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Abstract. A four-component nonlinear Schrödinger equation associated with a 5×5 Lax

pair is investigated. A spectral problem is analysed and the Jost functions are used in

order to derive a Riemann-Hilbert problem connected with the equation under consider-

ation. N -soliton solutions of the equation are obtained by solving the Riemann-Hilbert

problem without reflection. For N = 1 and N = 2, the local structure and dynamic

behavior of some special solutions is analysed by invoking their graphic representations.
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1. Introduction

The nonlinear Schrödinger equation (NLS) is an important integrable model. It is

closely related to nonlinear problems in theoretical physics such as nonlinear optics and

ion acoustic waves of plasmas. On the other hand, higher-order coupled NLS equations are

used to describe the effects of cubic-quintic nonlinearity, self-deepening, and self-frequency

shifting. Among numerous solutions of these equations, soliton solutions play a crucial role

in some complex nonlinear phenomena. At present, there are many methods to find the

solutions of nonlinear integrable models — e.g. inverse scattering transform [1], Darboux

transform [14], Hirota bilinear method [6], and Lie group method [2]. In particular, let us

note the inverse scattering transform method, which is especially efficient in finding soliton

solutions of the corresponding initial value problems. For second-order spectral problems,

the inverse scattering theory is equivalent to Riemann-Hilbert (RH) approach. On the other

hand, some of the higher-order spectral problems have to be transformed into RH problem.
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This approach, developed by Zakharov et al [34], was successively applied to various inte-

grable systems with a single component [3–5,8–13,16–21,24–30,32,33,35–38]. However,

to the best of authors’ knowledge, only a few studies deal with multi-component problems.

The nonlinear Schrödinger equation has the form

i
∂ ψα
∂ t

+
∂ 2ψα
∂ x2

+
∑

β ,γ

ψ∗βΛβγψγψα = 0, (1.1)

where Λ is an Hermitian matrix [15]. A multi-component multisoliton solution of the

Eq. (1.1) has been constructed by the Hirota’s bilinearisation method — cf. [7]. The well-

known general two-component coupled nonlinear Schrödinger equation — cf. [22],

ipt + px x + 2
�

a|p|2 + c|q|2 + bpq∗ + b∗qp∗
�

p = 0,

iqt + qx x + 2
�

a|p|2 + c|q|2 + bpq∗ + b∗qp∗
�

q = 0,
(1.2)

where a, c are real constants, b is a complex constant, and “∗” denotes the complex conjuga-

tion, is a special case of the Eq. (1.1). In physics, a and c describe the self-phase modulation

and cross-phase modulation effects, and b and b∗ the four-wave mixing effects.

Furthermore, the three-component nonlinear Schrödinger equations has the form

iq1t + q1x x − 2
�

a|q1|2 + c|q2|2 + f |q3|2 + 2Re(bq∗1q2 + dq∗1q3 + eq∗2q3)
�

q1 = 0,

iq2t + q2x x − 2
�

a|q1|2 + c|q2|2 + f |q3|2 + 2Re(bq∗1q2 + dq∗1q3 + eq∗2q3)
�

q2 = 0,

iq3t + q3x x − 2
�

a|q1|2 + c|q2|2 + f |q3|2 + 2Re(bq∗
1
q2 + dq∗

1
q3 + eq∗

2
q3)
�

q3 = 0,

(1.3)

where a, c, f are real constants, b, d , e complex constants, and “Re” denotes the real part.

These equations are studied by extending the Fokas unified approach by Yan in [31]. In par-

ticular, it was shown that the Eq. (1.3) can be reduced to three-component NLS equations

with various conditions on parameters a, b, c, d , e and f . More precisely,

• If a = c = f = −1 and b = d = e = 0, the Eq. (1.3) reduces to a three-component

focused NLS equation.

• If a = c = f = 1 and b = d = e = 0, the Eq. (1.3) reduces to a three-component

defocused NLS equation.

• If a = −1, c = f = 1 and b = d = e = 0 or a = 1, c = f = −1 and b = d = e = 0, the

Eq. (1.3) reduces to a three-component mixed NLS equation.

• For other choice of parameters, the Eq. (1.3) reduces to other three-component NLS

equations.

In this work, we consider a four-component nonlinear Schrödinger (FCNLS) equation

— viz.

iq1t + q1x x − 2
�

a11|q1|2 + a22|q2|2 + a33|q3|2 + a44|q4|2
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+ 2Re(a12q∗1q2 + a13q∗1q3 + a14q∗1q4 + a23q∗2q3 + a24q∗2q4 + a34q∗3q4)
�

q1 = 0, (1.4a)

iq2t + q2x x − 2
�

a11|q1|2 + a22|q2|2 + a33|q3|2 + a44|q4|2
+ 2Re(a12q∗1q2 + a13q∗1q3 + a14q∗1q4 + a23q∗2q3 + a24q∗2q4 + a34q∗3q4)

�

q2 = 0, (1.4b)

iq3t + q3x x − 2
�

a11|q1|2 + a22|q2|2 + a33|q3|2 + a44|q4|2
+ 2Re(a12q∗1q2 + a13q∗1q3 + a14q∗1q4 + a23q∗2q3 + a24q∗2q4 + a34q∗3q4)

�

q3 = 0, (1.4c)

iq4t + q4x x − 2
�

a11|q1|2 + a22|q2|2 + a33|q3|2 + a44|q4|2
+ 2Re(a12q∗

1
q2 + a13q∗

1
q3 + a14q∗

1
q4 + a23q∗

2
q3 + a24q∗

2
q4 + a34q∗

3
q4)
�

q4 = 0, (1.4d)

where a11, a22, a33, a44 are real constants and a12, a13, a14, a23, a24, a34 complex constants.

The FCNLS equation includes group velocity dispersion, self-phase modulation, cross-phase

modulation and paired tunnel modulation. Analogously to the three-component NLS equa-

tions (1.3), the FCNLS equation (1.4) can be reduced to different four-component NLS

equations with the different conditions on the parameters. The Riemann-Hilbert problem

for the FCNLS equation and its multi-soliton solutions have not been yet studied, so that

the construction of such a problem and finding multi-soliton solutions of the related 5× 5

matrix spectral problem is of a significant interest.

The structure of this work is as follows. In Section 2, we analyse a spectral problem

and properties of the Jost functions connected to the Lax pair with a 5× 5 matrix spectral

problem for the FCNLS equation (1.4). In Section 3, the corresponding Riemann-Hilbert

problem is derived and the symmetry of the scattering matrix and temporal and spatial

evolution of the scattering data are studied. The solutions of Riemann-Hilbert problem,

obtained in Section 4, are used to establish the N -soliton solutions of the FCNLS equation

(1.4). Besides, the propagation of one-and two-soliton solutions is discussed. Finally, some

conclusions are presented in Section 5.

2. Spectral Analysis

Let us start with the Lax pair for the FCNLS equation (1.4). It can be written as

Φx = UΦ, Φt = VΦ,

where Φ is a column vector function, matrices U and V have the form

U =











−ı̇λ 0 0 0 q1

0 −ı̇λ 0 0 q2

0 0 −ı̇λ 0 q3

0 0 0 −ı̇λ q4

p1 p2 p3 p4 ı̇λ











,

V = −2ı̇λ2
Λ+ 2λP + V0, V0 = −ı̇

�

Px + P2
�

Λ,

λ is the spectral parameter,
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Λ=











1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 −1











, P =











0 0 0 0 q1

0 0 0 0 q2

0 0 0 0 q3

0 0 0 0 q4

p1 p2 p3 p4 0











,

and

p1 = a11q∗1 + a21q∗2 + a31q∗3 + a41q∗4,

p2 = a∗21q∗1 + a22q∗2 + a32q∗3 + a42q∗4,

p3 = a∗31q∗1 + a∗32q∗2 + a33q∗3 + a43q∗4,

p4 = a∗41q∗1 + a∗42q∗2 + a∗43q∗3 + a44q∗4.

It follows that
Φx + ı̇λΛΦ = PΦ,

Φt + 2ı̇λ2
ΛΦ = QΦ,

(2.1)

where Q = 2λP + V0.

For |x | →∞, the Eqs. (2.1) yield

Φ∝ e−ı̇λΛx−2̇ıλ2
Λt .

Letting

µ = Φe ı̇λΛx+2̇ıλ2
Λt

gives

µ ∼ I, |x | →∞, (2.2)

and we arrive at the new Lax pair

µx + ı̇λ[Λ,µ] = Pµ,

µt + 2ı̇λ2[Λ,µ] = Qµ
(2.3)

with the commutator [Λ,µ] := Λµ−µΛ. We can obtain the full differential

d
�

e ı̇(λx+2λ2 t)Λ̄µ
�

= e ı̇(λx+2λ2 t)Λ̄
�

(Pd x +Qd t)µ
�

, (2.4)

where eλΛ̄µ = eλΛµe−λΛ.

In order to construct a Riemann-Hilbert problem, one has to find the solutions of the

spectral problem (2.3) as λ →∞. For this, we represent the solution of the Eq. (2.4) in

the form

µ= µ(0) +
µ(1)

λ
+
µ(2)

λ2
+ o

�

1

λ3

�

, λ→∞ (2.5)

with µ(0),µ(1),µ(2) not related to λ. Substituting (2.5) into (2.3) and equating the coeffi-

cients at the same powers of λ yields
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o(1) : µ(0)x + i
�

Λ,µ(1)
�

= Pµ(0),

o(λ) : i
�

Λ,µ(0)
�

= 0 for x part,

o(λ) : 2i
�

Λ,µ(1)
�

= 2Pµ(0) for t part.

(2.6)

The first and third equations in (2.6) show that µ(0)x = 0, so that µ(0) is not related to x .

Besides, (2.2) and the second equation in (2.6) imply that µ(0) is a diagonal matrix. Hence,

I= lim
λ→∞

lim
|x |→∞

µ = µ(0).

Now, the solutions µ± = µ±(x ,λ) of the Eq. (2.3) can be written as

µ+ =
�

[µ+]1, [µ+]2, [µ+]3, [µ+]4, [µ+]5
�

,

µ− =
�

[µ−]1, [µ−]2, [µ−]3, [µ−]4, [µ−]5
�

,
(2.7)

where [µ±]l , l = 1,2,3,4,5 denotes the l-th column of the corresponding matrix [µ+] or

[µ−]. Moreover, we note that these solutions satisfy the asymptotic conditions

µ+→ I as x → +∞,

µ−→ I as x →−∞,
(2.8)

where I is the 5× 5 unit matrix. Let us note that the solutions [µ±] for λ ∈ R are uniquely

determined by the Volterra integral equations

µ+(x ,λ) = I−
∫ +∞

x

e−iλΛ(x−y)P(y)µ+(y,λ)eiλΛ(x−y)d y,

µ−(x ,λ) = I+

∫ x

−∞
e−iλΛ(x−y)P(y)µ−(y,λ)eiλΛ(x−y)d y

with the kernel matrix

e−iλΛ(x−y)PeiλΛ(x−y)

:=













0 0 0 0 q1e−2iλ(x−y)

0 0 0 0 q2e−2iλ(x−y)

0 0 0 0 q3e−2iλ(x−y)

0 0 0 0 q4e−2iλ(x−y)

p1e2iλ(x−y) p2e2iλ(x−y) p3e2iλ(x−y) p4e2iλ(x−y) 0













.

If Re[2iλ(x − y)] < 0 and Re[−2iλ(x − y)] < 0, the columns [µ−]1, [µ−]2, [µ−]3, [µ−]4
and [µ+]5 are analytic vector-functions on C+, and [µ+]1, [µ+]2, [µ+]3, [µ+]4 and [µ−]5
are analytic vectors-functions on C−.

Let us study the properties of µ±. The relation tr(P) = 0 and Liouville’s formula yield

that the determinants of the matrices µ± do not depend on the variable x . Therefore, the

Eq. (2.8) implies

detµ± = 1, λ ∈ R. (2.9)
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Moreover, since for E = e−iλΛx both µ−E and µ+E are the solutions of the spectral problem

(2.3), they are linearly interdependent and satisfy the equation

µ−E = µ+ES(λ), λ ∈ R, (2.10)

where S(λ) = (sk j)5×5 is the scattering matrix. The Eqs. (2.9) and (2.10) show that

detS(λ) = 1, λ ∈ R.

In order to write the Riemann-Hilbert problem for the Eqs. (1.4), we consider the in-

verse matrices

µ−1
± =











[µ−1
± ]

1

[µ−1
± ]

2

[µ−1
± ]

3

[µ−1
± ]

4

[µ−1
± ]

5











,

where [µ−1
± ]

l , l = 1,2,3,4,5 are the rows of µ−
+

or µ−−.

It follows from (2.3) that µ−1
± satisfy the following equation

Kx = −iλ[Λ, K]− KP. (2.11)

The Eq. (2.11) gives that [µ−1
− ]

1, [µ−1
− ]

2, [µ−1
− ]

3, [µ−1
− ]

4, [µ−1
+
]5 are analytic vector-functi-

ons on C− and [µ−1
+ ]

1, [µ−1
+ ]

2, [µ−1
+ ]

3, [µ−1
+ ]

4, [µ−1
− ]

5 are analytic vector-functions on C+.

According to Eq. (2.10), we have

E−1µ−1
− = R(λ)E−1µ−1

+ .

Theorem 2.1. If the matrices S and R are written as

S(λ) =











s11 s12 s13 s14 s15

s21 s22 s23 s24 s25

s31 s32 s33 s34 s35

s41 s42 s43 s44 s45

s51 s52 s53 s54 s55











, R(λ) =











r11 r12 r13 r14 r15

r21 r22 r23 r24 r25

r31 r32 r33 r34 r35

r41 r42 r43 r44 r45

r51 r52 r53 r54 r55











,

then the entries s11, s12, s13, s14, s21, s22, s23, s24, s31, s32, s33, s34, s41, s42, s43, s44 are analytic

functions in C+, s55 is analytic in C−, r55 is analytic in C+, and r11, r12, r13, r14, r21, r22, r23,

r24, r31, r32, r33, r34, r41, r42, r43, r44 are analytic functions in C−.

Proof. It follows from (2.10) that E−1µ−1
+ µ−E = S(λ),

S(λ) = E−1











[µ−1
+
]1[µ−]1 [µ−1

+
]1[µ−]2 [µ−1

+
]1[µ−]3 [µ−1

+
]1[µ−]4 [µ−1

+
]1[µ−]5

[µ−1
+
]2[µ−]1 [µ−1

+
]2[µ−]2 [µ−1

+
]2[µ−]3 [µ−1

+
]2[µ−]4 [µ−1

+
]2[µ−]5

[µ−1
+
]3[µ−]1 [µ−1

+
]3[µ−]2 [µ−1

+
]3[µ−]3 [µ−1

+
]3[µ−]4 [µ−1

+
]3[µ−]5

[µ−1
+ ]

4[µ−]1 [µ−1
+ ]

4[µ−]2 [µ−1
+ ]

4[µ−]3 [µ−1
+ ]

4[µ−]4 [µ−1
+ ]

4[µ−]5
[µ−1
+ ]

5[µ−]1 [µ−1
+ ]

5[µ−]2 [µ−1
+ ]

5[µ−]3 [µ−1
+ ]

5[µ−]4 [µ−1
+ ]

5[µ−]5











E,

and for the matrix S the claim follows from the properties of µ−1
+

and µ−. The matrix R(λ)

can be treated analogously.
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3. Riemann-Hilbert Problem

In this section, we construct a respective Riemann-Hilbert problem. More precisely,

considering the matrix functions

P1 = P1(x ,λ) :=
�

[µ−]1, [µ−]2, [µ−]3, [µ−]4, [µ+]5
�

, (3.1)

P2 = P2(x ,λ) :=











[µ−1
− ]

1

[µ−1
− ]

2

[µ−1
− ]

3

[µ−1
− ]

4

[µ−1
+
]5











, (3.2)

we note that P1 and P2 are analytic in C+ and C−, respectively, and satisfy the asymptotic

conditions
P1→ I as λ→ +∞,

P2→ I as λ→−∞.
(3.3)

At the moment, we write P+ for P1 restricted to the left-hand side of the real λ-axis and P−
for P2 restricted to the right-hand side of that axis. On the real line, these matrix-functions

satisfy the equation

P−(x ,λ)P+(x ,λ) = G(x ,λ), λ ∈ R (3.4)

with

G(x ,λ) =













1 0 0 0 r15e−2iλx

0 1 0 0 r25e−2iλx

0 0 1 0 r35e−2iλx

0 0 0 1 r45e−2iλx

s51e2iλx s52e2iλx s53e2iλx s54e2iλx 1













.

According to Eq. (3.3), the canonical normalization conditions are

P1→ I as λ→ +∞,

P2→ I as λ→−∞.

Theorem 3.1.
det P1 = r55 λ ∈ C+,

det P2 = s55 λ ∈ C−.
(3.5)

Proof. According to Eqs. (3.1) and (3.2), matrices P1 and P2 can be written in the form

P1 = µ−H1 +µ−H2 +µ−H3 +µ−H4 +µ+H5,

P2 = H1µ
−1
− +H2µ

−1
− +H3µ

−1
− +H4µ

−1
− +H5µ

−1
+ ,

(3.6)

where

H1 = dig(1,0,0,0,0), H2 = dig(0,1,0,0,0), H3 = dig(0,0,1,0,0),

H4 = dig(0,0,0,1,0), H5 = dig(0,0,0,0,1).
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Hence

det P1(λ) = det(µ−H1 +µ−H2 + µ−H3 +µ−H4 +µ+H5)

= detµ− · det(H1 +H2 +H3 +H4 + ER(λ)E−1H5)

= 1 · det













1 0 0 0 r15e−2iλx

0 1 0 0 r25e−2iλx

0 0 1 0 r35e−2iλx

0 0 0 1 r45e−2iλx

0 0 0 0 r55













= r55.

The second equation in (3.5) can be proven analogously. The Eq. (2.9) shows that detµ± =
1, which yields det P1 = r55,λ ∈ C+, and det P2 = s55,λ ∈ C−.

Let A† denotes the Hermitian of the matrix A. A symmetry relation for the matrix P has

the form

P† = −BPB−1, (3.7)

where

B =











a11 a∗21 a∗31 a∗41 0

a21 a22 a∗32 a∗42 0

a31 a32 a33 a∗43 0

a41 a42 a43 a44 0

0 0 0 0 −1











.

It follows from (2.3) and (3.7) that

(µ†
±(λ
∗)B)x = −iλ[Λ,µ†

±(λ
∗)B]−µ†

±(λ
∗)BP.

Hence, if µ†
±(λ
∗)B and µ−1

± (λ) satisfy (2.11), then µ†
±(λ
∗)B is linearly related to µ−1

± (λ),
i.e. µ†

±(λ
∗)B = Cµ−1

± (λ) with C independent of x . Using the large-x boundary conditions

of µ±, we find that C = B. Consequently,

B−1µ†
±(λ
∗)B = µ−1

± (λ).

The scattering matrix S(λ) satisfies the equation

B−1S†(λ∗)B = S−1(λ) = R(λ).

Therefore,
r55(λ) = s∗55(λ

∗), λ ∈ C+,

−s∗51(λ) = a11r15 + a∗21r25 + a∗31r35 + a∗41r45, λ ∈ R,

−s∗
52
(λ) = a21r15 + a22r25 + a∗

32
r35 + a∗

42
r45, λ ∈ R,

−s∗
53
(λ) = a31r15 + a32r25 + a33r35 + a∗

43
r45, λ ∈ R,

−s∗54(λ) = a41r15 + a42r25 + a43r35 + a44r45, λ ∈ R.

(3.8)
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Theorem 3.2.

P
†
1
(λ∗) = BP2(λ)B

−1, λ ∈ C−. (3.9)

Proof. Taking into account the first equation in (3.6), we write

P
†
1
(λ∗) =
�

µ−(λ∗)H1 +µ−(λ∗)H2 +µ−(λ∗)H3 +µ−(λ∗)H4 +µ+(λ
∗)H5

�†

= H1µ
†
−(λ
∗) +H2µ

†
−(λ
∗) +H3µ

†
−(λ
∗) +H4µ

†
−(λ
∗) +H5µ

†
+(λ
∗)

= BP2(λ)B
−1, λ ∈ C−,

so that

P
†
1
(λ∗) = BP2(λ)B

−1, λ ∈ C−.

It follows from the Eqs. (3.5) and (3.8) that det P1(λ) = (det P2(λ
∗))∗. Therefore, if

det P1(λ) = 0, then det P2(λ
∗) = 0. Let us assume that det P1 has N simple zeros {λ j}N1 in

C
+, and det P2 has N simple zeros {λ∗

j
}N1 in C−. These zeros and nonzero vectors v j and

v̂ j, constitute complete discrete data, satisfying the following equations:

P1(λ j)v j = 0,

v̂ j P2(λ
∗) = 0,

(3.10)

where v j and v̂ j are a column and a row vectors, respectively. The Eqs. (3.9) and (3.10)

lead to the following relation for the eigenvectors:

v̂ j = v
†
j
B, 1≤ j ≤ N . (3.11)

Now we use v j in time-spatial revolution analysis. Take the derivatives of the first equation

in (3.10) with respect to x and t, so that

P1,x v j + P1v j,x = 0,

P1,t v j + P1v j,t = 0.
(3.12)

Using the relation

P1,x = (µ−H1 +µ−H2 +µ−H3 +µ+H4)x

= µ−,x H1 +µ−,x H2 +µ−,x H3 +µ+,x H4,

and the Lax pair in (2.3) gives

P1,x = [−iλ(Λµ− −µ−Λ) + Pµ−]H1 + [−iλ(Λµ− −µ−Λ) + Pµ−]H2

+ [−iλ(Λµ− −µ−Λ) + Pµ−]H3 + [−iλ(Λµ− −µ−Λ) + Pµ−]H4

+ [−iλ(Λµ+ −µ+Λ) + Pµ+]H5

= −iλΛP1 + iλP1Λ+ PP1

= −iλ[Λ, P1] + PP1. (3.13)



152 X.-M. Zhou, S.-F. Tian, J.-J. Yang, J.-J. Mao

Similar arguments show that

P1,t = −2iλ2[Λ, P1] +QP1. (3.14)

Substituting (3.13) and (3.14), respectively, into the first and second equations in (3.12)

and noting that P1v j = 0, we obtain

iλΛv j + v j,x = 0,

2iλ2
Λv j + v j,t = 0.

(3.15)

According to (3.15), we have

v j = e
−i(λ j x+2λ2

j
t)Λ

v j,0,

where v j,0 are constant vectors and (3.11) implies

v̂ j = v
†
j
(λ j)B = v

†
j,0

e
i(λ∗

j
x+2λ∗2

j
t)Λ

B.

4. Multi-Soliton Solutions

Expanding P1(λ) for large λ as

P1(λ) = I+
P
(1)

1

λ
+

P
(2)

1

λ2
+ o

�

1

λ3

�

, λ→∞

and substituting it into (2.3) yields

o(1) : i
�

Λ, P
(1)

1

�

= P. (4.1)

The Eq. (4.1) produces the following relations:

q1(x , t) = 2i
�

P
(1)
1

�

15
, q2(x , t) = 2i

�

P
(1)
1

�

25
,

q3(x , t) = 2i
�

P
(1)

1

�

35
, q4(x , t) = 2i

�

P
(1)

1

�

45
,

(4.2)

where (P
(1)
1
)i j refers to the (i, j)-entry of the matrix P

(1)
1

.

In order to obtain soliton solutions, we set G = I in (3.4) and provide the solutions of

the corresponding Riemann-Hilbert problem (3.4), viz.

P1(λ) = I−
N
∑

k=1

N
∑

j=1

vk v̂ j(M
−1)k j

λ− λ̂ j

,

P2(λ) = I+

N
∑

k=1

N
∑

j=1

vk v̂ j(M
−1)k j

λ−λ j

,

(4.3)
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where M is the N × N matrix with the entries

Mk j =
v̂kv j

λ j − λ̂k

.

The Eqs. (4.3) yield

P
(1)

1
= −

N
∑

k=1

N
∑

j=1

vk v̂ j(M
−1)k j,

where (M−1)k j denotes the (k, j)-entry of the inverse matrix M−1. Using nonzero vectors

vk,0 = (αk,βk,τk,ζk,γk)
T and θk = −i(λk x + 2λ2

k
t), we generate the vectors

vk = eθkΛvk,0 =













eθk 0 0 0 0

0 eθk 0 0 0

0 0 eθk 0 0

0 0 0 eθk 0

0 0 0 0 e−θk























αk

βk

τk

ζk

γk











=













αkeθk

βkeθk

τkeθk

ζkeθk

γke−θk













,

v̂ j = v
†
j
(λ j)B

=
�

α∗j e
θ ∗

j ,β∗j e
θ ∗

j ,τ∗j e
θ ∗

j ,ζ∗j e
θ ∗

j ,γ∗j e
−θ ∗

j

�











a11 a∗
21

a∗
31

a∗
41

0

a21 a22 a∗
32

a∗
42

0

a31 a32 a33 a∗
43

0

a41 a42 a43 a44 0

0 0 0 0 −1











=
�

a11α
∗
j
e
θ ∗

j + a21β
∗
j
e
θ ∗

j + a31τ
∗
j
e
θ ∗

j + a41ζ
∗
j
e
θ ∗

j ,

a∗21α
∗
j e
θ ∗

j + a22β
∗
j e
θ ∗

j + a32τ
∗
j e
θ ∗

j + a42ζ
∗
j e
θ ∗

j ,

a∗31α
∗
j e
θ ∗

j + a∗32β
∗
j e
θ ∗

j + a33τ
∗
j e
θ ∗

j + a43ζ
∗
j e
θ ∗

j ,

a∗
41
α∗

j
e
θ ∗

j + a∗
42
β∗

j
e
θ ∗

j + a∗
43
τ∗

j
e
θ ∗

j + a44ζ
∗
j
e
θ ∗

j ,−γ∗
j
e
−θ ∗

j
�

.

Obviously

vk v̂ j =











b11 b12 b13 b14 b15

b21 b22 b23 b24 b25

b31 b32 b33 b34 b35

b41 b42 b43 b44 b45

b51 b52 b53 b54 b55











, (4.4)

v̂kv j =
�

a11α
∗
kα j + a21β

∗
kα j + a31τ

∗
kα j + a41ζ

∗
kα j

+ a∗21α
∗
kβ j + a22β

∗
kβ j + a32τ

∗
kβ j + a42ζ

∗
kβ j

+ a∗
31
α∗

k
τ j + a∗

32
β∗

k
τ j + a33τ

∗
k
τ j + a43ζ

∗
k
τ j

+ a∗
41
α∗

k
ζ j + a∗

42
β∗

k
ζ j + a∗

43
τ∗

k
ζ j + a44ζ

∗
k
ζ j

�

eθ
∗
k
+θ j

− γ∗
k
γ je
−θ ∗

k
−θ j ,
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b15 = −αkγ
∗
j e
θk−θ ∗j , b25 = −βkγ

∗
j e
θk−θ ∗j , b35 = −τkγ

∗
j e
θk−θ ∗j ,

b45 = −ζkγ
∗
j e
θk−θ ∗j , b55 = −γkγ

∗
j e
θk−θ ∗j .

It should be noted that the values of bi j , i ≤ 5, j ≤ 4 are not used in the calculation of the

solution, so we will omit them for convenience.

Previous considerations show that general N -soliton solutions of the FCNLS equation

(1.4) can be written in the form

q1 = 2i

N
∑

k=1

N
∑

j=1

αkγ
∗
j e
θk−θ ∗j (M−1)k j, q2 = 2i

N
∑

k=1

N
∑

j=1

βkγ
∗
j e
θk−θ ∗j (M−1)k j,

q3 = 2i

N
∑

k=1

N
∑

j=1

τkγ
∗
j e
θk−θ ∗j (M−1)k j, q4 = 2i

N
∑

k=1

N
∑

j=1

ζkγ
∗
j e
θk−θ ∗j (M−1)k j,

(4.5)

where

Mk j =
1

λ j − λ̂k

��

a11α
∗
kα j + a21β

∗
kα j + a31τ

∗
kα j + a41ζ

∗
kα j

+ a∗21α
∗
kβ j + a22β

∗
kβ j + a32τ

∗
kβ j + a42ζ

∗
kβ j

+ a∗31α
∗
kτ j + a∗32β

∗
kτ j + a33τ

∗
kτ j + a43ζ

∗
kτ j

+ a∗41α
∗
kζ j + a∗42β

∗
kζ j + a∗43τ

∗
kζ j + a44ζ

∗
kζ j

�

eθ
∗
k
+θ j

− γ∗kγ je
−θ ∗

k
−θ j
�

, 1≤ k, j ≤ N .

Let us introduce the matrices

F =















0 α1eθ1 α2eθ2 . . . αN eθN

γ∗1e−θ
∗
1 M11 M12 . . . M1N

γ∗2e−θ
∗
2 M21 M22 . . . M2N

...
...

...
...

...

γ∗
N

e−θ
∗
N MN1 MN2 . . . MN N















,

G =















0 β1eθ1 β2eθ2 . . . βN eθN

γ∗1e−θ
∗
1 M11 M12 . . . M1N

γ∗2e−θ
∗
2 M21 M22 . . . M2N

...
...

...
...

...

γ∗N e−θ
∗
N MN1 MN2 . . . MN N















,

H =















0 τ1eθ1 τ2eθ2 . . . τN eθN

γ∗1e−θ
∗
1 M11 M12 . . . M1N

γ∗
2
e−θ

∗
2 M21 M22 . . . M2N

...
...

...
...

...

γ∗N e−θ
∗
N MN1 MN2 . . . MN N















,
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K =















0 ζ1eθ1 ζ2eθ2 . . . ζN eθN

γ∗1e−θ
∗
1 M11 M12 . . . M1N

γ∗
2
e−θ

∗
2 M21 M22 . . . M2N

...
...

...
...

...

γ∗N e−θ
∗
N MN1 MN2 . . . MN N















needed for the representation of general N -soliton solutions. In particular, we have

q1 = −2i
det F

det M
, q2 = −2i

det G

det M
, q3 = −2i

det H

det M
, q4 = −2i

det K

det M
. (4.6)

The rest of this section is devoted to the soliton solutions for N = 1 and N = 2. If N = 1,

one-soliton solutions have the form

q1 = 2i
α1γ
∗
1eθ1−θ ∗1

M11

, q2 = 2i
β1γ
∗
1eθ1−θ ∗1

M11

,

q3 = 2i
τ1γ
∗
1eθ1−θ ∗1

M11

, q4 = 2i
ζ1γ
∗
1eθ1−θ ∗1

M11

,

(4.7)

where

M11 =
1

λ1 − λ̂1

��

a11|α1|2 + a22|β1|2 + a33|τ1|2 + a44|ζ1|2

+ a21β
∗
1α1 + a31τ

∗
1α1 + a41ζ

∗
1α1

+ a∗21α
∗
1β1 + a32τ

∗
1β1 + a42ζ

∗
1β1

+ a∗31α
∗
1τ1 + a∗32β

∗
1τ1 + a43ζ

∗
1τ1

+ a∗41α
∗
1ζ1 + a∗42β

∗
1ζ1 + a∗43τ

∗
1ζ1

�

eθ1+θ
∗
1 − |γ1|2e−(θ1+θ

∗
1 )
�

,

and θ1 = −i(λ1 x + 2λ2
1t). Furthermore, fixing γ1 = 1, λ1 = n1 + im1 and setting

− �a11|α1|2 + a22|β1|2 + a33|τ1|2 + a44|ζ1|2
+ a21β

∗
1
α1 + a31τ

∗
1
α1 + a41ζ

∗
1
α1

+ a∗
21
α∗

1
β1 + a32τ

∗
1
β1 + a42ζ

∗
1
β1

+ a∗31α
∗
1τ1 + a∗32β

∗
1τ1 + a43ζ

∗
1τ1

+ a∗
41
α∗

1
ζ1 + a∗

42
β∗

1
ζ1 + a∗

43
τ∗

1
ζ1

�

= e2ξ1 , (4.8)

we write relations (4.7) as

q1 = 2m1α1γ
∗
1e−ξ1 eθ1−θ ∗1 sech

�

θ ∗1 + θ1 + ξ1

�

,

q2 = 2m1β1γ
∗
1e−ξ1 eθ1−θ ∗1 sech

�

θ ∗1 + θ1 + ξ1

�

,

q3 = 2m1τ1γ
∗
1e−ξ1 eθ1−θ ∗1 sech

�

θ ∗1 + θ1 + ξ1

�

,

q4 = 2m1ζ1γ
∗
1e−ξ1 eθ1−θ ∗1 sech

�

θ ∗1 + θ1 + ξ1

�

.

(4.9)
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Since θk = −i(λk x + 2λ2
k
t), we have

θ1 − θ ∗1 = −2in1 x − 4in2
1t,

θ1 + θ
∗
1 = 2m1 x + 4im2

1 t + 8n1m1 t,

and the one-soliton solutions (4.7) can be written in the form

q1 = 2m1α1γ
∗
1e−ξ1 e−2in1 x−4in2

1 t sech
�

2m1 x + 4im2
1 t + 8n1m1 t + ξ1

�

,

q2 = 2m1β1γ
∗
1e−ξ1 e−2in1 x−4in2

1 t sech
�

2m1 x + 4im2
1 t + 8n1m1 t + ξ1

�

,

q3 = 2m1τ1γ
∗
1e−ξ1 e−2in1 x−4in2

1 t sech
�

2m1 x + 4im2
1 t + 8n1m1 t + ξ1

�

,

q4 = 2m1ζ1γ
∗
1
e−ξ1 e−2in1 x−4in2

1 t sech
�

2m1 x + 4im2
1
t + 8n1m1 t + ξ1

�

.

(4.10)

According to the Eq. (4.10), the solution q1 has the peak amplitude

Υ1 = 2m1|α1||γ∗1|e−ξ1 ,

and the velocity

̟1 = 2im1 + 4n1.

The peak amplitudes and the velocities of q2,q3 and q4 have similar representations — viz.

Υ2 = 2m1|β1||γ∗1|e−ξ1 , Υ3 = 2m1|τ1||γ∗1|e−ξ1 , Υ4 = 2m1|ζ1||γ∗1|e−ξ1 ,

̟2 = 2im1 + 4n1, ̟3 = 2im1 + 4n1, ̟4 = 2im1 + 4n1.

The functionsΥ1,Υ2,Υ3,Υ4 depend on the imaginary part ofλ1 and̟1,̟2,̟3,̟4 depend

on the real and the imaginary parts of λ1. Figs. 1 and 2 show the localised structure and

the dynamic behavior of one-soliton solutions. Solutions q2,q3 and q4 exhibit the same

behaviour and we do not show them here.

For single soliton solutions (4.10), we take ai j = −1 if i = j and ai j = 0 if i 6= j.

Moreover, let α1 = τ1 = β1 = ζ1 = 1/2−p2/2i,γ1 = 1, n1 = 1/3, m1 = 1/2. The shape

(a) (b) (c)

Figure 1: One-soliton solution q1 for γ1 = 1, n1 = 1/3, m1 = 1/2, aii = −1 and ai j = 0 if i 6= j, i, j = 1, 2, 3, 4.
(a) Three dimensional plot at t = 0. (b) Density plot. (c) Wave propagation along x-axis.
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(a) (b) (c)

Figure 2: One-soliton solution q1 for ai j = −1 (i, j = 1, 2, 3, 4),γ1 = 1, n1 = 1/3 and m1 = 1/2. (a) Three
dimensional plot at t = 0. (b) Density plot. (c) Wave propagation along x-axis.

of the solution q1 is shown in Fig. 1. Fig. 2 shows solutions in the case where ai j = −1 if

i 6= j and other parameters are the same as in Fig. 1. Note that now the amplitude of the

soliton is smaller than in Fig. 1.

For N = 2, the two-soliton solutions can be written in the form

q1 =
−2i

M11M22 −M12M21

�−α1γ
∗
1
eθ1−θ ∗1 M22 +α1γ

∗
2
eθ1−θ ∗2 M12

+α2γ
∗
1
eθ2−θ ∗1 M21 −α2γ

∗
2
eθ2−θ ∗2 M11

�

,

q2 =
−2i

M11M22 −M12M21

�− β1γ
∗
1eθ1−θ ∗1 M22 + β1γ

∗
2eθ1−θ ∗2 M12

+ β2γ
∗
1eθ2−θ ∗1 M21 − β2γ

∗
2eθ2−θ ∗2 M11

�

,

q3 =
−2i

M11M22 −M12M21

�−τ1γ
∗
1eθ1−θ ∗1 M22 +τ1γ

∗
2eθ1−θ ∗2 M12

+τ2γ
∗
1eθ2−θ ∗1 M21 −τ2γ

∗
2eθ2−θ ∗2 M11

�

,

q4 =
−2i

M11M22 −M12M21

�− ζ1γ
∗
1eθ1−θ ∗1 M22 + ζ1γ

∗
2eθ1−θ ∗2 M12

+ ζ2γ
∗
1eθ2−θ ∗1 M21 − ζ2γ

∗
2eθ2−θ ∗2 M11

�

,

(4.11)

where

M11 =
1

λ1 −λ∗1
��

a11|α1|2 + a22|β1|2 + a33|τ1|2 + a44|ζ1|2

+ a21β
∗
1α1 + a31τ

∗
1α1 + a41ζ

∗
1α1

+ a∗21α
∗
1β1 + a32τ

∗
1β1 + a42ζ

∗
1β1

+ a∗
31
α∗

1
τ1 + a∗

32
β∗

1
τ1 + a43ζ

∗
1
τ1

+ a∗41α
∗
1ζ1 + a∗42β

∗
1ζ1 + a∗43τ

∗
1ζ1

�

eθ
∗
1+θ1 − |γ1|2e−(θ

∗
1+θ1)
�

,

M12 =
1

λ2 −λ∗1
��

a11α
∗
1α2 + a21β

∗
1α2 + a31τ

∗
1α2 + a41ζ

∗
1α2
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+ a∗21α
∗
1β2 + a22β

∗
1β2 + a32τ

∗
1β2 + a42ζ

∗
1β2

+ a∗31α
∗
1τ2 + a∗32β

∗
1τ2 + a33τ

∗
1τ2 + a43ζ

∗
1τ2

+ a∗41α
∗
1ζ2 + a∗42β

∗
1ζ2 + a∗43τ

∗
1ζ2 + a44ζ

∗
1ζ2

�

eθ
∗
1+θ2 − γ∗1γ2e−θ

∗
1−θ2
�

,

M21 =
1

λ1 −λ∗2
��

a11α
∗
2α1 + a21β

∗
2α1 + a31τ

∗
2α1 + a41ζ

∗
2α1

+ a∗21α
∗
2β1 + a22β

∗
2β1 + a32τ

∗
2β1 + a42ζ

∗
2β1

+ a∗31α
∗
2τ1 + a∗32β

∗
2τ1 + a33τ

∗
2τ1 + a43ζ

∗
2τ1

+ a∗41α
∗
2ζ1 + a∗42β

∗
2ζ1 + a∗43τ

∗
2ζ1 + a44ζ

∗
2ζ1

�

eθ
∗
2+θ1 − γ∗2γ1e−θ

∗
2−θ1
�

,

M22 =
1

λ2 −λ∗2
��

a11|α2|2 + a22|β2|2 + a33|τ2|2 + a44|ζ2|2

+ a21β
∗
2α2 + a31τ

∗
2α2 + a41ζ

∗
2α2

+ a∗21α
∗
2β2 + a32τ

∗
2β2 + a42ζ

∗
2β2

+ a∗31α
∗
2τ2 + a∗32β

∗
2τ2 + a43ζ

∗
2τ2

+ a∗41α
∗
2ζ2 + a∗42β

∗
2ζ2 + a∗43τ

∗
2ζ2

�

eθ
∗
2+θ2 − |γ2|2e−(θ

∗
2+θ2)
�

,

and

θ1 = −i
�

λ1 x + 2λ2
1
t
�

, θ2 = −i
�

λ2 x + 2λ2
2
t
�

, λ1 = n1 + im1, λ2 = n2 + im2.

Choosing γ1 = γ2 = 1,α1 = α2,β1 = β2,τ1 = τ2,ζ1 = ζ2 and using the notation

e2ξ1 := −�a11|α1|2 + a22|β1|2 + a33|τ1|2 + a44|ζ1|2
+ a21β

∗
1α1 + a31τ

∗
1α1 + a41ζ

∗
1α1

+ a∗21α
∗
1β1 + a32τ

∗
1β1 + a42ζ

∗
1β1

+ a∗
31
α∗

1
τ1 + a∗

32
β∗

1
τ1 + a43ζ

∗
1
τ1

+ a∗41α
∗
1ζ1 + a∗42β

∗
1ζ1 + a∗43τ

∗
1ζ1

�

,

we write two-soliton solution (4.11) as

q1 =
−2i

M11M22 −M12M21

�−α1eθ1−θ ∗1 M22 +α1eθ1−θ ∗2 M12

+α2eθ2−θ ∗1 M21 −α2eθ2−θ ∗2 M11

�

,

q2 =
−2i

M11M22 −M12M21

�− β1eθ1−θ ∗1 M22 + β1eθ1−θ ∗2 M12

+ β2eθ2−θ ∗1 M21 − β2eθ2−θ ∗2 M11

�

,

q3 =
−2i

M11M22 −M12M21

�−τ1eθ1−θ ∗1 M22 +τ1eθ1−θ ∗2 M12

+τ2eθ2−θ ∗1 M21 −τ2eθ2−θ ∗2 M11

�

,

q4 =
−2i

M11M22 −M12M21

�− ζ1eθ1−θ ∗1 M22 + ζ1eθ1−θ ∗2 M12

+ ζ2eθ2−θ ∗1 M21 − ζ2eθ2−θ ∗2 M11

�

,
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where

M11 =
−eξ1

im1

cosh
�

θ ∗1 + θ1 + ξ1

�

,

M12 =
−2eξ1

n2 − n1 + i(m1 +m2)
cosh
�

θ ∗1 + θ2 + ξ1

�

,

M21 =
−2eξ1

n1 − n2 + i(m1 +m2)
cosh
�

θ ∗
2
+ θ1 + ξ1

�

,

M22 =
−eξ1

im2

cosh
�

θ ∗2 + θ2 + ξ1

�

.

In Fig. 1 we show the elastic collision of two solitons. The solitons maintain their

original shape after the collision.

The graphs in Fig. 4 are constructed with the same parameters as for the Fig. 3 with one

amendment — viz. here we set ai j = −1, i 6= j. Fig. 4 shows that the energy of the soliton

is not transferred during the collision — i.e. this is an elastic collision. The solutions q2,q3

and q4 exhibit the same behaviour. Therefore, they are not visualised here.

(a) (b) (c)

Figure 3: Two-soliton solution q1 for aii = −1 and ai j = 0 if i 6= j, i, j = 1, 2, 3, 4,α1 = τ1 = β1 = ζ1 =

1/2−p2/2i,γ1 = γ2 = 1,α1 = α2,β1 = β2,τ1 = τ2,ζ1 = ζ2n1 = −1/3, n2 = 1/3, m1 = 0.25 and m2 = 0.5.
(a) Three dimensional plot at t = 0. (b) Density plot. (c) Wave propagation along x-axis.

(a) (b) (c)

Figure 4: Two-soliton solution q1 for ai j = −1 (i, j = 1, 2, 3, 4), n1 = −1/3, n2 = 1/3, m1 = 0.25, m2 = 0.5.
(a) Three dimensional plot at t = 0. (b) Density plot. (c) Wave propagation along x-axis.
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Changing values of the parameters β1,α2,β2,ζ2 used for the graphs in Fig. 3 and hold-

ing other parameters unchanged, we arrive at another collision type — cf. Fig. 5. Before

the collision, the energy of the right soliton is higher than of the left ones. However, af-

ter the collision the right soliton reaches the left one and the energy diminishes rapidly.

Simultaneously, the soliton from the left reaches the right one and the energy increases

rapidly. Thus during this collision the energy transfers from one soliton to the other. Note

that similar effect is noted in [22,23].

The graphs in Fig. 6 are constructed mainly with the same parameters as in Fig. 5, but

ai j = −1, i 6= j. The corresponding soliton collision shown in Figs. 6(a), 6(d) and 6(f) is

also inelastic and an energy transfer occurs during the collision. Besides, the soliton has

a smaller amplitude than the one in Fig. 5.

Remark 4.1. Considering Figs. 3-6, we note that the parameters ai j(i 6= j) influence the

amplitude of the solitons. If α1 = α2,β1 = β2,τ1 = τ2,ζ1 = ζ2, there is no energy transfer

during soliton collision and solitons hold their original shapes — i.e. we have an elastic

collision. If α1 6= α2,β1 6= β2,ζ1 6= ζ2, an energy transfer occurs during the collision — i.e.

we have an inelastic collision. In both cases, the width of the solitons remain unchanged

during the collision.

(a) (b) (c)

(d) (e) (f)

Figure 5: Two-soliton solutions for aii = −1 and ai j = 0 if i 6= j, i, j = 1, 2, 3, 4,α1 = τ1 = ζ1 = 1/2 −p
2/2i,β1 = 1/2,γ1 = γ2 = 1,α2 = −1/2 +

p
2/2i,β2 = −0.3,τ2 = 1/2 − p2/2i,ζ2 = 1/2 +

p
2/2i, n1 =

−1/3, n2 = 1/3, m1 = 0.25, m2 = 0.5. (a) Three dimensional plot at t = 0 for q1. (b) Density plot
for q1. (c) Wave propagation along x-axis for q1. (d) Three dimensional plot at t = 0 for q2. (e) Three
dimensional plot at t = 0 for q3. (f) Three dimensional plot at t = 0 for q4.
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(a) (b) (c)

(d) (e) (f)

Figure 6: Two-soliton solutions for ai j = −1 (i, j = 1, 2, 3, 4), n1 = −1/3, n2 = 1/3, m1 = 0.25, m2 = 0.5.
(a) Three dimensional plot at t = 0 for q1. (b) Density plot for q1. (c) Wave propagation along the
x-axis time for q1. (d) Three dimensional plot at t = 0 for q2. (e) Three dimensional plot at t = 0 for q3.
(f) Three dimensional plot at t = 0 for q4.

5. Conclusions

We employ the Riemann-Hilbert approach in the study of a FCNLS equation (1.4) as-

sociated with a 5 × 5 Lax pair. In particular, we consider a spectral problem and use the

Jost functions in order to derive a Riemann-Hilbert problem for the equation mentioned.

We note a symmetry relation for the scattering matrix and study the temporal and spatial

evolution of the scattering data, solve the corresponding Riemann-Hilbert problem without

reflection and obtain N -soliton solutions of the FCNLS equation. Finally, we consider some

solutions in the case if N = 1 and N = 2, and describe the local structure and dynamic

behavior of one-and two-soliton solutions using their graphic representations.
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