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Abstract

Manufacturers aim to achieve the optimal quality, therefore, the evaluation of yarn parameters and the
determination of factors that influence yarn quality is of great importance. The yarn coefficient of mass
variation (CVm%) reflects the irregularity of the yarn which reflects the yarns’ quality. This study
investigates the parameters affecting the CVm% that was previously estimated using image processing
and artificial neural networks. Yarn images and data were used as inputs into neural networks and
CVm% was evaluated. In addition, two statistical methods were used which were: correlation and
ANOVA to research the effect of yarn count, twist factor, blend ratio, and cotton type on CVm%. It was
found that the yarn count and twist factor were the highest correlated parameters regarding CVm%.

Keywords: Yarn coefficient of mass variation; Image Processing; Artificial Neural Networks; ANOVA;
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1 Introduction

The inspection and monitoring of the product throughout the production is considered a vital
operation. Automation can help achieve the required quality standards and can be implemented
by utilizing artificial intelligence methods. Classification and identification of textile materials,
various quality parameters evaluation, and performance assessment are some of the applications
of image processing and neural networks for fibers, fabrics, and yarns.

For Fibers, Kang et al. (2002) used image processing and a backpropagation neural network to
identify trash in raw cotton and estimate its effect on the color of cotton, using a color difference
equation [1]. Whitelock et al. (2016) employed Image processing to determine foreign materials
in cotton, and to find the shape and the color of bark, grass, and leaf particles. Statistical
analysis and response screening methods were carried out to separate bark, grass, and leaf particles
and determine shape and color factors [2]. In addition, Feng Jia et al. (2016) identified ramie

∗Corresponding author.
Email address: manal ramzy@yahoo.com (Manal R. Abdel-Hamied).

1940–8676 / Copyright © 2021 Textile Bioengineering and Informatics Society
Mar. 2021



14 M. Abdel-Hamied et al. / Journal of Fiber Bioengineering and Informatics 14:1 (2021) 13–20

and cotton fibers, by analyzing the shape, texture, color, and surface stripes, and employing a
backpropagation neural network to distinguish between both types of fibers [3].

Regarding fabrics, Uçar and Ertuǧrul (2007) used regression and artificial neural networks to
evaluate the fabric surface fuzz of plain knitted fabrics. The segmentation of the fuzz was done
by image processing. Bi-variate correlation analysis was utilized to investigate the effect of yarn
count, hairiness, and tightness factor on fabric surface fuzz [4]. Xuejuan Kang et al. (2015)
combined a 2-D wavelet transform, a gray-level co-occurrence matrix, and Gabor wavelet with a
probabilistic neural network to identify plain, twill, and satin fabrics [5]. Furthermore, Kuo et al.
(2016) employed wavelet packets and a neural network for knitted fabric inspection. The system
was used to classify seven categories; a non-defect and six types of defects, including holes, set
marks (coarse fabric), dropped stitches, oil stains, streaks, and tight ends [6].

Shiau et al. (2000) employed a backpropagation neural network to study web images. The
system was able to automatically recognize three categories; normal web, nep, and trash, and to
determine neps and trash numbers [7]. Semnani et al. (2005) utilized image processing and linear
functions to analyze the effect of yarn appearance on the quality of knitted fabrics. Yarn standards
and samples were scanned and the images were processed and the yarn core was eliminated.
Fabrics samples were processed and faults were detected. neural network linear classifiers were
used to classify yarn faults and fabric defects. ANOVA test confirmed that yarn type affects fabric
grade significantly [8]. Li et al. (2018) used a two-scale attention model and probabilistic neural
networks for the grading of yarn surfaces. Fourier transform and the two-scale attention model
were employed to identify yarn features. In addition, global and individual neural networks were
used to grade yarns [9].

Gharehaghaji et al. used artificial neural networks and linear regression to estimate the breaking
elongation % and strength of core-spun yarns. A backpropagation neural network with two hidden
layers was utilized, moreover, two models of MLR used for each property. Correlation coefficient
R-value and mean square error were determined [10]. El-Geiheini et al. employed image processing
and artificial neural networks to assess yarn tenacity and elongation% for cotton and blend ring-
spun yarns. Images of yarn samples were obtained by camera and processed and data vectors
were determined and used as the network’s inputs. Two backpropagation neural networks were
developed in order to model tenacity and elongation% for each yarn type [11].

Khan et al. (2009) evaluated the hairiness of wool worsted-spun yarns with a multilayer neural
network. machine settings, yarn parameters, and fiber properties were introduced to the neural
network to determine the Uster hairiness index. Multi-variate linear regression was employed,
and the mean square error and the correlation coefficient were used to assess the network results
[12]. Haghighat et al. (2012) employed multiple linear regression and neural networks to predict
the hairiness of polyester/viscose blended yarns. Total draft, roving twist, yarn twist, yarn count,
traveler weight, spindle speed, back zone setting, balloon control ring break draft, break draft,
drafting system angle, and front roller covering hardness, were investigated and five different
hairiness prediction models were developed using both multiple linear regression and artificial
neural networks [13].

Jaouadi et al. (2009) investigated real yarn diameter determination for different yarns pro-
duced from various raw material, counts, and spinning processes. Images were obtained using
a microscope and a camera with the yarn under tension and twist steps were applied. After
applying image processing, edge detection was used to measure yarn diameter and an average
yarn diameter was calculated [14]. Ünal et al. (2010) researched the retained spliced diameter
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(RSD), splicing parameters, and fiber and yarn properties for several yarns. Yarn diameter was
measured optically and then a feed-forward network and response surface method were employed.
Mean fiber length, fiber diameter, short fiber content, yarn count, yarn twist, opening air pres-
sure, splicing air pressure, and time of splicing air pressure were investigated [15]. Zhong et al.
(2015) estimated yarn unevenness by utilizing histogram equalization with a median filtering al-
gorithm. The system utilized image sequences of moving yarn and a projection curve, in order to
assess the coefficient of variation of the fiber’s diameter [16]. Maliket al. (2016) employed neural
networks and linear regression models to predict the evenness and tensile properties of blended
yarns. Blend ratios, break draft, twist multiplier, and back roller hardness were studied and three
networks for evenness, tenacity, and elongation were developed. The mean absolute errors were
derived and compared with the linear regression models [17].

This research was conducted to analyze the factors affecting predicted yarn CVm% for various
yarn types, including carded cotton yarns, combed compact yarns, and carded blended yarns, by
employing statistical methods which are: correlation and ANOVA analysis.

2 Experimental Work

2.1 Materials

Samples were collected from a ring spinning and compact spinning factories. Firstly, for the
cotton ring-spun yarns, two samples of count Ne 24 100% Sudanese cotton with two twist factors
3.4 and 3.8, two samples of Ne 30 with 100% Sudanese cotton and 100% Benini cotton, and Ne
50 100% Benini cotton were manufactured. Secondly, For the blended ring-spun yarns, Ne 16
(50% Polyester −50% Benini cotton), Ne 20 (50% Polyester −50% Benini cotton), Ne 30 (50%
Polyester −50% Benini cotton), and Ne 30 (65% Polyester −35% Benini cotton) were produced.
The samples collected from the compact factory consisted of Ne 50 - Giza86, Ne 60 - Giza86, Ne
70 - Giza86, Ne 96 - Giza86, Ne 96 - Giza94, Ne 112 - Giza94.

2.2 Methods

In the previous research, three systems were developed to estimate the coefficient of mass vari-
ation of the different yarn types. The systems used the blackboard of the appearance tester, a
digital camera, and MATLAB 2015 software to process images and data. Image enhancement by
Gaussian filtering and scaling were employed and three backpropagation neural networks were
developed.

The number of samples for the cotton ring-spun model, blend ring-spun model, and the compact
model were 152, 108, 60 respectively. The network consisted of an input layer, two hidden layers
with neurons of (20 ∼ −8), and an output layer for the coefficient of mass variation. The number
of neurons in the hidden layers were set to be twenty and eight, for the first and second layers,
respectively, while the output layer contained one output (CVm%) [18].

In this study, statistical measures were conducted in order to investigate the effect of the various
parameters which are cotton type, blend ratio, twist factor, and count on the coefficient of mass
variation. Correlation and ANOVA tests were carried out on the three systems results.
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3 Results and Discussion

Three models were built to evaluate the yarn coefficient of mass variation (CVm%) for various
yarn types. The following section presents the results achieved from the neural network and the
statistical analysis of the outcome.

3.1 Artificial Neural Networks Performance

To develop the various models, photographs of the yarn samples were preprocessed and the input
vectors for the neural network were defined. The neural network consisted of one input layer, two
hidden layers, and an output layer, with one output, which is CVm%. The number of neurons in
the first and second hidden layers was set to be twenty and eight, respectively.

The mean absolute errors for the training phase, calculated in order to estimate the overall
performance of the CVm%, were concluded to be 0.194, 0.144, 0.046 for the blend yarn model,
cotton ring-spun yarn model, and cotton compact yarn model. In addition, the error values of
the validation phase were 0.256, 0.197, and 0.116. Fig. 1 displays the networks performance in
both phases.
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Fig. 1: Training and validation performance of the neural networks for blend yarn model, cotton ring-
spun yarn model, and cotton compact yarn model.

3.2 Statistical Analysis

In order to determine the effect of yarn count, twist factor, blend ratio, and cotton type on the
coefficient of mass variation, first a correlation test was conducted and the ANOVA was carried
out. Sections 3.2.1 and 3.2.2 demonstrates the results achieved from the two tests.

3.2.1 Correlation

To understand the relationship between the various input parameters and the CVm%, correlation
analysis was employed for the three systems.

According to the output data shown in Table 1, yarn count is the highest correlated factor to
the yarn coefficient of mass variation followed by the twist factor, but the cotton type has the
least effect on it.
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Table 1: Correlation outcome for cotton ring-spun yarn

CVm%

Yarn count 0.789

Twist factor 0.635

Cotton type 0.552

Table 2 presents the correlation values for the blend ring-spun yarn, where it is evident that
both of yarn count and twist factor are the highest correlated factor to yarn coefficient of mass
variation. On the other hand, blend ratio has no significant effect on it.

Table 2: Correlation outcome for blend ring-spun yarn

CVm%

Yarn count 0.891

Twist factor −0.851

Blend Ratio 0.332

According to the output data shown in Table 3, both the twist factor and yarn count are the
highest correlated factor to yarn coefficient of mass variation. In addition, cotton type has a
significant effect on it.

Table 3: Correlation outcome for cotton compact yarn

CVm%

Twist factor 0.909

Yarn count 0.834

Cotton type 0.708

3.2.2 ANOVA

For each yarn type, the effect of yarn count and the effect of cotton type or blend ratio was
analyzed. Results are demonstrated in the following sections.

3.2.1.1 Cotton Ring-Spun Yarn

To assess the effect of yarn count, ANOVA was conducted at the same twist factor and cotton
type. Table 4 demonstrates the outcome of the analysis where the P-value was determined to be
to 1.86E-10.

Regarding the effect of cotton type and as presented in Table 5, the cotton type has an insignif-
icant effect on the coefficient of mass variation where the P-values equals 0.067649.

3.2.1.2 Blend Ring-Spun Yarn

Similar to the cotton ring-spun yarn analysis, the effect of the yarn count and blend ratio were
investigated. Table 6 shows the P-value for the analysis of the blend ratio effect where the P-value
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Table 4: Cotton ring-spun yarn: ANOVA at the same twist factor and cotton type

Source of Variation SS df MS F P-value F crit

Between Groups 35.68693 1 35.68693 61.29971 1.86E-10 4.019541

Within Groups 31.43725 54 0.582171

Total 67.12418 55

Table 5: Cotton ring-spun yarn: ANOVA at the same twist factor and yarn count

Source of Variation SS df MS F P-value F crit

Between Groups 1.0201 1 1.0201 3.459125 0.067649 3.995887

Within Groups 18.28388 62 0.294901

Total 19.30398 63

Table 6: Blend ring-spun yarn: ANOVA at the same twist factor and yarn count

Source of Variation SS df MS F P-value F crit

Between Groups 5.510756 1 5.510756 10.57469 0.001856 3.995887

Within Groups 32.30989 62 0.521127

Total 37.82064 63

Table 7: Blend ring-spun yarn: ANOVA at the same twist factor and blend ratio

Source of Variation SS df MS F P-value F crit

Between Groups 23.16971 1 23.16971 123.7732 4.23E-14 4.072654

Within Groups 7.862188 42 0.187195

Total 31.0319 43

was 0.001856 indicating a significant effect on CVm%. Table 7 presents the P-value (4.23E-14)
of the analysis of the effect of yarn count on the coefficient of mass variation.

3.2.1.3 Cotton Compact Yarn

Table 8 and Table 9 demonstrate count effect and cotton type effect for the cotton compact
yarn, where the P-values were 5.02E-13 and 1.27E-08 respectively.

Table 8: Cotton compact yarn: ANOVA at the same twist factor and cotton type

Source of Variation SS df MS F P-value F crit

Between Groups 9.45606061 1 9.456061 266.4179 5.02E-13 4.351243

Within Groups 0.70986667 20 0.035493

Total 10.1659273 21



M. Abdel-Hamied et al. / Journal of Fiber Bioengineering and Informatics 14:1 (2021) 13–20 19

Table 9: Cotton compact yarn: ANOVA at the same twist factor and yarn count

Source of Variation SS df MS F P-value F crit

Between Groups 3.34651429 1 3.346514 89.57143 1.27E-08 4.38075

Within Groups 0.70986667 19 0.037361

Total 4.05638095 20

4 Conclusion

In this research, yarns’ coefficient of mass variation (CVm %) was estimated by using machine
vision and learning, after which, statistical analysis was employed to determine the significant
factors for the CVm %.

For the ring-spun yarn model, the training error was concluded to be 0.144 for yarn’s CVm%.
For the blended yarn model, the mean absolute error for CVm% was found to be 0.194. The
compact yarn model had the best behavior out of the three models, where the mean error of the
training was deduced to be 0.046.

It was deduced that for cotton and blend ring-spun yarn, yarn count followed by twist factor
had the highest correlation to CVm%. As for the cotton compact yarn, it was found that the
twist factor had the highest correlation.

ANOVA outcomes show that only for the cotton ring-spun yarn, cotton type does not influence
CVm%. Furthermore, the yarn count was found to have a significant effect on CVm% for all yarn
types.
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