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Abstract. In order to solve eigenvalue problems, an algebraic multigrid method based
on a multilevel correction scheme and the algebraic multigrid method for linear equa-
tions is developed. The algebraic multigrid method setup procedure is used for con-
struction of an hierarchy and intergrid transfer operators. In this approach, large scale
eigenvalue problems are solved by algebraic multigrid smoothing steps in the hierarchy
and by low-dimensional eigenvalue problems. The efficacy and flexibility of the method
is demonstrated by a number of test examples and the global convergence, which does
not depend on the number of eigenvalues wanted, is obtained.
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1. Introduction

Algebraic multigrid (AMG) method was introduced by Brandt et al. [2] while investi-
gating multigrid algorithms for automatic algorithm design. However, its convergence has
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been proved only for symmetric positive definite M -matrices with weak diagonal domi-
nance [27] and in few other cases not involving M -matrices [16,24,36]. One of essential
problems in AMG methods is closely connected to the choice of coarse grid and intergrid
transfer operators. The problem attracted considerable attention and in addition to the
classical coarsening strategy proposed by Ruge and Stüben [27], other approaches such as
aggregation and smooth aggregation methods [25,31], compatible relaxation [5,22], and
interpolation [6] and energy-based strategies [4] have been exploited. Cleary et al. [10] car-
ried out numerical experiments to study the robustness and scalability of the AMG method.
Parallel and adaptive AMG methods have also been studied in [7,12]. The simplicity of the
AMG method leads to its application to various problems — cf. Refs. [1,11,23].

In this work, we deal with the computation of q eigenpairs (maybe not of the smallest
magnitude) for the following generalised eigenvalue problem: Find (λ( j),u( j)) ∈ R×RN , j =

1,2, . . . ,q such that (u( j))T Mu(k) = δ jk, j, k = 1,2, . . . ,q and

Au( j) = λ( j)Mu( j), j = 1,2, . . . ,q, (1.1)

where A is a real symmetric positive definite N × N matrix and M a real symmetric semi-
positive N×N matrix. Note that generalised eigenvalue problems (1.1) arise in the discreti-
sation of the elliptic partial differential equations of electromagnetics, quantum chemistry,
material, acoustic data science, and so on. These applications usually require high resolu-
tion results and, consequently, suitable discretisations of large scale algebraic eigenvalue
problems. Therefore, the construction of efficient eigensolvers with a nearly optimal com-
putational complexity is very important.

It is natural to use AMG and MG methods in eigenvalue problems [3,8,13,14,28,35,37].
A good survey of various application of the AMG methods in eigenvalue problems is pre-
sented in [17]. In these methods, an AMG strategy is adopted as the only solver in inner
iterations combined with special outer iterations, such as inverse power, shift-and-inverse,
Rayleigh-quotient, and locally optimal block preconditioned conjugate gradients. But the
application of the AMG method does not lead to a new eigensolver (outer iteration). Re-
cently, a new multilevel correction method has been proposed to solve eigenvalue prob-
lems [18–21, 26, 32–34]. The method is based on a new understanding of Aubin-Nitsche
technique in the finite element method [19]. In contrast to the methods considered in [17],
where AMG is used only as a preconditioner of the stiffness matrix, the coarse space of the
multigrid method is employed to improve the working subspace in the eigenvalue problem
solving [15]. Therefore, in this multilevel correction scheme, the solution of eigenvalue
problem on the finest level mesh can be reduced to solving a sequence of standard bound-
ary value problems on multilevel meshes and eigenvalue problems on a low-dimensional
space. Hence, the computational work and the memory required can be at an optimal level.
The above discussion shows that the application of a multigrid method to a multilevel cor-
rection scheme can provide a new eigensolver.

Motivated by the AMG method for boundary value problems and the multilevel cor-
rection method, we develop a new AMG method for eigenvalue problems. It can compute
various eigenpairs (which may be not of the smallest magnitude) and allows a free choice
of the eigensolvers for the low dimensional eigenvalue problems considered. With simple
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Gauss-Seidel relaxation as a smoothing process, the AMG still achieves robust convergence.
The method also allows the addition of simple strategies, so that the problems discretised
on completely unstructured grids can be efficiently solved. With no geometric background,
this AMG method has a wide range of applications. Another aim of this paper is to investi-
gate the efficiency of the AMG method for eigenvalue problems. We test various eigenvalue
problems and numerical results show that the time consumption and iteration numbers are
almost optimal. Besides, the convergence does not depend on the number of the eigenval-
ues computed.

The rest of this paper is organised as follows. In Section 2, we recall the classical AMG
method, which is mainly used for the construction of a coarse-grid. An AMG algorithm for
the eigenvalue problem is proposed and analysed in Section 3. The results of numerical
tests presented in Section 4 show the efficiency of the algorithm. Some concluding remarks
are given in the last section.

2. Algebraic Multigrid Hierarchy

Let us introduce the classical AMG method for solving ill-conditioned linear systems
Au= f , which is similar to the geometric multigrid (GMG) method.

2.1. Standard coarsening and interpolation

Since there is no real geometric background, the main content is to determine a coarse-
grid directly from the matrix A= (ai j). By analogy, we define grid points Ω as the indices
{1,2, . . . , N} of u = (u1,u2, . . . ,uN )

T , and choose a subset of Ω as the coarse grid points
according to the undirected adjacency graph of the matrix A.

In order to derive a coarse level system, we split Ω into two disjoint subsets Ω= C ∪ F ,
where C contains the coarse grid points and F is the complement of C . Following [27,29,
30], for a fixed 0< θ < 1 (usually 0.25) we define the strong dependent set

Si :=

�
j
��− ai j ≥ θ max

aiℓ<0
ℓ 6=i

|aiℓ|

�
,

and the strong influence set ST
i

:= { j|i ∈ S j}. By |ST
i
| we denote the number of elements in

ST
i

. This characteristic shows how valuable as a coarse grid point the variable i is.
After the construction of the coarse variable set C and its complement F , we define

interpolation from the coarse level with mesh size H to fine level with mesh size h. For any
vector eH in the coarse grid the interpolation (prolongation) operator to fine grid can be
defined as follows:

�
Ih
H eH
�

i
=





eH

i
, if i ∈ C ,∑

j∈Pi

ωi je
H
j

, if i ∈ F,

where Pi is a small set of interpolation points of C ∩ Ni and Ni := { j ∈ Ω : j 6= i, ai j 6= 0}
refers to the neighborhood of the point i, i ∈ Ω.
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In the simplest case Pi = Si∩C , the direct interpolation can be applied immediately [30].
More exactly, the interpolation weights are

ωi j =






−αi

ai j

aii

, if ai j < 0,

−βi

ai j

aii

, if ai j > 0

with

αi =

∑
j∈Ni ,ai j<0

ai j

∑
ℓ∈Pi ,aiℓ<0

aiℓ

, βi =

∑
j∈Ni ,ai j>0

ai j

∑
ℓ∈Pi ,aiℓ>0

aiℓ

.

The leading coefficients αi and βi are chosen so that for zero row sum matrices the method
interpolates constants exactly. For more details and other interpolations, such as standard
interpolation, the reader can consult Refs. [27,29,30].

Remark 2.1. For different types of matrices, different type of coarsening and interpolation
strategies can be adopted.

2.2. Coarse problem

The AMG setup procedure leads to a hierarchy of vector spaces indexed by the set
k = 1,2, . . . , n, where k = 1 and k = n are, respectively, the finest and the coarsest levels.
Denote the finest grid Ω1 = Ω and corresponding matrices A1 = A, M1 = M . Based on
A1, the AMG scheme builds up the prolongation and restriction operators Ik

k+1 and Ik+1
k

:=
(Ik

k+1)
T , k = 1,2, . . . , n − 1, respectively. The coarse matrices are defined via the Galerkin

projection as

Ak+1 := Ik+1
k

Ak Ik
k+1, Mk+1 := Ik+1

k
Mk Ik

k+1 for k = 1,2, . . . , n− 1.

In what follows, d1, d2, . . . , dn are the dimensions of the problems defined on the grids
Ω1,Ω2, . . . ,Ωn, respectively.

3. AMG Algorithm for Eigenvalue Problems

In this section, we develop an AMG method for eigenvalue problems. Following the
geometric case [33], we assume that {λ( j,ℓ)

k
,u( j,ℓ)

k
}q

j=1 are approximations of the eigenpairs
wanted. In order to improve the accuracy of such pairs, we design the AMG correction step
presented in Algorithm 3.1.

According to the construction of (3.1), the result eu( j,ℓ+1)
k

can be viewed as perform-

ing a few inexact inverse power iterations on the given approximation u
( j,ℓ)
k

. Let Vn be the

coarsest AMG space. The matrices A
(ℓ+1)
n,k and M

(ℓ+1)
n,k are exactly the Galerkin projections on

the augmented subspace Vn + span{Vk,ℓ+1}. Therefore, Algorithm 3.1 is always more accu-
rate than the (block) inverse power method, which uses projection subspace span{Vk,ℓ+1}.
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Algorithm 3.1 AMG Correction Step.
1: for j = 1, . . . ,q do

2: Use the AMG iterations to solve the linear equation

Akbu( j,ℓ+1)
k

= λ
( j,ℓ)
k

Mku
( j,ℓ)
k

. (3.1)

Perform m AMG iteration steps with the initial value u
( j,ℓ)
k

to obtain a new eigenfunc-
tion approximation

eu( j,ℓ+1)
k

:= AMG
�
k,λ( j,ℓ)

k
u
( j,ℓ)
k

,u( j,ℓ)
k

, m
�

,

where k denotes the working level Ωk for the AMG iteration, λ( j,ℓ)
k

u
( j,ℓ)
k

leads to the

right hand side term of the linear equation, u
( j,ℓ)
k

is the initial guess and m the number
of AMG cycles.

3: end for

4: Set
Vk,ℓ+1 :=
�
eu(1,ℓ+1)

k
, . . . ,eu(q,ℓ+1)

k

�

and construct matrices A
(ℓ+1)
n,k and M

(ℓ+1)
n,k as follows

A
(ℓ+1)
n,k =

�
An In

k
AkVk,ℓ+1

V T
k,ℓ+1Ak Ik

n
V T

k,ℓ+1AkVk,ℓ+1

�
, M

(ℓ+1)
n,k =

�
Mn In

k
MkVk,ℓ+1

V T
k,ℓ+1Mk Ik

n
V T

k,ℓ+1MkVk,ℓ+1

�
.

5: Solve the following eigenvalue problems: Find {λ( j,ℓ+1)
k

, x
( j,ℓ+1)
k
}q

j=1 such that

�
x
( j,ℓ+1)
k

�T
M
(ℓ+1)
n,k x

( j,ℓ+1)
k

= 1,

A
(ℓ+1)
n,k x

( j,ℓ+1)
k

= λ
( j,ℓ+1)
k

M
(ℓ+1)
n,k x

( j,ℓ+1)
k

, j = 1, . . . ,q.

6: Select the wanted eigenpairs {λ( j,ℓ+1)
k

, x
( j,ℓ+1)
k
}q

j=1 and do the following computation:
7: for j = 1, . . . ,q do

8:

u
( j,ℓ+1)
k

= Ik
n

x
( j,ℓ+1)
k

(1 : dn) + Vk,ℓ+1x
( j,ℓ+1)
k

(dn + 1 : dn + q).

9: end for

10: Summarise the above steps by defining

¦
λ
( j,ℓ+1)
k

,u( j,ℓ+1)
k

©q
j=1

:= AMGCorrection
�

n, k,
¦
λ
( j,ℓ)
k

,u( j,ℓ)
k

©q
j=1

�
.

Moreover, the approximate low frequency information in Vn leads to a better convergence
rate of Algorithm 3.1 than the usual (block) inverse power method — cf. [19–21, 33, 34].
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Note that the efficacy and convergence of Algorithm 3.1 is studied in Section 4.

Remark 3.1. In order to obtain better results for (3.1), we can combine other efficient iter-
ative strategies — e.g. shifting and polynomial filtering. More general correction subspaces
— e.g. Vn + KrylovSpaces, can also be considered.

Using the previous considerations, we can construct an AMG method, which combines
nested technique and the AMG correction step of Algorithm 3.1.

Algorithm 3.2 AMG Eigenvalue Solver.
1: For the n1-th grid Ωn1

, n1 ≤ n, introduce the following low-dimensional eigenvalue

problem: Find {λ( j)n1
,u( j)n1
}q

j=1 such that

�
u( j)n1

�T
Mn1

u( j)n1
= 1,

An1
u( j)n1
= λ( j)n1

Mn1
u( j)n1

. (3.2)

Solve the problems (3.2) to derive the eigenpairs {λ( j)n1
,u( j)n1
}q

j=1 approximating the
wanted eigenpairs.

2: For k = n1 − 1, . . . , 1, perform the following correction steps:

(a) Set λ( j,0)
k
= λ

( j)

k+1 and u
( j,0)
k
= Ik

k+1u
( j)

k+1 for j = 1, . . . ,q.

(b) For ℓ= 0, . . . , pk − 1 do the correction iteration

¦
λ
( j,ℓ+1)
k

,u( j,ℓ+1)
k

©q
j=1
= AMGCorrection

�
n, k,
¦
λ
( j,ℓ)
k

,u( j,ℓ)
k

©q
j=1

�
.

(c) Set λ( j)
k
= λ

( j,pk)

k
and u

( j)

k
= u

( j,pk)

k
for j = 1, . . . ,q.

As the result, we obtain eigenpair approximations {λ( j,ℓ+1)
1 ,u( j,ℓ+1)

1 }q
j=1 on the finest

level grid Ω1.

In contrast to the GMG method [33], we do not have exact prolongation and restriction
operators. In practical computations, one chooses suitable iterations pk in order to satisfy
the accuracy requirements. In comparison to other AMG methods, the above method only
requires the employment of smoothing iterations for standard elliptic linear equations and
the AMG method can act as a black-box. The small scale eigenvalue problems used can be
solved by any eigensolver, which can also act as a black-box in our method. Furthermore,
unlike the classical eigensolvers such as Lanczos and Arnoldi, the memory required for the
eigenpair solving is only about qN .

According to the analysis for GMG method [33,34], the AMG method can have a good
convergence rate if the coarse grid captures low-frequency information of the finest grid
well.
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4. Numerical Results

Let us illustrate the efficacy of the algorithm by six examples for algebraic eigenvalue
problems arising in the linear finite element method for the Poisson eigenvalue problem
on different domains. The AMG method is tested on structured and unstructured meshes.
We use globally uniform convergence to show that the numerical method has the same
convergence rate for various number of computed eigenpairs.

4.1. Default implementation settings

Some parameters have to be set to finish the AMG setup phase and the eigenvalue
algorithm. Recall that we want to compute the first q eigenpairs of generalised eigenvalue
problems. The main default settings and procedures are as follows.

• Strong dependent/influence set threshold: θ = 0.25.

• Interpolation type: direct interpolation.

• Linear solver: 1 AMG V-cycle:

– Pre-smoothing: 1 Gauss-Seidel iteration.

– Post-smoothing: 1 Gauss-Seidel iteration.

• The initial eigensolver level: n1 = n.

• Correction number at each level: pn1−1 = pn1−2 = · · ·= p2 = 1, p1 ≤ 20.

• Direct eigensolver: Arnoldi process by the ARPACK library. The j-th eigenvalue on
the finest level is denoted by λdir

j
.

• q is the number of desired eigenvalues, ranging from 1 to 30.

• Total error at the finest level between the eigenvalue approximations by the AMG

method and direct solver: eℓ =
q∑

j=1
|λℓ

j
−λdir

j
| where λℓ

j
= λ

( j,ℓ)
1 , ℓ= 1,2, . . . , p1.

• Total error tolerance: τ ≤ 10−9.

• Average convergence ratio: ratio = (ep1
/e1)

1/(p1−1).

• The stiffness matrix A and mass matrices M are obtained by discretising the following
problems respectively with the linear finite element method [9].

• Test machine: Intel Xeon E5-2620 2.00GHz, two 6-core dual thread CPUs, 72G mem-
ory.
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Example 4.1 (Model eigenvalue problem). The first problem is the most elementary eigen-
value problem — viz. find (λ,u) such that

−∆u= λu in Ω,

u = 0 on ∂Ω,∫

Ω

u2dΩ= 1,
(4.1)

where Ω = (0,1)× (0,1). The meshes are generated by uniform refinement starting with
the mesh of size h = 1. At each level, the dimension of the corresponding grid respectively
is 4198401, 2095105, 525309, 131581, 33021, 8569, 2109, 542 and there are 8 levels in
total.

Table 1 shows the average convergence ratio, total errors, and iteration numbers for
different desired amount of eigenvalues. Unlike the Krylov methods, where more than q

eigenvalues are actually computed, Algorithm 3.2 has to determine the first q eigenvalues
only. We also note that if λq and λq+1 are close, then it is more difficult for the algorithm
to find these first q eigenvalues. However, as follows from Table 1, the overall behaviour
is similar — viz. for different number of computed eigenpairs, we obtain a globally uni-
form convergence ratio close to 0.11. In order to demonstrate the optimal computational
complexity, Fig. 1 provides algebraic errors and CPU time (in seconds) for the first 13 eigen-
values. The left graph in Fig. 1 shows that the error of the eigenvalues linearly decreases
with the number of iterations. The right graph in Fig. 1 shows perfect linear growth of CPU
time and is faster than the direct method which needs 1737.56 seconds for the same error
tolerance.

1 2 3 4 5 6 7 8
number of corrections

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3
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ex1 -- ndofs from 4198401 to 542: error

13∑

j=1

|λj − λ
dir
j |

slope = -0.95

1 2 3 4 5 6 7 8
number of corrections

0

50
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300

tim
e

ex1 -- ndofs from 4198401 to 542: time

time

slope = 30.31

Figure 1: Example 4.1. AMG method for first 13 eigenvalues on uniform refinement mesh. Algebraic
errors and CPU time.
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Table 1: Example 4.1. Algebraic errors for unit square and uniform refinement mesh.

q λq λq/λq+1 ratio iter total error

1 19.739351152446577 0.399999830658111 0.110359 6 0.19e-09

2 49.348398772994052

3 49.348426661655587 0.624999514802597 0.109683 7 0.12e-09

4 78.957543954641395 0.800000031375434 0.110713 7 0.21e-09

5 98.696926072478092

6 98.696926072787591 0.769230457062699 0.111902 7 0.45e-09

7 128.306055963593963

8 128.306290898228610 0.764706565466666 0.110547 7 0.69e-09

9 167.784999753374791

10 167.785014924843836 0.944442983816993 0.112142 8 0.12e-09

11 177.654996436879685 0.900000105867284 0.115364 8 0.18e-09

12 197.394417265854258

13 197.394417273111628 0.799999907230014 0.113346 8 0.22e-09

14 246.743050204326266

15 246.743972243036808 0.961541879013450 0.112188 8 0.27e-09

16 256.612819086151660

17 256.612819086431614 0.896550451610119 0.113451 8 0.37e-09

18 286.222396771513957

19 286.222479299660563 0.906247979981473 0.112243 8 0.42e-09

20 315.832405282174534 0.941176611569284 0.111708 8 0.45e-09

21 335.571880346205262

22 335.571880413890710 0.918920429907456 0.115726 8 0.69e-09

23 365.180563509384399

24 365.180577155566198 0.924998520135014 0.110632 8 0.59e-09

25 394.790444748240247

26 394.790444752357189 0.975610272573643 0.114287 8 0.87e-09

27 404.659991649028711

28 404.662532642826989 0.911114427716026 0.113430 8 0.95e-09

29 444.140187371669356

30 444.140438372226185 0.900001567378938 0.138346 9 0.60e-09

Example 4.2 (Poisson eigenvalue problem on L-shaped domain). In this example, we
test the performance of Algorithm 3.2 for the problem (4.1), but on an L-shaped domain
Ω = [−1,1] × [−1,1]\(0,1) × (−1,0). The meshes are generated by uniform refinement
starting with the mesh of size h = 1. At each level, the dimension of the corresponding
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grid respectively is 3149825, 1570817, 394236, 98812, 24828, 6518, 1596 and there are
7 levels in total.

Table 2 shows numerical results for different wanted eigenvalues determined by our
AMG algorithm. We again see globally uniform convergence, but it is worth noting that at
the coarsest level the dimension is increased to 1596. It is reasonable, since an L-shaped

Table 2: Example 4.2. Algebraic errors for L-shaped domain and uniform refinement mesh.

q λq λq/λq+1 ratio iter total error

1 9.639941155614530 0.634320854275592 0.105045 6 0.12e-09

2 15.197263483672709 0.769901102357829 0.104864 6 0.28e-09

3 19.739241101397241 0.668638429761318 0.105088 6 0.48e-09

4 29.521547405588866 0.925055808457296 0.104818 6 0.73e-09

5 31.913260946733118 0.769457056102703 0.107524 7 0.13e-09

6 41.475038397040180 0.922721052755031 0.107113 7 0.18e-09

7 44.948620466830491 0.910845766545385 0.106877 7 0.24e-09

8 49.348223505840721

9 49.348260690989306 0.870179621581926 0.106558 7 0.35e-09

10 56.710430199775971 0.867439196741824 0.106295 7 0.41e-09

11 65.376836108842241 0.920039372342096 0.105972 7 0.48e-09

12 71.058737347746145 0.992811733747242 0.105879 7 0.54e-09

13 71.573224743772840 0.906477598649387 0.107138 7 0.66e-09

14 78.957521785881866 0.884144399022638 0.106518 7 0.73e-09

15 89.303876010710553 0.967460206330204 0.106860 7 0.87e-09

16 92.307544461658438 0.947893993499531 0.106015 7 0.95e-09

17 97.381716831929808 0.986674656579670 0.189571 10 0.28e-09

18 98.696886742288171

19 98.696886759985802 0.971356701426527 0.108106 8 0.15e-09

20 101.607253663911848 0.904219670345751 0.107446 8 0.16e-09

21 112.370098767105745 0.972722811055895 0.110938 8 0.22e-09

22 115.521192152497733 0.900353570057789 0.112182 8 0.26e-09

23 128.306474249980454

24 128.306787514516458 0.986060874784479 0.111082 8 0.29e-09

25 130.120554212801750 0.998942245349293 0.108884 8 0.27e-09

26 130.258335573047447 0.914382448573862 0.109380 8 0.29e-09

27 142.454982350337076 0.942648379890289 0.109414 8 0.32e-09

28 151.122078379763281 0.978332935190765 0.109511 8 0.34e-09

29 154.468967509814064 0.952336564402184 0.108736 8 0.35e-09

30 162.199975600831635 0.984711949246173 0.112557 8 0.48e-09
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Figure 2: Example 4.2. AMG method for first 13 eigenvalues on uniform refinement mesh. Algebraic
errors and CPU time.

domain is considered. Nevertheless, for the first 13 eigenvalues the behaviour of algebraic
errors and CPU time is similar to Example 4.1. Again, the timings are close to scaling
linearly with the number of iterations — cf. Fig. 2. Note that the direct method needs
936,94 seconds for finding the first 13 eigenpairs for the same error tolerance.

Example 4.3 (Poisson eigenvalue problem with discontinuous parameters I). On the unit
square Ω = (−1,1)× (−1,1), we consider the following Poisson eigenvalue problem: Find
(λ,u) such that

−∇ · (K∇u) = λu in Ω,

u = 0 on ∂Ω,∫

Ω

u2dΩ= 1,
(4.2)

where the coefficient matrix K has discontinuous elements. In order to test our multigrid
algorithm, in this and the next example we choose two different coefficient matrices K . In
particular, here the matrix K is

K =

�
1 0
0 1

�
in (−1,0)× (0,1)∪ (0,1)× (−1,0),

K =

�
1000 0

0 1000

�
in [0,1]× [0,1],

K =

�
0.001 0

0 0.001

�
in [−1,0]× [−1,0].

The meshes are generated by uniform refinement starting with the mesh of size h = 1.
At each level, the dimension of the corresponding grid respectively is 4198401, 2095105,
525310, 131585, 33024, 8564, 2137 and there are 7 levels in total.
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Table 3 shows numerical results for various wanted eigenvalues. In order to show glob-
ally uniform convergence ratio, the dimension on the coarsest level is increased to 2137.
We also plot total errors and CPU time for the first 13 eigenvalues as the functions of the
number of corrections in Fig. 3. It is clear that the decreasing of the total error is robust
with respect to the number of corrections. Moreover, CPU time still grows linearly with
along with the number of corrections.

Table 3: Example 4.3. Algebraic errors for unit square and uniform refinement mesh.

q λq λq/λq+1 ratio iter total error

1 0.019726703793271 0.399974375039268 0.097224 3 0.10e-09

2 0.049319919035649

3 0.049320060970441 0.624839632041262 0.096406 3 0.66e-09

4 0.078932350704643 0.800221419880202 0.098629 4 0.11e-09

5 0.098638137824978

6 0.098638194206567 0.768992275837269 0.097949 4 0.23e-09

7 0.128269421300976

8 0.128270399246696 0.764957776222445 0.097399 4 0.38e-09

9 0.167682979680431

10 0.167683133739996 0.944062075515168 0.096656 4 0.57e-09

11 0.177618758436507 0.900067811260723 0.096447 4 0.68e-09

12 0.197339307343651

13 0.197339360277547 0.799924741492187 0.096014 4 0.91e-09

14 0.246697407945438

15 0.246701139291675 0.961965508840176 0.098786 5 0.13e-09

16 0.256455285584114

17 0.256455427715290 0.896251379863420 0.098347 5 0.16e-09

18 0.286142296098190

19 0.286142698738707 0.906120868759646 0.097962 5 0.20e-09

20 0.315788664188252 0.941206046642901 0.097811 5 0.22e-09

21 0.335514912292169

22 0.335514964638074 0.919331113066801 0.097356 5 0.26e-09

23 0.364955520235607

24 0.364955778306734 0.924686470880238 0.096885 5 0.31e-09

25 0.394680564493737

26 0.394680661391869 0.975464015890347 0.104709 5 0.50e-09

27 0.404608119789665

28 0.404618330771774 0.911165080572709 0.096076 5 0.41e-09

29 0.444066985663512

30 0.444068055608404 0.900409760718495 0.095797 5 0.47e-09
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Figure 3: Example 4.3. AMG method for first 13 eigenvalues on uniform refinement mesh. Algebraic
errors and CPU time.

Example 4.4 (Poisson eigenvalue problem with discontinuous parameters II). We now
consider the eigenvalue problem (4.2) with the coefficient matrix

K =

�
1 0
0 1

�
in (−1,0)× (0,1)∪ (0,1)× (−1,0),

K =

�
10 0
0 10

�
in [0,1]× [0,1]∪ [−1,0]× [−1,0].

The mesh is generated by uniform refinement starting with the mesh of size h= 1.
Unlike the previous examples, we do not observe similar globally uniform convergence

behaviour even if the coarsest level dimension is increased to 8515. In practical computing,
we could take at least two simple strategies to improve the performance — viz. to increase
the coarsest level dimension or to compute extra eigenpairs. Table 4 shows the results
of numerical experiments for the first 14 eigenvalues with two improvement strategies.
Note that the gap between 14-teen 15-teen eigenvalues is λ14/λ15 = 0.873102340090717.
Two AMG hierarchies are generated, where for each strategy the dimensions at every level
respectively are 4198401, 2095105, 525311, 131589, 33028, 8515, 2165, 597, 176 and
4198401, 2095105, 525311, 131589, 33028, 8515, 2165, 597. Three extra eigenpairs —
viz. the first 17 eigenvalues and the corresponding eigenvectors are computed for the com-
parison. The algebraic errors and CPU time for the first 14 eigenvalues in third situation,
which takes the shortest time, are given in Fig. 4. Unlike Example 4.3, for discontinuous pa-
rameters the number of iterations required to achieve the same tolerance increases greatly
and so does CPU time.

Remark 4.1. If the GMG method in [19, 33, 34] is applied to the problem (4.2) with the
above coefficient matrix K defined in this example and the hierarchy levels are 1050625,
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Figure 4: Example 4.4. AMG method for first 14 eigenvalues on uniform refinement mesh. Algebraic
errors and CPU time.

263169,66049,16641,4225,1089,289, we were not able to establish the convergence —
cf. Table 5. The reason should come from the fact that the algebraic multigrid hierarchy
has the adaptive coarsening property, according to the coefficient functions.

In order to show the generality of the AMG method, in the following examples the
Delaunay scheme is applied to generate meshes with no hierarchical structures. Similar to
Example 4.4, we test the method with two improvement strategies mentioned.

Table 4: Example 4.4. Algebraic errors for unit square and uniform refinement mesh.

q actual q dn ratio iter total error time

14 14 176 0.252941 12 0.39e-09 406.1
14 17 176 0.132108 8 0.96e-09 336.9

14 14 597 0.113013 8 0.31e-09 282.7
14 17 597 0.113353 8 0.27e-09 359.9

Table 5: Example 4.4. Number of correction and corresponding algebraic errors for unit square and
uniform refinement mesh for first 6 eigenvalues.

correction
∑6

j=1 |λ j −λ
dir
j
| ratio

1 2.526094e+01 -

2 2.565658e+01 1.015662
3 2.421893e+01 0.943965

4 2.499157e+01 1.031902

5 2.417530e+01 0.967338
6 2.556458e+01 1.057467
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Example 4.5 (Example 4.1 with Delaunay mesh). We now consider the model eigenvalue
problem (4.1) on the unit square. Table 6 shows numerical results for computing the
first 13 eigenvalues. Note that the gap between the 13-teen and 14-teen eigenvalues is
λ13/λ14 = 0.799999552462451. The dimensions of two AMG hierarchies at each level re-
spectively are 4623349, 1630814, 614806, 222577, 76384, 27104, 9743, 3459, 1196 and
4623349, 1630814, 614806, 222577, 76384, 27104, 9743, 3459. The first 17 eigenvalues
and the corresponding eigenvectors are also computed for comparison. Fig. 5 displays al-
gebraic errors and CPU time for the first 13 eigenvalues with the later situation requiring
the shortest time — cf. Table 6.

Table 6: Example 4.5. Results about the algebraic errors on unit square with Delaunay mesh.

q actual q dn ratio iter total error time

13 13 1196 0.305067 18 0.90e-09 659.3

13 17 1196 0.158769 12 0.81e-09 604.0

13 13 3459 0.225724 15 0.44e-09 650.5
13 17 3459 0.151409 12 0.46e-09 723.2
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Figure 5: Example 4.5. AMG method for first 13 eigenvalues on the Delaunay mesh. Algebraic errors
and CPU time.

Example 4.6 (Example 4.2 with Delaunay mesh). We consider the eigenvalue problem
(4.1) on the L-shape domain Ω= [−1,1]×[−1,1]\(0,1)×(−1,0)with the mesh generated
by Delaunay method. In Table 7, we present numerical results for computing the first 13
eigenvalues. Note that the gap between 13-teen and 14-teen eigenvalues is λ13/λ14 =

0.906477598649387. The dimensions on each level respectively are 3468624,1219797,
453107,165008,55740,19564,6958,2458,865 and 3468624,1219797,453107,165008,



16 N. Zhang, X. Han, Y. He, H. Xie and C. You

55740,19564,6958,2458. Similar to the previous example, various extra eigenvalues from
the first 14-teen to 17-teen eigenvalues, are computed. According to Table 7, the second
situation takes the shortest time. Fig. 6 shows the convergence behaviour and CPU time.

Table 7: Example 4.6. Results about the algebraic errors on an L-shape domain with Delaunay mesh.

q actual q dn ratio iter total error time

13 13 865 0.540191 20 0.20e-05 525.8
13 14 865 0.308052 18 0.42e-09 517.2

13 15 865 0.247463 15 0.66e-09 476.7
13 16 865 0.219253 14 0.53e-09 481.3

13 17 865 0.214510 14 0.40e-09 510.0

13 13 2458 0.468039 20 0.11e-06 597.9
13 14 2458 0.230357 14 0.99e-09 469.0

13 15 2458 0.182574 13 0.26e-09 469.2
13 16 2458 0.159574 12 0.31e-09 471.8

13 17 2458 0.155989 12 0.24e-09 507.2
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Figure 6: Example 4.6. AMG method for first 13 eigenvalues on the Delaunay mesh. Algebraic errors
and CPU time.

5. Conclusions

An AMG method for algebraic eigenvalue problems arising from the discretisation of
partial differential equations is developed. Paired with the multilevel correction method
and the AMG method for linear equations, the resulting algorithm requires an almost opti-
mal computational work and the least memory. The efficiency of the method is demon-



AMG Method for Eigenvalue Problems 17

strated by six numerical examples. The first three examples show that under suitable
conditions, the AMG method has globally uniform convergence. Another examples are
included to discuss strategies for the convergence improvement if the conditions used are
not satisfied. In particular, various interpolation methods (direct and standard), pre- and
postsmoothing operators (CG,GS), linear solvers (AMG V-cycle,CG,PCG), and various pa-
rameters pk and dn are tested.

The development of robust and efficient AMG eigensolvers for eigenvalue problems
involves testing of different coarsening and interpolation strategies for various types of
matrices and using of other solution schemes. Furthermore, for large scale eigenvalue
problems, the parallelisation methods should also be studied.
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