain D, xi ∈D be an input data and f (xi) be its corresponding clean output value for
i=1,.. . ,m. We are interested in the case where the data vector is corrupted by unexpected
external errors that may be caused by aforementioned reasons. That is, the available data
vector is given by

y= f +es,

where f =( f (x1),··· , f (xm))T is the clean output vector (which may contain the standard
noises), and es∈R

m is the corruption vector with sparsity s, which stands for the number
of corrupted data entries. While the vector y is the available data vector, no information
on es is available.

A general procedure of approximating functions can be described as a class of min-
imization problem. Given a set of basis {φj}n

j=1 in D, we consider an approximation in

the form of f̃ (x) =∑
n
j=1cjφj(x). We are interested in the oversampled case, m> n. The

standard approach seeks to find the coefficients c=(c1,··· ,cn)T that minimize the errors,
i.e.,

min
c

‖y−Ac‖, where A=
(
aij

)
=
(
φj(xi)

)
and y=(yi).

We note that the available data y is contaminated by es and the clean output f is not
available to us. The use of the vector 2-norm yields the well-known least squares (LSQ)
method, whose literature is too large to mention here. In general, LSQ method is known
to be robust when the corruption errors are relatively small (e.g. Gaussian noise). The
use of the vector 1-norm yields the ℓ1 minimization, which is called least absolute de-
viations (LAD) is also studied extensively in [1, 4, 6, 26, 27, 30, 31]. The LAD method is
known to be robust against outliers and sparse corruptions [30]. In the spirit of seek-
ing sparsity, one can also employ any sparse approximation techniques that include ℓ1−2

minimization [23, 33–35] (the difference between the 1-norm and the 2-norm), or ℓp min-
imization [10, 11, 32] for 0 < p < 1. Although these methods are capable of producing
accurate function approximation, they can not detect corrupted data, especially when the
number s of corrupted data is unknown.

In this paper, we present an approach for identifying the corrupted data entries in
a given measurement data vector without the knowledge of the number (s) of the cor-
rupted data entries. We propose a two-step procedure that consists of approximation
and identification stages. At the approximation stage, we conduct function approxima-
tion with the corrupted data and obtain a residual vector. At the identification stage,
we apply a clustering algorithm to the residual vector to separate the residues into cor-
rupted entries and clean entries. Specifically, we employ k-means clustering [3, 17, 24], a
well-established clustering algorithm with a wide range of applications [5, 13, 21, 25]. We
then provide theoretical results on the sufficient conditions under which the proposed
approach can detect the corrupted data exactly (Theorem 4.1).
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There exist other data cleaning techniques to detect (mostly) outliers in data. See,
for example, overviews in [2, 18] and the references therein. In particular, the clustering
based approach [20, 36] is the most relevant one to the present work. However, most of
the approaches are not designed for regression-type data (supervised learning) and often
require probabilistic assumptions on the corruption. A distinct and novel feature of our
method is the explicit use of function approximation algorithm in conjunction with the
clustering algorithm. This allows us to obtain accurate regression results in the presence
of data corruption, and more importantly, without making any probabilistic assumptions
on the corruption.

This rest of this paper is organized as follows. After the basic problem setup and pre-
liminary in Section 2, we present the proposed method in Section 3. Theoretical guaran-
tees are presented in Section 4. To demonstrate the effectiveness of our proposed method,
a set of numerical examples are presented in Section 5.

2 Setup and preliminary

Let f (x) be an unknown target function defined in a domain D in R
d. Let us denote

{1,2,··· ,m} by [m] for any m∈N. Given a set {φi(x)}n
i=1 of basis functions, we write an

approximation to f (x) as

f (x)≈ f̃ (x)=
n

∑
i=1

ciφi(x), (2.1)

where c=(c1,··· ,cn)T is the coefficient vector. Let

A=(aij), aij =φj(xi), i∈ [m], j∈ [n], (2.2)

be the model matrix and f = ( f (x1),··· , f (xm))T be the function value vector of f (x) at
locations x1,. . .,xm. Let

y= f +es (2.3)

be the actual data vector, where es is external corruption error vector with sparsity s≥0.
The sparsity s is defined as the cardinality of the support of es. That is, let Λ be the
support of es,

Λ={i | (es)i 6=0}=supp(es), such that |Λ|= s. (2.4)

Throughout this paper we consider the overdetermined case, i.e., m>n, and assume the
model matrix A is full rank. Our goal is to identify the locations of the corruptions, i.e.,
Λ, without the prior knowledge of s= |Λ|.

We remark that the function value vector f may contain standard (small) random
noises (e.g. Gaussian). These standard noises are typically filtered out by a chosen re-
gression algorithm. We do not aim to detect such small noises, and their presence in f
does not change our results.
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2.1 Function approximation with corrupted data

We briefly review function approximation techniques under corrupted data. We empha-
size that only the data vector y is available and the clean data f is not available.

We provide a unified approach that describes many approximation methods includ-
ing LSQ, LAD, ℓ1−2 and ℓp minimization. We seek to find a coefficient vector that mini-
mizes the error:

min
c

‖y−Ac‖. (2.5)

The underlying principle of the unified framework lies on the following equivalence. Let
F∈R

(m−n)×m be the kernel of the model matrix A, which can be explicitly constructed via
QR factorization, see [30]. Then, the problem of (2.5) is equivalent to

min
g

‖g‖ subject to Fg=Fy. (2.6)

When the vector 1-norm is used, the equivalence has been established in [8]. Since g=
y−Ac is equivalent to Fg= Fy, the equivalence remains true in more general choices of
metric, e.g., ℓ1−2, ℓp where 0 < p < 1. Also, given a solution g∗ of (2.6), since y−g∗ is
in the range of A, one can obtain its corresponding solution c∗ of (2.5) by solving Ac=
y−g∗. When vector 1-norm is employed, this becomes the least absolve deviation (LAD)
method, also known as ℓ1 minimization. Its solver is well established, cf., [7].

If the error is measured by the vector 2-norm, this becomes the well known least
squares (LSQ) problem, and the solution to (2.5) is

c∗=A†y,

where A† is the Moore-Penrose pseudoinverse of A.
If the error is measured by the difference between the vector 1-norm and 2-norm, (2.6)

becomes ℓ1−2 minimization, which has been studied in [14,23,34,35]. It can also be solved
efficiently using methods such as difference of convex functions (DCA) [35].

If the error is measured by vector p-norm with 0< p<1, the problems becomes the ℓp

minimization. See, for example, [9, 28, 29].
The work of [30] rigorously proved that the ℓ1-minimization solution with corrupted

data are close to the regression results with uncorrupted data f , thus effectively elim-
inating the corruption errors. Further details can be found in [30]. The ℓ1−2 and ℓp

minimization show good performance of eliminating the effect of corruption errors in
function approximation in the underdetermined system in a number of works [28,34,35],
although their proofs remain lacking at the moment. We conduct some experiments to
evaluate its performance in the overdetermined system.

2.2 k-means clustering

The k-means clustering [24] is one of the most common methods for clustering problems.
Given a data vector r = (r1,. . .,rm), the k-means clustering method classifies r into k> 1
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groups according to

min
Ii,i=1,···,k

1

|Ii| ∑
j∈Ii

(ri−µIi
)2 , (2.7)

where

µIi
=

1

|Ii| ∑
j∈Ii

ri, [m]=
k⋃

i=1

Ii, Ii∩Ij =∅, ∀i 6= j. (2.8)

Since solving the k-means clustering problem (3.1) is NP-hard, a heuristic local search
method, termed Lloyd’s algorithm [22], is commonly used in practice.

3 Proposed method

We present a two-step procedure to identify the corrupted data entries in a given data
vector. We first apply a straightforward function approximation scheme, as described
in Section 2.1, to the data vector and obtain not only the coefficient vector c∗ but also
a residual vector r = |y−Ac∗|. We then apply the k-means clustering algorithm to the
residual vector r to identify the index set of the corruption vector es. Here is an outline of
the method.

• Step 1: Approximation. Given a set of data {(xi,yi)}m
i=1 that contain corrupted en-

tries, select a set of basis {φi(x)}n
i=1 and compute the solution c∗ to

min
c

‖y−Ac‖,

where the norm is determined by the selected approximation method. Evaluate the
residual vector r= |y−Ac∗|.

• Step 2: Identification. Apply k-means clustering to the residual vector r with k=2
and obtain

I∗= argmin
I⊂[m],|I |≤⌊ m

2 ⌋

1

|I| ∑
i∈I

(ri−µI )2+
1

|I∁| ∑
i∈I∁

(ri−µI∁)
2, (3.1)

where I∁ is the complement of I . The set I∗ is the index set of corrupted data in y,
i.e., I∗=Λ where Λ is defined in (2.4).

Once the corrupted data entries are identified, one can remove them from the data set
and re-run the function approximation method for improved results.

The choice of the approximation method in Step 1 shall have significant impact on the
overall performance of the proposed method. Based on the results of [30], we advocate
the use of sparsity promoting methods such as LAD, ℓ1−2 or ℓp with 0< p<1.
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4 Theoretical results

In this section we provide theoretical analysis of the proposed method. Let us first define
the following quantities that measure the magnitude of the corruptions and the approxi-
mation errors from the first stage:

amin = min
1≤i≤m

|( f −Ac∗)i|, |e|min =min
i∈Λ

|(es)i|,

amax= max
1≤i≤m

|( f −Ac∗)i|, |e|max =max
i∈Λ

|(es)i|,
(4.1)

where Λ is the support of es in (2.4). We make the following assumptions.

Assumption 4.1. Suppose amax< |e|min, i.e., the external corruption errors are larger than
the approximation errors. And the number of corrupted data is smaller than the half of
the total number of data, i.e., 0< s≤⌊m

2 ⌋.

We note that under Assumption 4.1, if the number s of corrupted data were known,
one could identify the corrupted data entries by simply choosing the first s largest com-
ponents from the residual vector. In this paper, however, we do not know the sparsity s
a priori.

We are now in a position to present our main result that provides general sufficient
conditions that guarantee the exact identification of the corrupted entries.

Theorem 4.1. Suppose Assumption 4.1 holds and the external errors satisfy

‖e‖1

s
>γamax, where γ=2+

m

2
√

s(m−s)
. (4.2)

For any subset Ω⊂ [m] of u= t+l elements, let Ωt =Λ∩Ω, where |Ωt|= t, and Ωl =Λ∁∩Ω,
where |Ωl |= l. Suppose the followings are satisfied: for all 0<u= l+t≤⌊m

2 ⌋, and t 6=0,

∑
i∈Ω∁

t

|(es)i|≥αu ∑
i∈Ωt

|(es)i|+Ct,l(ca)amax, if µΩ<µ
Λ∁ ,

∑
i∈Ω∁

t

|(es)i|≥−α̃u ∑
i∈Ωt

|(es)i|+Ht,l(ca)amax, if µΩ≥µ
Λ∁ ,

(4.3)

where amax−amin
amax

≤ ca ≤1, µI is defined on (2.8) for some index set I⊂ [m],

αx =
m−x

m−s−x

(
−1+

√
s(m−s)

x(m−x)

)
, α̃x =

m−x

m−s−x

(
1+

√
s(m−s)

x(m−x)

)
, (4.4)

and

Ct,l(ca)=





2(s−t), if 0<u< s,

2(s−t)+2t|αu |+
[
l
√

s(m−u)
u(m−s)

−(s−t)
]

ca, if s≤u≤⌊m
2 ⌋,

Ht,l(ca)=2(s−t+tα̃u)+l

√
s(m−u)

u(m−s)
ca.
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Then the solution set I∗ of the k-means clustering algorithm (3.1) is equal to Λ. That is, the
k-means clustering algorithm identifies the corrupted data entries exactly.

Proof. The proof can be found in Appendix A.

The condition of (4.2) can be understood that the external errors are non-trivial. The
non-triviality can be viewed in two ways. One way is that the corruptions are larger
than the approximation errors. The other is that the approximation performed in the first
stage produces an accurate solution that has sufficiently small errors compared to the
corruptions.

Theorem 4.1 provides general sufficient conditions for the perfect identification, how-
ever, the conditions of (4.3) are not easy to be checked. Thereby, we provide a simplified
version as follows. For notational convenience, we set 0·α0 :=0.

Theorem 4.2. Under the same conditions of (4.2), suppose the external errors satisfy

|e|min ≥2amax+M, (4.5)

where

M=max

{
(s−1)αs−1|e|max, g

(⌊m

2

⌋)
ca ·amax,

m

2
√

s(m−s)
ca ·amax

}
,

ca, αu are defined in (4.4), and

g(u)=
(u−s)(m−s−u)√

s(m−s)u(m−u)−s(m−s)
. (4.6)

Then the k-means clustering exactly identifies the corrupted data.

Proof. The proof can be found in Appendix B.

It is worth noting that when s = 1, since 0·α0 = 0, M does not depend on |e|max.
Therefore, the single location can be exactly identified as long as the external error is
sufficiently larger than the approximation errors. Also, when the approximation scheme
interpolates one of the uncorrupted data y[m]\Λ, since amin=min1≤i≤m |( f −Ac∗)i|=0, we
have ca =1.

The condition of (4.5) implies |e|min ≥ 2amax+(s−1)αs−1|e|max. This shows that the
smallest magnitude of the corruptions should not be too small compared to the largest
one. Roughly speaking, as long as the corruption vector es has a large (sample) mean and
a small (sample) variance, relative to the approximation errors, the proposed method can
successfully identify the corrupted data out of y.

The following result is a special case when all corruptions have the same magnitude.
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Corollary 4.1. Suppose the external errors have a constant magnitude, i.e., |(es)i|= |e| for all
i∈Λ, and the condition of (4.2) is satisfied. If the corruption errors satisfy |e|≥ γ̃|a|max, where

γ̃=max

{
2+ca max

{
g
(⌊m

2

⌋)
,

m

2
√

s(m−s)

}
,

2

1−(s−1)αs−1

}
, (4.7)

and g(u) is defined in (4.6), the k-means clustering exactly identifies the corrupted data.

Proof. It can be checked that (s−1)αs−1<1 as follow:

(s−1)αs−1<1

⇐⇒ (s−1)(m−s+1)

m−2s+1

√
s(m−s)

(s−1)(m−s+1)
<1+

(s−1)(m−s+1)

m−2s+1

⇐⇒
√

s(s−1)(m−s+1)(m−s)< s(m−s)

⇐⇒ (s−1)(m−s+1)< s(m−s)

⇐⇒ 2s<m+1.

Then the proof immediately follows from Theorem 4.2 as emax= emin = e.

5 Numerical examples

We provide several numerical examples to demonstrate the performance of the proposed
method and verify our theoretical findings.

For the approximation stage of our two-stage method, we employ four approximation
schemes to demonstrate the performances. These include ℓ1−2, ℓp with p=0.5, LAD and
LSQ minimization. To solve the ℓ1-minimization problem (LAD), we employ ℓ1-Magic
package [7]. To solve the ℓ1−2 minimization problem, difference-of-convex algorithm
(DCA) [35] is adopted. To solve the ℓp minimization with p= 0.5. we utilize iteratively
reweighed least squares [28]. Since LAD method can effectively eliminate the effect of the
corrupted data [30], we conduct experiments to validate ℓ1−2 and ℓp (0< p<1) minimiza-
tions can also perform similarly. For the identification stage of our method, we apply the
k-means clustering (3.1). Specifically, we employ k-means++ [3], a widely used algorithm
in many applications [5, 13, 21, 25].

5.1 Setup of the numerical tests

We consider several test functions from [16], which have been widely used for multidi-
mensional function integration and approximation tests. More specifically, we choose the
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following functions:

f1=exp

(
−

d

∑
i=1

c2
i

(
xi+1

2
−wi

)2
)

; (GAUSSIAN);

f2=exp

(
−

d

∑
i=1

ci

∣∣∣∣
xi+1

2
−wi

∣∣∣∣

)
; (CONTINUOUS);

f3=

(
1+

d

∑
i=1

ci
(xi+1)

2

)−(d+1)

, ci=
1

i2
; (CORNER PEAK);

f4=
d

∏
i=1

(
c−2

i +

(
xi+1

2
−wi

)2
)−1

; (PRODUCT PEAK),

(5.1)

where c= (c1,··· ,cd) are parameters controlling the difficulty of the functions, and w=
(w1,··· ,wd) are shifting parameters. Also, for d= 2, we consider the Bird function [19],
Franke function [15] and Matlab Peaks function.

f5=(x1−x2)
2+sin(x1)e

(1−cos(x2))
2

+cos(x2)e
(1−sin(x1))

2

; (BIRD);

f6=0.75exp
(
(9x1−2)2/4−(9x2−2)2 /4

)

+0.75exp
(
(9x1+1)2/49−(9x2+1)/10

)

+0.5exp
(
(9x1−7)2 /4−(9x2−3)2/4

))

−0.2exp
(
−(9x1−4)2−(9x2−7)2

)
; (FRANKE);

f7=3(1−x)2 exp
(
−x2−(y+1)2

)

−10
(

x/5−x3−y5
)

exp
(
−x2−y2

)

−1/3exp
(
−(x+1)2−y2

)
; (PEAKS).

(5.2)

We generate the corrupted data y by adding external errors es to the samples of the
test functions f , i.e., y= f +es . The sample points are uniformly drawn from [−1,1]d. The
corruptions are drawn from a Gaussian distribution N (µ,σ2).

To measure how successfully the proposed method identifies the corrupted data, we
introduce identification success rate (ISR), which is defined by the ratio of the number
of the correctly identified corrupted data to the total number of corrupted data. More
precisely,

ISR:=
|I∗∩Λ|
|Λ| ,

where Λ = supp(es) and I∗ is the solution to (3.1). We report the results by different
choices of methods, in conjunction with ℓ1−2, ℓp, LAD and LSQ minimization in approx-
imation stage, and label them as ‘k-ℓ1−2’, ‘k-ℓp’, ‘k-LAD’ and ‘k-LSQ’, respectively.
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Once some (potentially corrupted) data yI∗ are identified by the proposed method,
one can exclude these from the original data y and re-apply the approximation scheme
on the filtered data set y[m]\I∗ to obtain improved approximation results. These improved
results will be compared against the results obtained by naive use of the ℓ1−2, ℓp, LAD
and LSQ to the original corrupted data y, labelled as ‘ℓ1−2’, ‘ℓp’, ‘LAD’ and ‘LSQ’, respec-
tively. For reference, we also present the results by LSQ on uncorrupted perfect data f ,
denoted as ‘p-LSQ’ with “p” stands for perfect data. The numerical approximation errors
are computed in vector 2-norm on a fixed set of points, different from the sampling points
used in the approximation. In all tests, we report results averaged over 50 independent
simulations.

Different basis functions in the approximations are considered. We present the results
by Legendre polynomials for polynomial regression and by radial basis functions for
non-polynomial regression. Different dimensions d are also considered. All the methods
behave quite similarly in different dimensions. Therefore, we present a set of selected
results to cover all combinations of the tests.

5.2 Four-dimensional examples: Legendre polynomial basis

First, the results in four dimensions d = 4 using normalized Legendre polynomials are
shown. We choose the approximation space to be the total degree polynomial space Pk

of degree up to k, whose dimensionality is

n=nk =dimPk =

(
d+k

d

)
. (5.3)

The number of samples m and the number of corruptions s are set to be m∼ nlogn and
s=α·m, respectively, where α is the corruption rate. It is known in [12] that it is necessary
to choose the number of samples by m∼nlogn in order to obtain stable LSQ polynomial
regression results. In our tests, we set m=2⌈nlogn⌉ and s=max{1,⌊αm⌋}.

In Fig. 1, we show the ISR results by ‘k-ℓ1−2’, ‘k-ℓp’, ‘k-LAD’ and ‘k-LSQ’ for f1, with
respect to the increasing polynomial degree from 1 to 8. The rate of corruption is α=0.05,
i.e., 5% of the samples are corrupted. At the polynomial degree k = 1, since s = 1, the
IRS is either 0 or 1. The left of Fig. 1 shows the results obtained with corruption errors
setting as a constant 10, representing rather large non-probabilistic errors. The minimum
and the maximum ISRs among 50 independent simulations are also presented as dashed
lines. We observe that the ‘k-ℓ1−2’, ‘k-ℓp’ and ‘k-LAD’ perfectly identify the corrupted
data at all polynomial degrees in all 50 independent simulations. The ‘k-LSQ’ identifies
(on average) more than 95% of the corrupted data at all degrees. Even in the worst case,
the minimum ISRs of ‘k-LSQ’ are over 85%, except for the polynomial degrees of 2. This
indicates that ℓ1−2, ℓp and LAD are preferred choices in the approximation stage over LSQ
in this case. On the right of Fig. 1, the results obtained with corruption errors generated as
a constant of 0.1 are shown. These are relatively small corruption errors that may blend
into the approximation errors. We observe that the ISRs by all methods notably drop,
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Figure 1: Identification success rates for f1 with ci =2 and wi =0.5 are shown with respect to the polynomial
degree from 1 to 8 at d= 4. In the approximation stage, the approximation coefficients are obtained by ℓ1−2,
ℓp, LAD and LSQ on m= 2nlogn sample points. The corruption rate is set to be α= 0.05. The corruption

errors are (left) (es)Λ =10 and (right) (es)Λ =0.1.
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Figure 2: Approximation errors for f1 with ci =2 and wi=0.5 are shown with respect to the polynomial degree
from 1 to 8 at d=4. The corruption errors are (top) (es)Λ=10 and (bottom) (es)Λ=0.1. On the left, the results
of k-LAD are shown. On the middle and the right, the results of k-LSQ and k-ℓ1−2 are shown, respectively.

especially at the lower degrees of k= 1,2,3. However, at the higher polynomial degrees
when numerical approximation errors become smaller, the averaged ISRs by all methods
are above 95%. More importantly, perfect identifications are achieved by ‘k-ℓ1−2’ and
‘k-LAD’ at k=6,7,8.

In Fig. 2, we compare the approximation errors for f1 by k-LAD k-LSQ and k-ℓ1−2,
where p-LSQ is used for reference. The corruption errors are (es)Λ = 10 on the top and
(es)Λ=0.1 on the bottom. On the left, the results by LAD and k-LAD methods are shown.
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Table 1: The cardinality of the polynomial space n at dimension d=4 along with the number of samples m and
the number of corruptions s at the corruption rate of α=0.05. The constant γ̃ of (4.7) is also shown along with
the maximum of the maximum approximation errors by LAD of 50 independent simulations.

d=4 k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8

n 5 15 35 70 126 210 330 495

m 18 82 250 596 1,220 2,246 3,828 6,144

s; (α=0.05) 1 4 12 29 61 112 191 307

(s−1)αs−1 0 0.47 0.49 0.50 0.50 0.50 0.50 0.50

γ̃ of (4.7) 5.18 5.32 5.33 5.32 5.29 5.30 5.30 5.30

amax of LAD 0.97 0.35 0.41 0.26 0.65 0.16 0.16 0.07

In the middle and right, the results by LSQ methods and ℓ1−2 are shown, respectively.
Since the results by ℓp and k-ℓp are almost identical to those by LAD and k-LAD, we
decide not to present. As expected from [30], we clearly observe that LADs produce a
lot smaller approximation errors than those by LSQs. Also, it can be seen that all results
produced by using LAD methods are almost identical with those by p-LSQ and compared
with LAD, k-LAD is always slightly better or equally good. On the right, we compared
ℓ1−2 and k-ℓ1−2, the performance of ℓ1−2 is similar to that of LAD. In the middle, we
observe that k-LSQ performs better than or at least similarly to the standard LSQ using
the corrupted data. It can be seen that on the right where k-LSQ outperforms LSQ, the
ISRs by ‘k-LSQ’ are at least 90% on average. On the bottom where the performances of
‘k-LSQ’ and LSQ are similar, all methods produce very similar results. This is mainly due
to the small magnitude of the external errors.

On Table 1, we compute the constant γ̃ of (4.7) to justify the results of 100% ISRs of
‘k-LAD’ at (es)Λ =10. It can be checked that the assumption of Corollary 4.1 is

10= |e|min ≥5.35|a|max ,

and it is satisfied in all cases. Therefore, by Corollary 4.1, the k-LAD should exactly
identify the corrupted data at all 50 independent simulations and the left of Fig. 1 verifies
it.

Similar behaviors are observed in other test functions of (5.1). In Fig. 3, we present
the ISRs for f2, f3 and f4 with respect to the increasing polynomial degree from 1 to 8.
Here, the external errors are chosen to be rather large; (es)Λ∼N (10,1) for both f2 and f3,
and (es)Λ ∼N (105,104) for f4. We can observe that the k-ℓ1−2, k-ℓp and k-LAD perfectly
identify all locations of corrupted data at all polynomial degrees, in all 50 independent
simulations, and at all test functions. Although the k-LSQ can not achieve the perfect
identifications, it identifies (on average) more than 97% of the corrupted data.

On the top of Fig. 4, we show the ISRs for f2, f3, f4 where the external errors are chosen
to be (es)Λ ∼N (10,202) for f2, (es)Λ ∼N (0,102) for f3, and (es)Λ ∼N (10,1) for f4. We
observe that the ISRs by all methods notably drop. Our theoretical analysis indicates
that the perfect identification can be achieved as long as the condition of Theorem 4.2 is
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Figure 3: The identification success rates (ISRs) with respect to the polynomial degree from 1 to 8 at d=4 are
shown. On the left, the results for f2 with ci=i, wi=0.5 at (es)Λ∼N (10,1) are shown. On the middle, the results

for f3 at (es)Λ ∼N (10,1) are shown. On the right, the results for f4 with ci =d, wi=0 at (es)Λ∼N (105,104)
are shown.
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Figure 4: Identification success rates and approximation errors are shown with respect to the polynomial degree
from 1 to 8 at d= 4 on the top and on the bottom, respectively. On the bottom, we compare LSQ, k-LSQ,
and p-LSQ. On the left, the results for f2 with ci = i, wi = 0.5 at (es)Λ ∼N (10,202) are shown. On the

middle, the results for f3 at (es)Λ ∼N (0,102) are shown. On the right, the results for f4 with ci =d, wi=0 at
(es)Λ ∼N (10,1) are shown.

satisfied. Especially,

|e|min ≥2amax+(s−1)αs−1|e|max, amax= max
1≤i≤m

|( f −Ac∗)i|,

|e|min ≥2amax+max

{
g
(m

2

)
,

m

2
√

s(m−s)

}
amax,

(5.4)

where g(x) is defined in Theorem 4.2. These conditions indicate: (a) the minimum magni-
tude of the external errors should not be too small compared to the maximum magnitude
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of the external errors; and, (b) the minimum magnitude of the external errors should be
sufficiently larger than the approximation errors. In the view of (a) and (b), Fig. 4 can
well be explained. On the top left and middle, it can be seen that k-ℓ1−2, k-ℓp, k-LAD and
k-LSQ achieve the perfect identifications at the polynomial degree 1 which results in s=1
at α=0.05. In this case, condition (a) does not apply, and only condition (b) is needed for
the perfect identifications. At the polynomial degrees k> 1, since (es)Λ ∼N (10,202) for
f2, and (es)Λ∼N (0,102) for f3, (a) is very unlikely to be satisfied. In the right of Fig. 4, the
proposed methods barely identify the corrupted data at all polynomial degrees. In this
case, since (es)∼N (10,1), (a) is very likely to be satisfied. However, since the target func-
tion f4 here has the magnitude of O(105), with a peak value 216 =65,536, the corruption
errors are smaller than the approximation errors. Thus (b) is not satisfied.

On the bottom of Fig. 4, the approximation results for (left) f2, (middle) f3, (right) f4

by all LSQs are shown, respectively. We can observe that although k-LSQ solutions for
f2 and f3 are still contaminated by the external errors, k-LSQ produces smaller approxi-
mation errors than those by the standard LSQ with the corrupted data. On the right, all
LSQ methods produce almost identical results. Again, this is because the external errors
are too small to be detected in this case.

5.3 Two-dimensional examples: Radial basis functions

Here we present the results by radial basis functions. In particular, we consider the Gaus-
sian radial basis function,

φi(x)=exp(−ǫ2‖x−zi‖2
2), (5.5)

centered at the points zi with parameter ǫ > 0. Then center zi are chosen to be tensor
equidistance points.

In Fig. 5, the results using ǫ= 8.6 for the Bird function (5.2) are shown with respect
to the number of basis functions. The number of data is set to be 1800 and the corrup-
tion rates are set to be α= 0.1. That is, 10% of data is corrupted, i.e., s= 180. The ISRs
and approximation errors for the bird function are shown on the top and bottom in Fig. 5,
respectively. On the left, the approximation errors and ISRs on es∼N (10,1), rather big er-
rors, are shown with respect to increasing number of radial basis functions. All methods
identify over 80% corrupted data at all 50 independent simulations when the number of
basis is 49, 64, 81 and 100. It can be seen that as the number of basis increases the average
ISRs increase and the approximation errors decrease. On the right of Fig. 5, the approxi-
mation errors and the ISRs on es ∼N (1,1), rather small errors, are shown. Similar to the
previous examples, the ISRs by both methods notably drop. This is due to the relatively
smaller magnitude of the corruption errors. Note that the approximation errors decrease
with respect to the increasing number of basis functions for all methods except LSQ, even
though the corruptions are partially identified.

In Fig. 6, we show the ISR results by ‘k-ℓ1−2’, ‘k-ℓp’, ‘k-LAD’ and ‘k-LSQ’ for f6 and f7,
with respect to the increasing number of basis functions. The rate of corruption is α=0.05.
On the left, the results of Franke function are shown with corruption errors drawn from
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Figure 5: Identification success rates (top) and approximation errors (bottom) for the Bird function (5.2)
are shown with respect to the number of radial basis functions at d = 2. In the approximation stage, the
approximation coefficients are obtained by ℓ1−2, ℓp, LAD and LSQ on m=1800 sample points. The corruption

rate is set to be α=0.1. The external errors are generated from (left) (es)Λ∼N (10,1) and (right) (es)Λ∼N (1,1).
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Figure 6: Identification success rates for f6 are shown respect to the number of radial basis functions at d=2.
In the approximation stage, the approximation coefficients are obtained by ℓ1−2, ℓp, LAD and LSQ on 1800

sample points. The corruption rate is set to be α=0.05. The corruption errors are drawn from (left) N (10,1)
and (right) N (−10,1).
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N (10,1). On the right, the results of Peaks function are shown with corruption errors
drawn from N (−10,1). We observe that the ‘k-ℓ1−2’, ‘k-ℓp’, and ‘k-LAD’ identify over
99% corruptions and ’k-LSQ’ identifies over 97% corruptions.

6 Summary

We proposed a two-stage approach to identify corrupted data from a given data set. In
the first stage, an approximation method is applied to the original data set to create a
function approximation model. In particular, sparsity promoting methods such as ℓ1

minimization, ℓ1−ℓ2 minimization are suitable. In the second stage, k-means cluster-
ing algorithm is applied to the approximation model to identify the corrupted data en-
tries. We demonstrated that, both theoretically and numerically, the proposed approach
is highly effective and, under mild conditions, can exactly identify all the corrupted en-
tries.

A Proof of Theorem 4.1

Proof. Let F(I) = ∑i∈I |ri−µI |2, where µI = 1
|I | ∑i∈I |ri|. Then it can be checked that

F(I)=∑i∈I r2
i − 1

|I | (∑i∈I |ri|)2 . For the true corruption index Λ, we have

F(Λ)= ∑
i∈Λ

(ei+ai)
2− 1

s

(

∑
i∈Λ

|ei+ai|
)2

,

F(Λ∁)= ∑
i∈Λ∁

a2
i −

1

m−s

(

∑
i∈Λ∁

|ai|
)2

,

and for any index I such that |I|=u= t+l, we have

F(I)= ∑
i∈Ωt

(ei+ai)
2+ ∑

i∈Ωl

a2
i −

1

u

(

∑
i∈Ωt

|ei+ai|+ ∑
i∈Ωl

|ai|
)2

,

F(I)= ∑
i∈Ω∁

t

(ei+ai)
2+ ∑

i∈Ω∁
l

a2
i −

1

m−u


 ∑

i∈Ω∁
t

|ei+ai|+ ∑
i∈Ω∁

l

|ai|



2

.

For notational convenience, let

A1= ∑
i∈Ωt

|ai+ei|, A2= ∑
i∈Ω∁

t

|ai+ei|, B1= ∑
i∈Ωl

|ai|, B2= ∑
i∈Ω∁

l

|ai|.

The goal is to show the following inequality

O(Λ) :=F(Λ)+F(Λ∁)≤O(I) :=F(I)+F(I∁).
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Observe that

O(Λ)= ∑
i∈Λ

(ei+ai)
2+ ∑

i∈Λ∁

a2
i −

1

s
(A1+A2)

2− 1

m−s
(B1+B2)

2 ,

O(I)= ∑
i∈Λ

(ei+ai)
2+ ∑

i∈Λ∁

a2
i −

1

u
(A1+B1)

2− 1

m−u
(A2+B2)

2 .

Hence, it suffices to show that

1

u
(A1+B1)

2+
1

m−u
(A2+B2)

2≤ 1

s
(A1+A2)

2+
1

m−s
(B1+B2)

2 ,

or equivalently,

0≤
(

1

s
− 1

m−u

)
A2

2+2

(
A1

s
− B2

m−u

)
A2+

(
1

s
− 1

u

)
A2

1

+

(
1

m−s
− 1

u

)
B2

1+

(
1

m−s
− 1

m−u

)
B2

2+
2

m−s
B1B2−

2

u
A1B1.

Note that u= t+l is the number of elements in any subset of Ω such that |Ω|≤|Ω∁|. Also
2s<m. Due to its symmetry, without loss of generality, let 0<u= t+l <m−s. Then the
coefficient of A2 is positive and the quadratic formula with respect to A2 gives

A2≥
−
(

A1
s − B2

m−u

)
+
√
D

1
s − 1

m−u

, or A2≤
−
(

A1
s − B2

m−u

)
−
√
D

1
s − 1

m−u

,

where

D=

(
A1

s
− B2

m−u

)2

−
(

1

s
− 1

m−u

)
J ,

J =
u−s

su
A2

1+

(
1

m−s
− 1

u

)
B2

1−
u−s

(m−s)(m−u)
B2

2+
2

m−s
B1B2−

2

u
A1B1.

After some calculations, we have

D=
((m−s)A1+(m−s−u)B1−uB2)

2

s(m−s)u(m−u)
.

Since

√
D=

|(m−s)A1+(m−s−u)B1−uB2|√
s(m−s)u(m−u)

=

√
u(m−s)

s(m−u)
|µI−µ

Λ∁ |,
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where µ
Λ∁ = 1

m−s ∑i∈Λ∁ |ri|, and µI= 1
|I | ∑i∈I |ri|, we have

A2≥
−(m−u)A1+sB2+

√
s(m−s)u(m−u)|µI−µ

Λ∁ |
m−s−u

or A2≤
−(m−u)A1+sB2−

√
s(m−s)u(m−u)|µI−µ

Λ∁ |
m−s−u

.

Furthermore, one can equivalently rewrite the above as

µΛ ≥
−A1+B2+

√
(m−s)u(m−u)

s |µI−µ
Λ∁ |

m−s−u
,

or µΛ ≤
−A1+B2−

√
(m−s)u(m−u)

s |µI−µ
Λ∁ |

m−s−u
.

Suppose the external errors are sufficiently large enough to satisfy

‖e‖1

s
>

(
2− ⌊m

2 ⌋
m−s−⌊m

2 ⌋

)
amax, (A.1)

where m/2> s>0. Then we can exclude the case of

µΛ ≤
−A1+B2−

√
(m−s)u(m−u)

s |µI−µ
Λ∁ |

m−s−u
(A.2)

as follow. The assumption (A.1) implies that

m−s−⌊m
2 ⌋

s(m−s) ∑
i∈Λ

|ei|>µ
Λ∁+

m−s−⌊m
2 ⌋

s(m−s) ∑
i∈Λ

|ai|

⇐⇒ m−s−⌊m
2 ⌋

s(m−s) ∑
i∈Λ

(|ei|−|ai|)>µ
Λ∁

=⇒ m−s−⌊m
2 ⌋

s(m−s) ∑
i∈Λ

|ei−ai|>µ
Λ∁

=⇒ m−s−u

m−s
µΛ >µ

Λ∁ . (A.3)
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And (A.2) is equivalent to

(m−s−u)µΛ+

√
(m−s)u(m−u)

s
|µI−µ

Λ∁ |+A1≤B2

⇐⇒ (m−s−u)µΛ+

√
(m−s)u(m−u)

s
|µI−µ

Λ∁ |+A1+B1≤B1+B2

⇐⇒ µΛ+

√
u(m−u)

s(m−s)
|µI−µ

Λ∁ |+ u

m−s
(µI−µΛ)≤µ

Λ∁

⇐⇒ m−s−u

m−s
µΛ−µ

Λ∁+

√
u(m−u)

s(m−s)
|µI−µ

Λ∁ |+ u

m−s
µI ≤0.

Since (A.3), the above gives a contradiction.
We thus focus on the case where

A2≥
−(m−u)A1+sB2+

√
s(m−s)u(m−u)|µI−µ

Λ∁ |
m−s−u

.

Depending on |µI−µ
Λ∁ |, we obtain the following two cases: if µI ≥µ

Λ∁ ,

A2≥αu A1+βuB1+γuB2, (A.4)

where

αx =
m−x

m−s−x

(
−1+

√
s(m−s)

x(m−x)

)
, βx =

√
s(m−x)

x(m−s)
, γx=

s

m−s

αx

βx
,

and if µI <µ
Λ∁ ,

A2≥−α̃u A1−βuB1+γ̃uB2, (A.5)

where

α̃x =
m−x

m−s−x

(
1+

√
s(m−s)

x(m−x)

)
, γ̃x=

s

m−s

α̃x

βx
.

Let η={i∈Λ|sign(êi) 6=sign(ai)} and ηt={i∈Λ|sign(êi) 6=sign(ai)}∩Ωt. Then η=ηt∪η∁
t .

Let assume |ei|> |ai | for i∈Λ. Then

A1= ∑
i∈Ωt

|ei+ai|= ∑
i∈Ωt

|ei|− ∑
i∈ηt

|ai|+ ∑
i∈Ωt\ηt

|ai|,

A2= ∑
i∈Ω∁

t

|ei+ai|= ∑
i∈Ω∁

t

|ei|− ∑
i∈η∁

t

|ai|+ ∑
i∈Ω∁

t \η∁
t

|ai|.

Thus (A.4) becomes

∑
i∈Ω∁

t

|ei|≥αu ∑
i∈Ωt

|ei|+αu


− ∑

i∈ηt

|ai|+ ∑
i∈Ωt\ηt

|ai|

+ ∑

i∈η∁
t

|ai|− ∑
i∈Ω∁

t \η∁
t

|ai|+βuB1+γuB2,
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and (A.5) becomes

∑
i∈Ω∁

t

|ei|≥−α̃u ∑
i∈Ωt

|ei|− α̃u


− ∑

i∈ηt

|ai|+ ∑
i∈Ωt\ηt

|ai|

+ ∑

i∈η∁
t

|ai|− ∑
i∈Ω∁

t \η∁
t

|ai|−βuB1+γ̃uB2.

Let amin =min1≤i≤m |( f −Ac∗)i| and amax =max1≤i≤m |( f −Ac∗)i|. A sufficient condition
for (A.4) is

∑
i∈Ω∁

t

|ei|≥αu ∑
i∈Ωt

|ei|+(lβu+|η∁
t |)amax−(s−t−|η∁

t |)amin

+αu


− ∑

i∈ηt

|ai|+ ∑
i∈Ωt\ηt

|ai|

+γuB2,

and a sufficient condition for (A.5) is

∑
i∈Ω∁

t

|ei|≥−α̃u ∑
i∈Ωt

|ei|+|η∁
t |amax−(s−t−|η∁

t |+lβu)amin

− α̃u


− ∑

i∈ηt

|ai|+ ∑
i∈Ωt\ηt

|ai|

+γ̃uB2.

Case 1: µI <µ
Λ

∁ . Since α̃u >0,

∑
i∈Ω∁

t

|ei|≥−α̃u ∑
i∈Ωt

|ei|+(|η∁
t |+|ηt |α̃u+(m−s−l)γ̃u)amax

−
[
(s−t−|η∁

t |)+(t−|ηt |)α̃u+lβu

]
amin.

Note that

−lβu+(m−s−l)γ̃u = s

[
1+

t

m−s−u

(
1+

√
(m−s)(m−u)

su

)]

= s+t(α̃u−1). (A.6)

Let 0≤ca<1 such that (1−ca)amax≤|ai | for all 1≤ i≤m. Then the above can be written as

∑
i∈Ω∁

t

|ei|≥−α̃u ∑
i∈Ωt

|ei|+H̃t,l(ca)amax, (A.7)

where

H̃t,l(ca)=−(s−t−2|η∁
t |)−(t−2|ηt |)α̃u+s+t(α̃u−1)

+
[
(s−t−|η∁

t |)+(t−|ηt |)α̃u+lβu

]
ca.



J. Hou, Y. Shin and D. Xiu / CSIAM Trans. Appl. Math., 2 (2021), pp. 81-107 101

By maximizing H̃t,l(ca) with respect to |ηt and |η∁
t , we have

Ht,l(ca) := max
|ηt|,|η∁

t |
H̃t,l(ca)=2(s−t+tα̃u)+lβuca,

where the maximum occurs at |ηt|= t and |η∁
t |=s−t. Then a sufficient condition for (A.7)

is

∑
i∈Ω∁

t

|ei|≥−α̃u ∑
i∈Ωt

|ei|+Ht,l(ca)amax. (A.8)

Suppose

‖es‖1

s
>

(
2+

m

2
√

s(m−s)

)
amax.

Then (A.8) is automatically satisfied at t=0:

Eq. (A.8) at t=0

⇐⇒ ‖es‖1≥H0,l(ca)amax = s

(
2+

√
l(m−l)√
s(m−s)

ca

)
amax, ∀1≤ l≤

⌊m

2

⌋

⇐=
‖es‖1

s
>

(
2+

m

2
√

s(m−s)

)
amax.

Case 2: µI ≥µ
Λ

∁ . Note that we have, for s≤u= t+l<m−s,

αt+l ≤αs =0, 0<βt+l ≤βs =1, γt+l ≤γs=0,

and for 0<u= t+l< s,

αt+l >αs =0, βt+l >βs =1, γt+l >γs=0.

A sufficient condition for (A.4) is

∑
i∈Ω∁

t

|ei|≥αu ∑
i∈Ωt

|ei|+(lβu+|η∁
t |)amax−(s−t−|η∁

t |)amin

+αu


− ∑

i∈ηt

|ai|+ ∑
i∈Ωt\ηt

|ai|

+γuB2.

For s≤u<m−s, since αu ≤0,

∑
i∈Ω∁

t

|ei|≥αu ∑
i∈Ωt

|ei|+(lβu+|η∁
t |−|ηt |αu)amax

−
[
(s−t−|η∁

t |)−(t−|ηt |)αu

]
amin+(m−s−l)γuamin
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and for 0<u< s, since αu >0,

∑
i∈Ω∁

t

|ei|≥αu ∑
i∈Ωt

|ei|+
(

lβu+|η∁
t |+(t−|ηt |)αu

)
amax

−
[
(s−t−|η∁

t |)+|ηt |αu

]
amin+(m−s−l)γuamax.

Let 0≤ ca <1 such that (1−ca)amax ≤|ai| for all 1≤ i≤m. By combining the above cases,
we could write

∑
i∈Ω∁

t

|ei|≥αu ∑
i∈Ωt

|ei|+C̃t,l(ca)amax,

where

C̃t,l(ca)=(t−2|ηt |)αu+lβu+(m−s−l)γu−(s−t−2|η∁
t |)

+ca

{
(s−t−|η∁

t |)+αu|ηt|−[(m−s−l)γu+tαu]1{s≤u<m−s}
}

.

For any 0≤|ηt |≤ t and 0≤|η∁
t |≤ s−t,

C̃t,l(ca)≤ t|αu|+(lβu+(m−s−l)γu−s)+2s−t−ca [(m−s−l)γu+tαu]1{s≤u<m−s}.

Note that

lβu+(m−s−l)γu = s

[
1+

t

m−s−u

(
1−
√

(m−s)(m−u)

su

)]
.

Thus we have

Ct,l(ca) := max
|ηt|,|η∁

t |
Ct,l(ca)

=2s+t

{
|αu|−1+

s

m−s−u

(
1−
√

(m−s)(m−u)

su

)}

+ca

[
l

√
s(m−u)

u(m−s)
−(s−t)

]
1{s≤u<m−s}. (A.9)

The second term in (A.9) can be simplified as follow: For 0<u< s,

αu−1+
s

m−s−u

(
1−
√

(m−s)(m−u)

su

)

=
m−u

m−s−u

(
−1+

√
s(m−s)

u(m−u)

)
−1+

s

m−s−u

(
1−
√

(m−s)(m−u)

su

)

=−2+
1

m−s−u

(√
s(m−s)(m−u)

u
−
√

s(m−s)(m−u)

u

)

=−2
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and for s≤u<m−s,

−αu−1+
s

m−s−u

(
1−
√

(m−s)(m−u)

su

)

=
m−u

m−s−u

(
1−
√

s(m−s)

u(m−u)

)
−1+

s

m−s−u

(
1−
√

(m−s)(m−u)

su

)

=
2s

m−s−u

[
1−
√

(m−s)(m−u)

su

]
.

Therefore,

Ct,l(ca)=





2(s−t), if 0<u< s,

2(s−t)+2t|αu |+ca

[
l
√

s(m−u)
u(m−s)

−(s−t)
]

, if s≤u≤⌊m
2 ⌋.

Hence, a sufficient condition for (A.4) is

∑
i∈Ω∁

t

|ei|≥αu ∑
i∈Ωt

|ei|+Ct,l(ca)amax, (A.10)

which completes the proof.

B Proof of Theorem 4.2

Proof. A sufficient condition for (A.8) is

|e|min ≥2amax+
lβu

s−t+tα̃u
caamax (B.1)

for all t,l such that 1≤ t+l≤ m
2 . It follows from (A.6) that

lβu

s−t+tα̃u
=

l
√

s(m−u)
u(m−s)

s−t+tα̃u
=

ls
m−s

√
(m−s)(m−u)

su

s+ st
m−s−u

(
1+
√

(m−s)(m−u)
su

)

=
l

m−s

√
(m−s)(m−u)

su

m−s−l
m−s−u+

t
m−s−u

√
(m−s)(m−u)

su

=
l

(m−s)

[
t

m−s−u+
m−s−l
m−s−u

√
su

(m−s)(m−u)

] :=W(t,l).
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For a fixed u,
max
t+l=u

W(t,l)=W(0,u),

which implies

max
t+l=u,1≤u≤ m

2

W(t,l)= max
1≤u≤ m

2

W(0,u)= max
1≤u≤ m

2

√
u(m−u)

s(m−s)
=

m

2
√

s(m−s)
.

Therefore, we have

|e|min ≥2amax+
m

2
√

s(m−s)
caamax (B.2)

as a sufficient condition for (A.5).
Let us first recall that

αu =
m−u

m−s−u

(
−1+

√
s(m−s)

u(m−s)

)
.

For 0<u< s, it follows from αu >0 that a sufficient condition for (A.10) is

(s−t)|e|min ≥αut|e|max+2(s−t)amax,

which leads

|e|min ≥2amax+ max
0<u<s

(
t|αu|
s−t

)
|e|max.

Let h(t,l) = t|αu|
s−t where u= t+l. One can check that αu is decreasing on [0,s]. Thus for

fixed 0< t< s,
max

0≤l<s−t
h(t,l)=h(t,0),

and one can also check that h(t,0) is increasing on [1,s). Therefore,

max
0<t+l<s

h(t,l)= max
0<t<s

{
max

0≤l<s−t
h(t,l)

}
= max

0<t<s
h(t,0)=h(s−1,0).

For s≤u≤⌊m
2 ⌋, since αu ≤0, a sufficient condition for (A.10) is

(s−t)|e|min ≥αut|e|min+2(s−t+t|αu |)amax+ca

[
l

√
s(m−u)

u(m−s)
−(s−t)

]
amax,

which gives

|e|min ≥2amax+ max
s≤u≤⌊ m

2 ⌋,(t,l) 6=(s,0)

[
l
√

s(m−u)
u(m−s)

−(s−t)
]

s−t+t|αu |
caamax.
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Note that when (t,l)=(s,0), we obtain a trivial inequality of 0≥0. It can be checked that
for s≤u≤⌊m

2 ⌋, |αu|<1 as follow:

|αu|=
m−s

m−s−u

(
1−
√

s(m−s)

u(m−u)

)
<1

⇐⇒ 1−
√

s(m−s)

u(m−u)
<

m−s−u

m−s

⇐⇒ 1−m−s−u

m−s
<

√
s(m−s)

u(m−u)

⇐⇒ s

m−u
<

√
s(m−s)

u(m−u)

⇐⇒ su< (m−s)(m−u).

Let h̃(t,l)=
l
√

s(m−u)
u(m−s)

−(s−t)

s−t+t|αu| . When u=s, since αs=0 and l+t=s, h(t,s−t)=0 for all 0≤ t<s.

Since
√

s(m−u)
u(m−s)<1 and |αu|−1<0, for fixed u such that s<u≤⌊m

2 ⌋, we have

max
t+l=u

h̃(t,l)= h̃(s,u−s) := g(u).

Lemma B.1. g(u) is an increasing function.

Proof of Lemma B.1. It follows from

g(u)= h̃(s,u−s)=
1√

s(m−s)

u−s

|αu|

√
m−u

u

=
1√

s(m−s)

(u−s)(m−s−u)√
u(m−u)−

√
s(m−s)

that we show that g′(u)≥0 as follow:
√

s(m−s)
dg

du

=
(m−2u)(

√
u(m−u)−

√
s(m−s))−(u−s)(m−s−u) m−2u

2
√

u(m−u)

(
√

u(m−u)−
√

s(m−s))2

=
(m−2u)

(
(
√

u(m−u))2−2
√

u(m−u)
√

s(m−s)+(
√

s(m−s))2
)

2
√

u(m−u)(
√

u(m−u)−
√

s(m−s))2

=
m−2u

2
√

u(m−u)
≥0.
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Therefore, it follows from Lemma B.1 that

max
s≤u≤⌊ m

2 ⌋,(t,l) 6=(s,0)
h̃(t,l)= max

s<u≤⌊ m
2 ⌋

h̃(s,u−s)= max
s<u≤⌊ m

2 ⌋
g(u)= g

(⌊m

2

⌋)
.

By combining the above with (B.2), the proof is completed.
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