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Abstract. In this paper, the recently-developed singular boundary method is applied
to address free boundary problems. This mesh-less numerical method is based on
the use of the origin intensity factors with fundamental solutions. Three numerical
examples and their results are compared with the results obtained using traditional
methods. The comparisons indicate that the proposed scheme yields good results in
determining the position of the free boundary.
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1 Introduction

Water seepage is the leading cause of a considerable number of geological disasters. The
determination of the free boundary for the seepage plays a major part in this problem.
This problem has been extensively studied by variable grid methods, fixed grid methods,
and mesh-less methods in recent decades.

Liao proposed the residual pressure feedback method [1] for the simulation of free
surface flow. Neumann put forward the Galerkin method [2] which was continuously
optimized and developed as an element-free method [3]. Subsequently, a large variety
of grid methods attempted to detect the location of free boundary, such as the residual
flow method [4], the osmosis matrix adjustment [5], the initial flow method [6], the varia-
tional inequality [7], and the finite element method (FEM) [8]. The disadvantages of these
methods are that they are time-consuming and inflexible.
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Based on a set of scattered nodes, mesh-less methods overcome certain limitations of
grid methods. The Kansa method [9], the boundary knot method (BKM) [10], the back-
ward substitution method [11, 12], and the method of fundamental solutions (MFS) [13–
15] are such methods. Nevertheless, the MFS shows superiority of stability over the LRBF.

Chen and his collaborators devised a new boundary-type mesh-less method, namely
the singular boundary method (SBM), which is a coupling between the MFS and the indi-
rect boundary element method (BEM) [16]. The SBM employs the fundamental solutions
as the basis functions, and introduces the concept of origin intensity factors [17,18] to take
place of the singularities encountered in the fundamental solutions at origin. The method
inherits the dimensional superiority of the BEM and does not involve costly integration.
The method eliminates the complicated fictitious boundary issue associated with the tra-
ditional MFS. Based on the SBM, highly accurate results have been obtained in various
wave cases [19–21], large-scale problems [22], transient matters [23,24], and heat conduc-
tion problems in layered materials [25, 26]. In this paper, the SBM is extended to solve
steady-state free boundary problems.

The rest of the paper is organized as follows. In Section 2, we give a brief review on
the basic idea of the SBM for solving steady-state free boundary problems. In Section
3, in order to demonstrate the effectiveness of the SBM, three numerical examples are
presented. A summary and conclusions are provided in the last section.

2 The SBM for the free boundary problems

We consider the following problem [27]

∇2φ(x)=0, x∈Ω, (2.1)

subject to the boundary conditions:

Bφ(x)= f , x∈∂ΩFIXED, (2.2a){
B1φ(x)= f1,
B2φ(x)= f2,

x∈∂ΩFREE, (2.2b)

where ∂Ω=∂ΩFIXED∪∂ΩFREE, ∂ΩFIXED is the fixed boundary and ∂ΩFREE is the free bound-
ary. B denotes the boundary operator on the fixed boundary. The two different kinds of
boundary operators on the free boundary are denoted by B1 and B2. f , f1 and f2 represent
known functions. The least squares fit to the data generated is treated as follows :

F=

{
MFIXED

∑
m=1
|Bφ(xm)− f |2+

MFREE

∑
m=1

[
|B1φ(xm)− f1|2+|B2φ(xm)− f2|2

]} 1
2

. (2.3)

φ(x) is an approximate solution with unknown coefficients. MFIXED and MFREE denote
the number of fixed boundary and free boundary nodes, respectively. In this paper, the
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Fig. 1. Source nodes on the physical boundary. 
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Figure 1: Source nodes on the physical boundary.

y-coordinates of the free boundary nodes could move vertically while the x-coordinates
remain fixed.

The unit normal vector n of a point on a curve y= g(x) is defined by

n=
(±g′(x),±1)√

1+g′(x)2
. (2.4)

We approximated g′(xm) with a central difference approximation:

g′(xm1)=
xm+12−xm−12

xm+11−xm−11

, m=2,··· ,M−1, (2.5)

where M denotes the number of boundary nodes. The unit normal vectors of the edge
points can be determined by forward and backward finite difference approximations. To
illustrate the SBM, we consider Eq. (2.1) under the following boundary conditions:

φ(x)= φ̄(x), x∈ΓD, (2.6a)
∇φ·n=q(x), x∈ΓN , (2.6b)

where ∂Ω=ΓD∪ΓN . The first step to solve the boundary value problem by the SBM is to
arrange the source nodes (Fig. 1) on the physical boundary of the computational domain.
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After the source nodes are determined, the SBM takes the follow approximation

φ̄(xm)=
N

∑
n=1

αnGL(xm,sn)+c, xm∈Ω, (2.7a)

q(xm)=
N

∑
n=1

αn
∂GL(xm,sn)

∂nxm

, xm∈Ω, (2.7b)

where
GL(x,s)=− 1

2π
ln‖xm−sn‖

is the fundamental solution of the two-dimensional Laplace equation. The Sn denote the
source nodes and the Xm represent the collocation nodes in the region. The MFS arranges
the source nodes on a fictitious boundary outside the physical region to avoid the coin-
cidence of the source nodes and the collocation nodes. The SBM places the source nodes
and collocation nodes which are the same set of nodes on the boundary of the physical
domain. N represents the number of the nodes. The {αn} are coefficients to be deter-
mined and c is an unknown constant to ensure uniqueness of the solution. Meanwhile,
the coefficients should be consistent with following supplementary condition to solve the
constant c,

N

∑
n=1

αn =0, (2.8)

which is also called as the moment condition.
The concept of origin intensity factor is introduced to replace the singular term when

the source nodes coincide with collocation nodes

φ(sm)=
N

∑
n 6=m

αnGL(sm,sn)+αmG̃L(sm,sm)+c, (2.9a)

q(sm)=
N

∑
n 6=m

αn
∂GL(sm,sn)

∂nsm

+αmQ̃L(sm,sm), (2.9b)

where G̃L(sm,sm) and Q̃L(sm,sm) denote the origin intensity factors.
For the natural boundary (Neumann) conditions (Fig. 2), the origin intensity fac-

tors [28] are

Q̃L(sm,sm)=−
N

∑
n 6=m

Ln

Lm

∂GL(sm,sn)

∂nsn

, (2.10)

where Ln is the half arc length between sources sn−1 and sn+1 (Fig. 3). The empirical
formula [29] on the Dirichlet boundary is

G̃L(sm,sm)=−
1

2π
ln
(Lm

2π

)
. (2.11)
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Figure 3: The length of Ln for 2D problem.

According to Eqs. (2.12)-(2.13), the following standard linear algebraic system can be
obtained: 

G̃L(sm,sm) GL(sm,sn) 1

Q̃L(sm,sm)
∂GL(sm,sn)

∂nsm

0

1 1 0

{αN+1}=


φ(sm)

q(sm)

0

. (2.12)

The matrix form is

Aα=b, (2.13)

where A is the coefficient matrix, {α} represent the vectors of unknown coefficients and
b denote the right-hand side vectors. The unknown vectors {α} can be determined by
solving this system.

Tips: Step-by-step computational procedure is displayed as follows:

Step 1 Assume initial coordinates of the free boundary nodes and discretize the fixed
boundary.

Step 2 Solve Eqs. (2.1)-(2.2b) using the SBM.
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Step 3 Substituting the original coordinates into the Eqs. (2.9a)-(2.9b), new Φ(sm) or
q(sm), which include the updated coordinates of free boundary nodes are ob-
tained. Substituting the updated coordinates into the Eq. (2.3), if the value does
not reach the tolerance, average the original and updated coordinates to obtain
a set of trial coordinates. Don’t stop substituting the trial coordinates into the
Eqs. (2.9a)-(2.9b) until the value by the Eq. (2.3) reaches the tolerance.

Step 4 Determine the free boundary by fitting curves with the new coordinates of the
nodes.

3 Numerical results and discussions

Example 3.1 (Seepage through a rectangle porous dam). In the first example, we apply
the SBM to solve seepage flow through a rectangular mass soil, which is depicted in
Fig. 4 [30].
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Fig. 4. Seepage through a rectangle porous dam. 

The seepage (AE) is a dividing line which is the free boundary between wet and 

dry soil. The governing equation for the potential function ( , )x y  
is 

 
2 =0  in ABCDEA,  (3. 1) 

subject to the boundary conditions 

 H h = −  on AB, (3. 2) 

 0

=

n
 on BC, (3. 3) 

 =0  on CD,  (3. 4) 

Figure 4: Seepage through a rectangle porous dam.

The seepage (AE) is a dividing line which is the free boundary between wet and dry
soil. The governing equation for the potential function ϕ(x,y) is

∇2ϕ=0 in ABCDEA, (3.1)

subject to the boundary conditions

ϕ=H−h on AB, (3.2a)
∂ϕ

∂n
=0 on BC, (3.2b)

ϕ=0 on CD, (3.2c)
ϕ=y on DE, (3.2d)
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 ϕ=y,
∂ϕ

∂n
=0,

on AE. (3.2e)

The potential function ϕ(x,y), shape of the curve AE and h0 (CE) are unknown, where
L= 10, h= 3 and H = 10. AE0 is an initial assumed line and h<CE0 < H. Furthermore,
the x-coordinates of free boundary nodes remain fixed while the y-coordinates can move
vertically. To obtain the coordinates of the edge node, we use linear interpolation with
nodes which are close to the point E. The results by the MFS with an adjustable fictitious
boundary in [30], the MFS with a fixed fictitious boundary and the SBM are presented in
Table 1. It is not reasonable to compare the computational cost of the MFS [30] with other
methods because the results were obtained over two decades ago. The fictitious bound-
ary of the MFS is set an appropriate distance from the physical boundary by multiple
error analysis. The shape of the fictitious boundary is similar to the physical boundary.
The source nodes are evenly distributed on the fictitious boundary. The height h0 ob-
tained by the SBM in Table 1 is in good agreement with the analytical solution as shown
in Polubarinova-Kochina [31] (h0≈4.20).

In Table 1, M and MFREE represent the number of boundary nodes and free boundary
nodes, respectively. NFEV denotes the number of function evaluations. N is the number
of iterations. The computational time is shown in seconds. Note that the iteration of the
SBM for this example is much less than the MFS. Furthermore, it takes less CPU time by
the SBM. The shapes of AE obtained by the SBM are shown in Fig. 5.
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M=68, MFREE=10 
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Fig. 5. Location of free boundary by the SBM. 

 

Example 2. Cavity flow 

As shown in Fig.  6, an incompressible inviscid fluid passes a plate with finite 

width and infinite length [30]. What we need is to use image plate to exploit the shape 

of cavity. Due to symmetry, we can only consider a quarter of region displayed in Fig. 

7. 

Figure 5: Location of free boundary by the SBM.

Example 3.2 (Cavity flow). As shown in Fig. 6, an incompressible inviscid fluid passes
a plate with finite width and infinite length [30]. What we need is to use image plate to
exploit the shape of cavity. Due to symmetry, we can only consider a quarter of region
displayed in Fig. 7.



170 F. Chen, B. Zheng, J. Lin and W. Chen / Adv. Appl. Math. Mech., 13 (2021), pp. 163-175

Table 1: Results of the Example 3.1.

M=68, MFREE=10
MFS [30] MFS SBM

NFEV h0 N h0 CPU(s) N h0 CPU(s)
600 4.147 200 4.299 0.30 3 5.154 0.02
800 4.212 300 4.276 0.42 4 5.228 0.03

1000 4.223 400 4.275 0.53 5 4.176 0.03
6 4.212 0.03
7 4.226 0.03

The governing equation for stream function in region ABCDEFA is as follows:

∇2Ψ=0 in ABCDEFA, (3.3)

subject to the following boundary conditions

∂Ψ
∂n

=0 on CD,AB, (3.4a)

Ψ=0 on DE,EF, (3.4b)
Ψ=1 on BC, (3.4c) Ψ=0,

∂Ψ
∂n

=−q,
on FA. (3.4d)

The free boundary FA is a major part of the shape of the cavity. According to [30], we
take L= 0.5, CD= 1 (h= 1.0), DE= 1.5 and d= 0.1. FA is assumed as a straight line ini-
tially. To determine the location of FA, the x-coordinates of nodes remain constant while
the y-coordinates are allowed to move vertically. In addition, the y-coordinates of the
nodes on AB are re-adjusted. The constant q is set as zero originally. The edge point is
obtained by interpolating the nodes near the point F. We analyse sufficient errors to iden-
tify an appropriate distance between the fictitious boundary and the physical boundary
of the MFS. The source nodes are selected on the fictitious boundary evenly. The fictitious
boundary is taken to be similar to the physical boundary. The constant q and value b are
consistent with results obtained in Aitchison [33] by the FEM and Aitchison and Kara-
georghis [34] with the boundary integral equation method. The results obtained by the
MFS with adjustable fictitious boundary in [30], the MFS with fixed fictitious boundary
and the SBM are listed in Table 2.

M denotes the number of boundary nodes and MFREE represents the number of free
boundary nodes. NFEV is the number of function evaluations. N is the number of iter-
ations and CPU shows the computational time. The locations of the free boundary (FA)
obtained by the MFS with fixed fictitious boundary and the SBM are shown in Fig. 8.
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Table 2.  Results of the Example 2. 

M=132, MFREE=17 M=132, MFREE=11 

MFS [30] MFS SBM 

q b NFEV q b N CPU(s) q b N CPU(s) 

1.4491 0.2102 1000 1.4491 0.2827 1000 1.44 1.4491 0.2159 1000 8.77 

Aitchison [33]                1.429     0.2013 

Aitchison and Karageorghis [34] 1.4753    0.2222 

 

 

Fig. 8. Location of free boundary by the MFS and SBM. Figure 8: Location of free boundary by the MFS and SBM.

Example 3.3 (Flow over a triangular weir). In Example 3.3, we examine potential flow
over a triangular weir under gravity [30]. Line GF is the free boundary (Fig. 9). Stream
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Table 2: Results of the Example 3.2.

M=132, MFREE =17 M=132, MFREE =11
MFS [30] MFS SBM

q b NFEV q b N CPU(s) q b N CPU(s)
1.4491 0.2102 1000 1.4491 0.2827 1000 1.44 1.4491 0.2159 1000 8.77

Aitchison [33] 1.429 0.2013
Aitchison and 1.4753 0.2222

Karageorghis [34]

Table 3: Results of Example 3.3.

M=197, MFREE=45 M=197, MFREE=9
MFS [30] SBM

NFEV q N q
885 3.3440 496 3.2524
965 3.3409 586 3.3025

1045 3.3393 676 3.3307

function Ψ(x,y) is displayed below.

∇2Ψ=0 in ABCDEFGA, (3.5)

subject to boundary conditions

∇2Ψ=0 on ABCDE, (3.6a)
∂Ψ
∂n

=0 on EF,GA, (3.6b) Ψ=q,
∂Ψ
∂n

=
√

2g(H0−y−0.5),
on FG. (3.6c)

According to Aitchison [32], EF (h2) and GA (h1) satisfy the following cubic equation

z3−H0z2+
q2

2g
=0. (3.7)

The equation above has two real positive roots z1 and z2 in [0,H0] (neglect the negative
one), z1∈ [0,2H0/3] and z2∈ [2H0/3,H0]. The physically interesting flows are defined by

h1=h2= z1 (supercritical flow), (3.8a)
h1=h2= z2 (subcritical flow), (3.8b)
h1= z2, h2= z1 (critical flow). (3.8c)

The critical flow is a case where H0 or q is given. In [32], H0 = 1.138, XR=XL= 3.0
and p=0.2. The coefficient q is taken as one initially. GF is set to be a straight line at the
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 0


=
n
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beginning. The Results, listed in Table 3, obtained by the SBM converge to 3.30 that is in
good agreement with the MFS in [30].

The number of boundary nodes is M. MFREE denotes the number of free boundary
nodes. NFEV represents the number of functional evaluations. N shows the number of
iterations. Locations of the free boundary (GF) obtained by the SBM are displayed in
Fig. 10.

4 Conclusions

In this paper, the SBM is extended to solve free boundary problems. The method is sim-
ple, easy in implementation and highly accurate. It avoids singularities through the use
of the origin intensity factors with fundamental solutions. Numerical results validate the
accuracy and effectiveness of the SBM in solving free boundary problems. It should be
noted that a full matrix is formed when the SBM is employed. Hence, some fast solvers
will be used if there is plenty of boundary nodes. Application to the transient free bound-
ary problems by the SBM will be investigated in the future.
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