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1. Introduction

Differential equations with piecewise continuous arguments (EPCAs) have the fol-

lowing form

dx(t) = a
(

x(t), x(u(t))
)

dt, (1.1)

where the argument u(t) has the intervals of constancy, such as u(t) = [t], [t−n], t−n[t].
EPCAs have plenty of useful applications in the stabilization of hybrid control systems

with feedback discrete controller [9,17,25,28]. Note that [t] is a discontinuous function

and the solutions are determined by a finite set of initial data, rather than an initial

function. Moreover, EPCAs represent a hybrid of continuous and discrete dynamical

systems and combine the properties of both differential and difference equations [27].
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However, [21] pointed out that substantial theories of functional differential equations

did not exist for differential equations with piecewise constant or piecewise continu-

ous arguments. Therefore, it is necessary to extend the theory of delay differential or

functional differential equations with continuous arguments to equations with discon-

tinuous arguments.

Actually, the effects of noise are not negligible for some systems [22]. Therefore,

the stochastic differential equations with piecewise continuous arguments (SDEPCAs)

are used to describe many practical problems. It has been widely used in the neural

networks, control theory and so on [11, 23, 28]. Since there is, in general, no explicit

solutions to SDEPCAs, numerical solutions are required in practice. The convergence

and stability of numerical methods are the central properties in numerical analysis,

and it is well studied for SDEPCAs under global Lipschitz and linear growth conditions,

such as [20]. However, many systems do not satisfy the global Lipschitz or the linear

growth conditions. Song et al. [24] investigated the convergence of the tamed Euler

method for SDEPCAs under non-global Lipschitz continuous coefficients.

According to [7], the classical explicit Euler method diverges when the coefficients

of stochastic differential equations (SDEs) are super-linearly growing. To overcome

this difficulty, some scholars turn to use implicit Euler methods, such as the semi-

implicit Euler-Maruyama method, the backward Euler-Maruyama method and the split-

step theta (SST) method [2, 4, 6, 19]. However, compared with explicit methods,

implicit methods require more additional computational efforts and cost much more

time. Therefore, many scholars pay attention to find an explicit method which will

converge in the strong sense when the coefficients of SDEs satisfy the super-linear

growth condition. At present, there are some effective methods, such as the stopped

Euler method [12], the tamed Euler method [1, 8, 26], the truncated Euler-Maruyama

method [5, 16, 18], the partially truncated Euler-Maruyama method [3] and the mod-

ified truncated Euler-Maruyama method [10]. In this paper, we develop the truncated

Euler-Maruyama (EM) method for SDEPCAs, and consider the strong convergence the-

ory under the local Lipschitz condition plus the Khasminskii-type condition. The order

of convergence is obtained.

Guo et al. [3] investigated the mean square exponential stability of the partially

truncated Euler-Maruyama method for SDEs. Later, Lan and Xia [10] gave the ex-

ponential stability of the modified truncated Euler-Maruyama method for SDEs. Hu

et al. [5] obtained the asymptotic stability of the truncated Euler-Maruyama method

for SDEs. In this paper, we show that the truncated Euler-Maruyama method preserves

the exponential mean square stability of the SDEPCAs.

The rest of this article is organized as follows. Section 2 introduces some basic as-

sumptions, definitions and properties of the exact solution. We construct the truncated

Euler-Maruyama method in Section 3. The p-th moment boundedness of the numerical

solutions and the convergence theorem are presented in Section 4. Section 5 obtains

the convergence order and Section 6 shows the exponential stabilities of both the SDE-

PCAs and the numerical solutions. Numerical simulations are provided to verify the

analytical theory in Section 7.
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2. Analysis of exact solutions

Throughout this paper, unless otherwise specified, we will use the following nota-

tions. If A is a vector or matrix, its transpose is denoted by AT. If x ∈ Rn, then |x| is

the Euclidean norm. If A is a matrix, we let |A| =
√

trace(ATA) be its trace norm. For

two real numbers a and b, we use a ∨ b and a ∧ b to denote max(a, b) and min(a, b), re-

spectively. If D is a set, its indicator function is denoted by ID. Moreover, let (Ω,F ,P)

be a complete probability space with a filtration {Ft}t≥0 satisfying the usual conditions

(that is, it is right continuous and increasing while F0 contains all P-null sets), and

let E denote the expectation corresponding to P. Denote Lp([0, T ];Rn×d) by the fam-

ily of Rn×d-valued Ft-adapted processes {f(t)}0≤t≤T such that
∫ T

0 |f(t)|pdt < ∞, a.s..

Denote Lp([0,∞),Rn×d) by the family of the processes {f(t)}t≥0 such that for every

T > 0, {f(t)}0≤t≤T ∈ Lp([0, T ];Rn×d). Let B(t) be a d-dimensional Brownian motion

defined on the space. Consider the n-dimensional SDEPCAs

dx(t) = f
(

x(t), x([t])
)

dt+ g
(

x(t), x([t])
)

dB(t) (2.1)

on t ≥ 0 with the initial value x(0) = x0 ∈ Rn, where f : Rn ×Rn → Rn, g : Rn × Rn →
Rn×d are measurable functions and [t] denotes the greatest-integer part of t. Eq. (2.1)

is equivalent to the following stochastic integral equation:

x(t) = x0 +

∫ t

0
f
(

x(s), x([s])
)

ds+

∫ t

0
g
(

x(s), x([s])
)

dB(s), ∀ t ≥ 0. (2.2)

Moreover, we also require that the coefficients f and g are sufficiently smooth. To

guarantee the existence of the global solution, we present the following assumptions.

Assumption 2.1. (The local Lipschitz condition.) For every integer R ≥ 0, there

exists a positive constant LR, such that

|f(x, y)− f(x̄, ȳ)| ∨ |g(x, y)− g(x̄, ȳ)| ≤ LR

(

|x− x̄|+ |y − ȳ|
)

(2.3)

for all x, x̄, y, ȳ ∈ Rn, |x| ∨ |y| ∨ |x̄| ∨ |ȳ| ≤ R.

Assumption 2.2. (Khasminskii-type condition.) There are two constants K > 0 and

p ≥ 2, such that

xTf(x, y) +
p− 1

2
|g(x, y)|2 ≤ K

(

1 + |x|2 + |y|2
)

(2.4)

for all x, y ∈ Rn.

The definition of the exact solution of (2.1) is given in the following.

Definition 2.1. ([24]) An Rn-valued stochastic process {x(t)} is called a solution of

Eq. (2.1) on [0,∞) if it has the following properties:
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(1) {x(t)} is continuous on [0,∞) and Ft-adapted;

(2) {f(x(t), x([t]))} ∈ L1
(

[0,∞),Rn
)

and {g(x(t), x([t]))} ∈ L2
(

[0,∞),Rn×d
)

;

(3) Eq. (2.2) is satisfied on each interval [n, n + 1) ⊂ [0,∞) with integer end-points

almost surely.

A solution {x(t)} is said to be unique if any other solution {x̄(t)} is indistinguishable

from {x(t)}, that is

P
{

x(t) = x̄(t), t ∈ [0,∞)
}

= 1.

We state a known result in [24] as a lemma for the use of this paper.

Lemma 2.1. Under Assumptions 2.1 and 2.2, the SDEPCAs (2.1) have a unique global

solution x(t). Moreover,

sup
0≤t≤T

E|x(t)|p < ∞, ∀T > 0. (2.5)

Lemma 2.2. Let Assumptions 2.1 and 2.2 hold. Define the stopping time

τR = inf
{

t ≥ 0 : |x(t)| ≥ R},

where throughout this paper we set inf ∅ = ∞. Then for any R > |x0|, we have

P{τR ≤ T} ≤ C

R2
, (2.6)

where C stands for a generic positive real constant dependent on T,K, x0, but independent

of R and its value may change between occurrences.

Proof. By the Itô formula and Assumption 2.2, we obtain

E|x (t ∧ τR)|2 ≤|x0|2 + E

∫ t∧τR

0
2K

(

1 + |x (s)|2 + |x ([s])|2
)

ds

≤|x0|2 + 2KT + 4K

∫ t

0
sup

0≤u≤s
E |x (u ∧ τR)|2ds, ∀ 0 ≤ t ≤ T.

For any 0 ≤ t ≤ T , we have

sup
0≤t≤T

E|x(t ∧ τR)|2 ≤ |x0|2 + 2KT + 4K

∫ T

0
sup

0≤u≤s

E|x(u ∧ τR)|2ds.

Applying the Gronwall inequality, we get

E|x (T ∧ τR)|2 ≤ C.

This implies

R2
P {τR ≤ T} ≤ C

and the assertion follows.
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3. The truncated Euler-Maruyama method

To define the truncated Euler-Maruyama numerical solutions, we choose a strictly

increasing continuous function µ : [1,∞) → R+ such that µ(r) → ∞ as r → ∞ and

sup
|x|∨|y|≤r

(

|f(x, y)| ∨ |g(x, y)|
)

≤ µ(r), ∀ r ≥ 1. (3.1)

The inverse function of µ is denoted by µ−1 and we see that µ−1 is a strictly increas-

ing continuous function. We also choose a constant ĥ ≥ 1 and a strictly decreasing

function h : (0, 1] → [µ(1),∞) such that

lim
∆→0

h(∆) = ∞, ∆
1
4h(∆) ≤ ĥ, ∆ ∈ (0, 1]. (3.2)

It follows from h(∆) ≥ µ(1) that µ−1(h(∆)) ≥ 1.

For a given step size ∆ ∈ (0, 1], define the mapping π∆ : Rn → Rn by

π∆(x) =
(

|x| ∧ µ−1
(

h(∆)
)

) x

|x| ,

where we set x
|x| = 0 when x = 0. We then define the truncated functions

f∆(x, y) = f
(

π∆(x), π∆(y)
)

, g∆(x, y) = g
(

π∆(x), π∆(y)
)

, ∀x, y ∈ Rn. (3.3)

It is easy to see that

|f∆(x, y)| ∨ |g∆(x, y)| ≤ µ
(

µ−1
(

h(∆)
)

)

= h(∆), ∀x, y ∈ Rn. (3.4)

The following lemma shows that these truncated functions preserve the Khasmin-

skii-type condition (2.4) for all ∆ ∈ (0, 1].

Lemma 3.1. Let Assumption 2.2 hold. Then for all ∆ ∈ (0, 1], we have

xTf∆(x, y) +
p− 1

2
|g∆(x, y)|2 ≤ 3K

(

1 + |x|2 + |y|2
)

, x, y ∈ R
n. (3.5)

Proof. Case 1. If x ∈ Rn with |x| ≤ µ−1(h(∆)), then π∆(x) = x. Moreover, for any

y ∈ Rn, we have

|π∆(y)| =
∣

∣

∣

∣

(

|y| ∧ µ−1
(

h(∆)
)

) y

|y|

∣

∣

∣

∣

≤ |y|.

Therefore

xTf∆(x, y) +
p− 1

2
|g∆(x, y)|2

=πT
∆(x)f

(

π∆(x), π∆(y)
)

+
p− 1

2

∣

∣g
(

π∆(x), π∆(y)
)∣

∣

2

≤K
(

1 + |π∆(x)|2 + |π∆(y)|2
)

≤K
(

1 + |x|2 + |y|2
)

.
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Case 2. If x ∈ Rn with |x| > µ−1(h(∆)) ≥ 1, then

π∆(x) =
(

|x| ∧ µ−1
(

h(∆)
)

) x

|x| = µ−1
(

h(∆)
) x

|x| .

For any y ∈ Rn, we have

xTf∆(x, y) +
p− 1

2
|g∆(x, y)|2

=πT
∆(x)f

(

π∆(x), π∆(y)
)

+
p− 1

2

∣

∣g
(

π∆(x), π∆(y)
)∣

∣

2

+
(

x− π∆(x)
)T

f
(

π∆(x), π∆(y)
)

≤K
(

1 + |π∆(x)|2 + |π∆(y)|2
)

+

(

|x|
µ−1

(

h(∆)
) − 1

)

πT
∆(x)f

(

π∆(x), π∆(y)
)

.

By Assumption 2.2, we obtain

πT
∆(x)f

(

π∆(x), π∆(y)
)

≤ K
(

1 + |π∆(x)|2 + |π∆(y)|2
)

.

Thus

xTf∆(x, y) +
p− 1

2
|g∆(x, y)|2

≤ |x|
µ−1

(

h(∆)
)K
(

1 + |π∆(x)|2 + |π∆(y)|2
)

≤ K
(

|x|+ |x|2 + |x||y|
)

≤ 3K
(

1 + |x|2 + |y|2
)

.

The proof is completed.

Let ∆ = 1
m

be a given step size with integer m > 0. Let T = N∆, N ∈ N
+ and the

grid points tk can be defined by tk = k∆, k = 0, . . . , N − 1. Since for each k, there exist

s ∈ N and l ∈ {0, . . . ,m − 1} such that k = sm + l. The truncated Euler-Maruyama

method is given by

X∆(tsm+l+1) =X∆(tsm+l) + f∆
(

X∆(tsm+l),X∆(tsm)
)

∆

+ g∆
(

X∆(tsm+l),X∆(tsm)
)

∆Bsm+l, (3.6)

where X∆(0) = x0, ∆Bsm+l = B(tsm+l+1) − B(tsm+l) and X∆(tsm+l) is the approxi-

mation to x(t) at t = tsm+l.

The two types of continuous-time truncated Euler-Maruyama solutions are defined

as follows. For any t ≥ 0,
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x̄∆(t) =

∞
∑

sm+l=0

X∆(tsm+l)I[tsm+l,tsm+l+1)(t), (3.7)

x∆(t) = x0 +

∫ t

0
f∆
(

x̄∆(s), x̄∆([s])
)

ds+

∫ t

0
g∆
(

x̄∆(s), x̄∆([s])
)

dB(s). (3.8)

4. Convergence of the truncated Euler-Maruyama method

In this section, we will show that the truncated Euler-Maruyama method converges

to the exact solution of Eq. (2.1). In order to get our conclusions, we need some useful

lemmas. The first lemma shows that x∆(t) and x̄∆(t) are arbitrarily closed to each

other.

Lemma 4.1. Assume that Assumptions 2.1, 2.2 and (3.2) hold. For any ∆ ∈ (0, 1], we

have

E|x∆ (t)− x̄∆ (t)|p ≤ C∆
p

2
(

h(∆)
)p
, ∀ t ≥ 0, (4.1)

where C is a positive constant that depends only on p, but is independent of ∆ and its

value may change between occurrences. Consequently,

lim
∆→0

E|x∆ (t)− x̄∆ (t)|p = 0, ∀ t ≥ 0. (4.2)

Proof. For any fixed ∆ ∈ (0, 1] and t ∈ [tsm+l, tsm+l+1), we have x̄∆(t) = X∆(tsm+l)
and

x∆(t)− x̄∆(t)

=

∫ t

tsm+l

f∆
(

x̄∆(s), x̄∆([s])
)

ds+

∫ t

tsm+l

g∆
(

x̄∆(s), x̄∆([s])
)

dB(s). (4.3)

By the properties of the Itô integral, Hölder inequality, Theorem 1.7.1 in [15] and (3.4),

we then obtain

E|x∆(t)− x̄∆(t)|p

≤2p−1∆p−1
E

∫ t

tsm+l

∣

∣f∆
(

x̄∆(s), x̄∆([s])
)∣

∣

p
ds

+ 2p−1

(

p(p− 1)

2

)
p

2

∆
p−2
2 E

∫ t

tsm+l

∣

∣g∆
(

x̄∆(s), x̄∆([s])
)∣

∣

p
ds

≤C∆
p

2

(

h(∆)
)p
, (4.4)

where

C = 2p−1

(

1 +

(

p(p− 1)

2

)
p

2

)

.
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Moreover, by (3.2), we have

E|x∆(t)− x̄∆(t)|p ≤ C∆
p

2
(

h(∆)
)p ≤ Cĥp∆

p

4 . (4.5)

We obtain (4.2) from (4.5) as ∆ → 0.

Before giving the p-th moment boundedness of x∆(t), we define the stopping time

ρR = inf
{

t ≥ 0 : |x∆(t)| ≥ R
}

(4.6)

and present the following lemma.

Lemma 4.2. Assume that Assumptions 2.1, 2.2 and (3.2) hold. For any R > |x0| and

∆ ∈ (0, 1], we have

P{ρR ≤ T} ≤ C

R2
, (4.7)

where C is a constant independent of R and ∆.

Proof. By the Itô formula, we have

E|x∆(t ∧ ρR)|2

=|x0|2 + 2E

∫ t∧ρR

0

(

xT∆(s)f∆
(

x̄∆(s), x̄∆([s])
)

+
1

2

∣

∣g∆
(

x̄∆(s), x̄∆([s])
)∣

∣

2
)

ds

=|x0|2 + 2E

∫ t∧ρR

0

(

x̄T∆(s)f∆
(

x̄∆(s), x̄∆([s])
)

+
1

2

∣

∣g∆
(

x̄∆(s), x̄∆([s])
)∣

∣

2
)

ds

+ 2E

∫ t∧ρR

0

(

(

x∆(s)− x̄∆(s)
)T

f∆
(

x̄∆(s), x̄∆([s])
)

)

ds. (4.8)

Using Lemma 3.1, we have

2E

∫ t∧ρR

0

(

x̄T∆(s)f∆
(

x̄∆(s), x̄∆([s])
)

+
1

2

∣

∣g∆
(

x̄∆(s), x̄∆([s])
)∣

∣

2
)

ds

≤6KE

∫ t∧ρR

0

(

1 + |x̄∆(s)|2 + |x̄∆([s])|2
)

ds

≤6KT + 12K

∫ t

0
sup

0≤u≤s
E|x̄∆(u ∧ ρR)|2ds. (4.9)

By (3.4) and Lemma 4.1, the third term of (4.8) yields

2E

∫ t∧ρR

0

(

(

x∆(s)− x̄∆(s)
)T

f∆
(

x̄∆(s), x̄∆([s])
)

)

ds ≤ 2TCĥ2. (4.10)

Combining (4.9) and (4.10), we have

E|x∆(t ∧ ρR)|2

≤ |x0|2 + 6KT + 2TCĥ2 + 12K

∫ t

0
sup

0≤u≤s
E|x̄∆(u ∧ ρR)|2ds. (4.11)
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For any 0 ≤ t ≤ T , applying the Gronwall inequality, we obtain

sup
0≤t≤T

E|x∆(t ∧ ρR)|2 ≤ C. (4.12)

Then E|x∆(T ∧ ρR)|2 ≤ C, which implies that R2
P{ρR ≤ T} ≤ C. We complete the

proof.

Lemma 4.3. Assume that Assumptions 2.1 and 2.2 hold, then there exists a positive con-

stant C related to p, T, x0 but independent of ∆ such that

sup
0<∆≤1

sup
0≤t≤T

E|x∆(t)|p ≤ C. (4.13)

Proof. For any fixed ∆ ∈ (0, 1], by the Itô formula, Hölder inequality, Lemma 4.1,

(3.4) and (3.2), we derive

E|x∆(t)|p ≤|x0|p + pE

∫ t

0
|x∆(s)|p−2

[

xT∆(s)f∆
(

x̄∆(s), x̄∆([s])
)

+
p− 1

2

∣

∣g∆
(

x̄∆(s), x̄∆([s])
)∣

∣

2
]

ds

≤|x0|p + 2pKE

∫ t

0
|x∆(s)|p−2

(

1 + |x̄∆(s)|2 + |x̄∆([s])|2
)

ds

+ pE

∫ t

0
|x∆(s)|p−2|x∆(s)− x̄∆(s)|

∣

∣f∆
(

x̄∆(s), x̄∆([s])
)∣

∣ds

≤|x0|p + T
(

Cĥ+ 2
p

2
+1K

)

+
(

(p − 2) (1 + 2K) + 2
p

2
+2K

)

∫ t

0
sup

0≤u≤s

E|x∆(u)|pds. (4.14)

Applying the Gronwall inequality, we obtain

sup
0≤t≤T

E|x∆(t)|p ≤ C. (4.15)

Since (4.15) holds for any ∆ ∈ (0, 1] and C is independent of ∆, we obtain the required

assertion (4.13).

Theorem 4.1. Let Assumptions 2.1 and 2.2 hold. Then for any q ∈ [2, p), we obtain

lim
∆→0

E|x∆(T )− x(T )|q = 0. (4.16)

Proof. Let τR and ρR be the same as before. Set

θR = τR ∧ ρR, e∆(T ) = x(T )− x∆(T ).
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Using the Young inequality, we derive that for any δ > 0,

E|e∆(T )|q = E
(

|e∆(T )|qI{θR>T}

)

+ E
(

|e∆(T )|qI{θR≤T}

)

≤ E
(

|e∆(T )|qI{θR>T}

)

+
qδ

p
E|e∆(T )|p +

p− q

pδ
q

(p−q)

P{θR ≤ T}. (4.17)

By Lemmas 2.1 and 4.3, we obtain

E|e∆(T )|p ≤ C. (4.18)

Applying Lemmas 2.2 and 4.2, we have

P{θR ≤ T} ≤ P{τR ≤ T}+ P{ρR ≤ T} ≤ C

R2
. (4.19)

By basic inequalities, we have

E|e∆(t ∧ θR)|q

=E

∣

∣

∣

∣

∫ t∧θR

0

(

f
(

x(s), x([s])
)

− f∆
(

x̄∆(s), x̄∆([s])
)

)

ds

+

∫ t∧θR

0

(

g
(

x(s), x([s])
)

− g∆
(

x̄∆(s), x̄∆([s])
)

)

dB(s)

∣

∣

∣

∣

q

≤J1 + J2, (4.20)

where

J1 = (2T )q−1
E

∫ t

0

∣

∣f
(

x(s ∧ θR), x([s ∧ θR])
)

− f∆
(

x̄∆(s ∧ θR), x̄∆([s ∧ θR])
)∣

∣

q
ds,

J2 = 2q−1T
q

2
−1

(

q(q − 1)

2

)
q

2

E

∫ t

0

[

∣

∣g
(

x(s ∧ θR), x([s ∧ θR])
)

− g∆
(

x̄∆(s ∧ θR), x̄∆([s ∧ θR])
)∣

∣

q
]

ds.

(4.21)

Applying basic inequalities, we have

J1 ≤ (6T )q−1(J11 + J12 + J13), (4.22)

where

J11 = E

∫ t

0

∣

∣f
(

x(s ∧ θR), x([s ∧ θR])
)

− f
(

x∆(s ∧ θR), x∆([s ∧ θR])
)∣

∣

q
ds,

J12 = E

∫ t

0

∣

∣f
(

x∆(s ∧ θR), x∆([s ∧ θR])
)

− f
(

x̄∆(s ∧ θR), x̄∆([s ∧ θR])
)∣

∣

q
ds,

J13 = E

∫ t

0

∣

∣f
(

x̄∆(s ∧ θR), x̄∆([s ∧ θR])
)

− f∆
(

x̄∆(s ∧ θR), x̄∆([s ∧ θR])
)∣

∣

q
ds.

(4.23)
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By the local Lipschitz condition and basic inequalities, we have

J11 ≤ 2q−1L
q
R

∫ t

0

[

E
∣

∣x(s ∧ θR)− x∆(s ∧ θR)
∣

∣

q
+ E

∣

∣x([s ∧ θR])− x∆([s ∧ θR])
∣

∣

q
]

ds

≤ (2LR)
q

∫ t

0
sup

0≤u≤s
E
∣

∣x(u ∧ θR)− x∆(u ∧ θR)
∣

∣

q
ds. (4.24)

Similarly to J11, applying Lemma 4.1, we derive

J12 ≤ 2q−1L
q
R

∫ t

0
E

[

∣

∣x∆(s ∧ θR)− x̄∆(s ∧ θR)
∣

∣

q
+ E

∣

∣x∆([s ∧ θR])− x̄∆([s ∧ θR])
∣

∣

q
]

ds

≤ (2LR)
q

∫ t

0
sup

0≤u≤s
E
∣

∣x∆(u ∧ θR)− x̄∆(u ∧ θR)
∣

∣

q
ds

≤ (2LR)
qCT∆

q

2
(

h(∆)
)q ≤ CĥqL

q
R∆

q

4 . (4.25)

By local Lipschitz condition, Hölder inequality, Chebyshev’s inequality and Lemma 4.3,

we have

J13 ≤ (2LR)
q

∫ t

0
sup

0≤u≤s
E
∣

∣x̄∆(u ∧ θR)− π∆(x̄∆(u ∧ θR))
∣

∣

q
ds

≤ (2LR)
q

∫ t

0
sup

0≤u≤s
E
(

|x̄∆(u ∧ θR)|q I{x̄∆(u∧θR)>µ−1(h(∆))}

)

ds

≤ (2LR)
q

∫ t

0
sup

0≤u≤s

(

E|x̄∆(u ∧ θR)|p
)

q

p
(

P
{

x̄∆(u ∧ θR) > µ−1
(

h(∆)
)}

)
p−q

p
ds

≤ C(2LR)
q

∫ t

0
sup

0≤u≤s

(

E|x̄∆(u ∧ θR)|p
∣

∣µ−1
(

h(∆)
)∣

∣

p−q

)

ds

≤ C(2LR)
q

∣

∣µ−1
(

h(∆)
)∣

∣

p−q . (4.26)

Combining the Eqs. (4.22) and (4.24)-(4.26), we obtain

J1 ≤ (6T )q−1

[

(2LR)
q

∫ t

0
sup

0≤u≤s
E
∣

∣x(u ∧ θR)− x∆(u ∧ θR)
∣

∣

q
ds

+ CĥL
q
R∆

q

4 +
C(2LR)

q

∣

∣µ−1
(

h(∆)
)∣

∣

p−q

]

. (4.27)

Similarly to J1, we have

J2 ≤ 6q−1T
q

2
−1

(

q(q − 1)

2

)
q

2

[

(2LR)
q

∫ t

0
sup

0≤u≤s
E
∣

∣x(u ∧ θR)− x∆(u ∧ θR)
∣

∣

q
ds

+ CĥqL
q
R∆

q

4 +
C(2LR)

q

∣

∣µ−1
(

h(∆)
)∣

∣

p−q

]

. (4.28)
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Hence,

E
∣

∣e∆(t ∧ θR)
∣

∣

q

≤
(

(6T )q−1 + 6q−1T
q

2
−1

(

q(q − 1)

2

)
q

2

)

×
(

(2LR)
q

∫ t

0
sup

0≤u≤s
E
∣

∣e(u ∧ θR)
∣

∣

q
ds+ CĥqL

q
R∆

q

4 +
C(2LR)

q

∣

∣µ−1
(

h(∆)
)∣

∣

p−q

)

. (4.29)

By the Gronwall inequality, we have

E
∣

∣e∆(t ∧ θR)
∣

∣

q ≤ CL
q
R

(

∆
q

4 +
1

∣

∣µ−1
(

h(∆)
)∣

∣

p−q

)

eCL
q
R . (4.30)

Submitting Eq. (4.30) into Eq. (4.17), we obtain

E|e∆(T )|q ≤ CL
q
R

(

∆
q

4 +
1

∣

∣µ−1
(

h(∆)
)∣

∣

p−q

)

eCL
q

R +
Cqδ

p
+

C(p− q)

pR2δ
q

(p−q)

. (4.31)

For any ε > 0, we can choose δ > 0 such that Cqδ
p

< ε
3 . Then we choose R sufficiently

large for
C(p− q)

pR2δ
q

(p−q)

<
ε

3
. (4.32)

Finally, we can choose ∆ > 0 sufficiently small for

CL
q
R

(

∆
q

4 +
1

∣

∣µ−1
(

h(∆)
)∣

∣

p−q

)

eCL
q

R <
ε

3
. (4.33)

This implies (4.16) as desired.

5. Convergence rate

Assumption 5.1. Assume that there is a pair of constants q > 2 and K1 > 0 such that

(x1 − x2)
T
(

f(x1, y1)− f(x2, y2)
)

+
q − 1

2
|g(x1, y1)− g(x2, y2)|2

≤ K1

(

|x1 − x2|2 + |y1 − y2|2
)

(5.1)

for all x1, x2, y1, y2 ∈ Rn.

Assumption 5.2. Assume that there is a pair of positive constants r and K2 such that

|f(x1, y1)− f(x2, y2)|2 ∨ |g(x1, y1)− g(x2, y2)|2

≤ K2

(

1 + |x1|r + |x2|r + |y1|r + |y2|r
)(

|x1 − x2|2 + |y1 − y2|2
)

(5.2)

for all x1, x2, y1, y2 ∈ Rn.
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Remark 5.1. According to Assumption 5.2, we can define the function µ as

µ(R) = CR1+ r
2 , (5.3)

where the constant C is related to K2 but independent of R.

Theorem 5.1. Let Assumptions 2.1, 2.2, 5.1 and 5.2 hold. Assume that q̄ ∈ [2, q) and

q(2 + r) ≤ 2p, then, for any ∆ ∈ (0, 1], we have

E|x(T )− x∆(T )|q̄ ≤ C
(

(

µ−1
(

h(∆)
))−(p−q̄)+ q̄r

2 +∆
q̄

2
(

h(∆)
)q̄
)

. (5.4)

Proof. Let e(t) = x(t) − x∆(t) for t ≥ 0. For each integer R > |x0|, define the

stopping time θR = τR ∧ ρR. By the Itô formula, for any 0 ≤ t ≤ T , we have

E|e(t ∧ θR)|q̄

≤ E

∫ t∧θR

0
q̄|e(s)|q̄−2

[

eT(s)
(

f
(

x(s), x([s])
)

− f∆
(

x̄∆(s), x̄∆([s])
))

+
q̄ − 1

2

∣

∣g
(

x(s), x([s])
)

− g∆
(

x̄∆(s), x̄∆([s])
)∣

∣

2
]

ds

≤ E

∫ t∧θR

0
q̄|e(s)|q̄−2

[

eT(s)
(

f
(

x(s), x([s])
)

− f
(

x∆(s), x∆([s])
))

+
q̄ − 1

2

(

1 +
q − q̄

q̄ − 1

)

∣

∣g
(

x(s), x([s])
)

− g
(

x∆(s), x∆([s])
)∣

∣

2
]

ds

+ E

∫ t∧θR

0
q̄|e(s)|q̄−2

[

eT(s)
(

f
(

x∆(s), x∆([s])
)

− f∆
(

x̄∆(s), x̄∆([s])
))

+
q̄ − 1

2

(

1 +
q̄ − 1

q − q̄

)

∣

∣g
(

x∆(s), x∆([s])
)

− g∆
(

x̄∆(s), x̄∆([s])
)∣

∣

2
]

ds. (5.5)

By Assumption 5.1, we have

E|e(t ∧ θR)|q̄ ≤ q̄K1

∫ t

0
sup

0≤u≤s
E|e(u ∧ θR)|q̄ds + J3, (5.6)

where

J3 = E

∫ t∧θR

0
q̄|e(s)|q̄−2

[

eT(s)
(

f
(

x∆(s), x∆([s])
)

− f∆
(

x̄∆(s), x̄∆([s])
))

+
q̄ − 1

2

(

1 +
q̄ − 1

q − q̄

)

∣

∣g
(

x∆(s), x∆([s])
)

− g∆
(

x̄∆(s), x̄∆([s])
)∣

∣

2
]

ds. (5.7)

Rearranging J3, we obtain

J3 ≤ J31 + J32, (5.8)
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where

J31 = E

∫ t∧θR

0
q̄|e(s)|q̄−2

[

eT(s)
(

f
(

x∆(s), x∆([s])
)

− f∆
(

x∆(s), x∆([s])
))

+
(q̄ − 1)(q − 1)

q − q̄

∣

∣g
(

x∆(s), x∆([s])
)

− g∆
(

x∆(s), x∆([s])
)∣

∣

2
]

ds, (5.9)

J32 = E

∫ t∧θR

0
q̄|e(s)|q̄−2

[

eT(s)
(

f∆
(

x∆(s), x∆([s])
)

− f∆
(

x̄∆(s), x̄∆([s])
))

+
(q̄ − 1)(q − 1)

q − q̄

∣

∣g∆
(

x∆(s), x∆([s])
)

− g∆
(

x̄∆(s), x̄∆([s])
)∣

∣

2
]

ds. (5.10)

By the Young inequality aq̄−2b ≤ q̄−2
q̄
aq̄ + 2

q̄
b
q̄

2 ,∀ a, b ≥ 0, we obtain

J31 ≤ E

∫ t∧θR

0
q̄|e(s)|q̄−2

[

1

2

∣

∣eT(s)
∣

∣

2
+

1

2

∣

∣f
(

x∆(s), x∆([s])
)

− f∆
(

x∆(s), x∆([s])
)∣

∣

2

+
(q̄ − 1)(q − 1)

q − q̄

∣

∣g
(

x∆(s), x∆([s])
)

− g∆
(

x∆(s), x∆([s])
)∣

∣

2
]

ds

≤ E

∫ t∧θR

0

[

(q − 2)(q̄ − 1)2

q − q̄
|e(s)|q̄ +

∣

∣f
(

x∆(s), x∆([s])
)

− f∆
(

x∆(s), x∆([s])
)∣

∣

q̄

+
2(q̄ − 1)(q − 1)

q − q̄

∣

∣g∆
(

x∆(s), x∆([s])
)

− g∆
(

x∆(s), x∆([s])
)∣

∣

q̄
]

ds

≤ C

∫ t

0
sup

0≤u≤s
E|e(u ∧ θR)|q̄ds + J311, (5.11)

where

C = max

{

(q − 2)(q̄ − 1)2

q − q̄
, 1,

2(q̄ − 1)(q − 1)

q − q̄

}

,

and

J311 = CE

∫ t∧θR

0

[

∣

∣f
(

x∆(s), x∆([s])
)

− f∆
(

x∆(s), x∆([s])
)∣

∣

q̄

+
∣

∣g
(

x∆(s), x∆([s])
)

− g∆
(

x∆(s), x∆([s])
)∣

∣

q̄
]

ds. (5.12)

Applying Assumption 5.2, we get

J311 ≤ 2CK2E

∫ t∧θR

0

(

1 + |x∆(s)|r + |x∆([s])|r + |π∆(x∆(s))|r + |π∆(x∆([s]))|r
)

q̄

2

×
(

|x∆(s)− π∆(x∆(s))|2 + |x∆([s])− π∆(x∆([s]))|2
)

q̄

2
ds

≤ 10
q̄

2CK2E

∫ t∧θR

0

(

1 + |x∆(s)|
rq̄

2 + |x∆([s])|
rq̄

2 + |π∆(x∆(s))|
rq̄

2 + |π∆(x∆([s]))|
rq̄

2

)

×
(

|x∆(s)− π∆(x∆(s))|q̄ + |x∆([s])− π∆(x∆([s]))|q̄
)

ds
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≤ 10
q̄

2
+1CK2

∫ t

0
E

(

1 + |x∆(s ∧ θR)|
rq̄

2 + |x∆([s ∧ θR])|
rq̄

2

)

×
(

|x∆(s ∧ θR)− π∆(x∆(s ∧ θR))|q̄

+ |x∆([s ∧ θR])− π∆(x∆([s ∧ θR]))|q̄
)

ds. (5.13)

Applying Hölder inequality, we have

J311 ≤ C

∫ t

0

(

E (1 + |x∆(s ∧ θR)|p + |x∆([s ∧ θR])|p)
)

q̄r

2p

×
(

E

(

|x∆(s ∧ θR)− π∆(x∆(s ∧ θR))|
2pq̄

2p−q̄r

+ |x∆([s ∧ θR])− π∆(x∆([s ∧ θR]))|
2pq̄

2p−q̄r

)

)
2p−q̄r

2p

ds

≤ C

∫ t

0

(

1 + sup
0≤u≤s

E|x∆(u ∧ θR)|p
)

q̄r

2p

×
(

sup
0≤u≤s

E|x∆(u ∧ θR)− π∆(x∆(u ∧ θR))|
2pq̄

2p−q̄r

)
2p−q̄r

2p

ds. (5.14)

By Lemma 4.3 and Hölder inequality, we derive

J311 ≤ C

∫ t

0

(

sup
0≤u≤s

E|x∆(u ∧ θR)− π∆(x∆(u ∧ θR))|
2pq̄

2p−q̄r

)
2p−q̄r

2p

ds

≤ C

∫ t

0

(

sup
0≤u≤s

E

(

|x∆(u ∧ θR)|
2pq̄

2p−q̄r I{|x∆(u∧θR)|>µ−1(h(∆))}

)

)
2p−q̄r

2p

ds

≤ C

∫ t

0






sup

0≤u≤s

(

E|x∆(u ∧ θR)|p
)

2q̄
2p−q̄r

×
(

E
(

I{|x∆(u∧θR)|>µ−1(h(∆))}

)
2p−q̄r

2(p−q̄)−q̄r

)
2(p−q̄)−q̄r

2p−q̄r





2p−q̄r

2p

ds

≤ C

∫ t

0

(

sup
0≤u≤s

(

P
{

|x∆(u ∧ θR)| > µ−1
(

h(∆)
)}

)
2(p−q̄)−q̄r

2p−q̄r

)
2p−q̄r

2p

ds

≤ C

∫ t

0



 sup
0≤u≤s

(

E|x∆(u ∧ θR)|p
(

µ−1
(

h(∆)
))p

)
2(p−q̄)−q̄r

2p−q̄r





2p−q̄r

2p

ds

≤ C
(

µ−1
(

h(∆)
)

)q̄( r
2
+1)−p

. (5.15)
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Substituting (5.15) into (5.11), we get

J31 ≤ C

∫ t

0
sup

0≤u≤s
E|e(u ∧ θR)|q̄ds+ C

(

µ−1
(

h(∆)
)

)q̄( r
2
+1)−p

. (5.16)

Similarly, we can show

J32 ≤ C

∫ t

0
sup

0≤u≤s
E|e(u ∧ θR)|q̄ds +C∆

q̄

2
(

h(∆)
)q̄
. (5.17)

Combining (5.6), (5.8), (5.16) and (5.17), we obtain

E|e(t ∧ θR)|q̄

≤ C

∫ t

0
sup

0≤u≤s
E|e(u ∧ θR)|q̄ds+ C

(

(

µ−1
(

h(∆)
)

)q̄( r
2
+1)−p

+∆
q̄

2
(

h(∆)
)q̄

)

. (5.18)

By Gronwall inequality, we have

E|e(T ∧ θR)|q̄ ≤ C

(

(

µ−1
(

h(∆)
)

)q̄( r
2
+1)−p

+∆
q̄

2
(

h(∆)
)q̄
)

. (5.19)

Using the well-known Fatou lemma, the required assertion (5.4) follows from R →
∞.

Remark 5.2. (1) Assumption 5.1 implies Assumption 2.2 for any p > 2. In fact,

xTf(x, y) +
p− 1

2
|g(x, y)|2

≤ xT
(

f(x, y)− f(0, 0)
)

+ xTf(0, 0)

+
p− 1

2
|g(x, y) − g(0, 0)|2 + p− 1

2
|g(0, 0)|2

≤ K1

(

|x|2 + |y|2
)

+
1

2
|x|2 + 1

2
|f(0, 0)|2 + p− 1

2
|g(0, 0)|2

≤ K
(

1 + |x|2 + |y|2
)

, (5.20)

where

K = max

{

K1 +
1

2
,
1

2
|f(0, 0)|2 + p− 1

2
|g(0, 0)|2

}

.

(2) We may define

h(∆) = ∆−ε (5.21)

for some ε ∈
(

0, 14
]

. Hence, (5.4) can be rewritten as

E|x(T )− x∆(T )|q̄

≤ C

(

∆
ε[2(p−q̄)−q̄r]

2+r +∆q̄( 1
2
−ε)
)

≤ C∆

(

ε(2(p−q̄)−q̄r)
2+r

∧(q̄( 1
2
−ε))

)

. (5.22)



210 Y. Geng et al.

If we choose p sufficiently large for

ε(2(p − q̄)− q̄r)

2 + r
≥ q̄

(

1

2
− ε

)

, (5.23)

we can get

E|x(T )− x∆(T )|q̄ ≤ C∆q̄( 1
2
−ε). (5.24)

This remark shows that the order of convergence could be close to 1
2 arbitrarily.

6. Stability analysis

In this section, we set f(0, 0) = 0 and g(0, 0) = 0. By Assumption 2.1, we have

sup
|x|∨|y|≤r

|f(x, y)| ≤ 2rLr. (6.1)

In the following, we define

µ(r) = 2rLr, (6.2)

where Lr is the local Lipschitz coefficient in Assumption 2.1. This operation links the

local Lipschitz coefficients Lr to the truncation function µ(r), ensuring that the upper

bound of the step size can be finally obtained, which is clear and easy to verify.

Definition 6.1. The SDEPCAs (2.1) is said to be exponentially stable in mean square if

there exists a pair of positive constants λ and M such that for any initial value x0

E|x(t)|2 ≤ M |x0|2e−λt, ∀ t > 0, (6.3)

where λ is the rate constant and M is the growth constant.

Definition 6.2. For a given step size ∆ > 0, the truncated Euler-Maruyama method is

said to be exponentially stable in mean square if there exists a pair of positive constants

γ and H such that for any initial value x0

E|X∆(tsm+l)|2 ≤ H|x0|2e−γ(sm+l)∆ (6.4)

for all s ∈ N, l = 0, . . . ,m−1, where γ is the rate constant and H is the growth constant.

Assumption 6.1. Assume that there are positive constants λ1 > λ2 > 0, such that f

and g satisfy

xT f(x, y) +
1

2
|g(x, y)|2 ≤ −λ1|x|2 + λ2|y|2, ∀x, y ∈ Rn. (6.5)

Under Assumption 6.1, the exponential stability of SDEPCAs (2.1) has been ob-

tained in [13].
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Lemma 6.1. Assume that Assumption 6.1 holds. Then, for all ∆ ∈ (0, 1), we have

xT f∆(x, y) +
1

2
|g∆(x, y)|2 ≤

(

−λ1 +
λ2

2

)

|x|2 + λ2

2
|y|2, ∀x, y ∈ R

n, (6.6)

where λ1 and λ2 are the same as Assumption 6.1.

The proof is similar to Lemma 3.1, so we omit it. In the following, we firstly state

two conclusions obtained in [13] as lemmas for the use of this paper.

Lemma 6.2. Let zsm+l be a sequence of numbers, s ∈ N, l = 0, . . . ,m − 1. If there are

constants α > β > 0 such that 1− α∆ > 0 and

zsm+l+1 ≤ (1− α∆)zsm+l + β∆zsm, (6.7)

then

zsm+l+1 ≤
(

β

α
+

(

1− β

α

)

e−α(l+1)∆

)

zsm. (6.8)

Lemma 6.3. Assume that α, β are two positive constants. If α > β, then for all t > 0 we

have

0 <
β

α
+

(

1− β

α

)

e−αt < 1. (6.9)

For simplicity of presentation, we set

α = 2λ1 − β, β = 2L2
µ−1(h(∆))∆+ λ2,

r(l + 1) =
β

α
+

(

1− β

α

)

e−α(l+1)∆,

where l = 0, . . . ,m− 1. The main theorem of this section is given below.

Theorem 6.1. Let Assumptions 2.1 and 6.1 hold. Then for every 0 < ∆ < ∆∗ =

min{ 1
2λ1

,
4(λ1−λ2)2

ĥ4
} and any initial value x0 ∈ R

n, the truncated Euler-Maruyama method

(3.6) is exponentially stable in mean square with rate constant γ = − log r(m) and growth

constant H = 1
r(m) .

Proof. By Assumption 2.1, Lemma 6.1 and the property of Brownian motion, we

have

E|X∆(tsm+l+1)|2

≤ E|X∆(tsm+l)|2 + 2L2
µ−1(h(∆))∆

2
(

E|X∆(tsm+l)|2 + E|X∆(tsm)|2
)

+ 2∆

(

−λ1 +
λ2

2

)

E|X∆(tsm+l)|2 + λ2∆E|X∆(tsm)|2

= (1− α∆)E|X∆(tsm+l)|2 + β∆E|X∆(tsm)|2. (6.10)
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By (6.2), we have

Lµ−1(h(∆)) =
h(∆)

2µ−1
(

h(∆)
) . (6.11)

Recalling that h(∆) > µ(1), we have µ−1(h(∆)) > 1. Applying (3.2) and ∆ <
4(λ1−λ2)2

ĥ4
,

we obtain

β = 2

(

h(∆)

2µ−1
(

h(∆)
)

)2

∆+ λ2 < λ1. (6.12)

Hence α > β > 0. By ∆ < 1
2λ1

, we have

α∆ = (2λ1 − β)∆ <
2λ1 − β

2λ1
< 1. (6.13)

Applying Lemma 6.2, we have

E|X∆(tsm+l+1)|2 ≤ (1− α∆)E|X∆(tsm+l)|2 + β∆E|X∆(tsm)|2

≤
(

β

α
+

(

1− β

α

)

e−α(l+1)∆

)

E|X∆(tsm)|2

= r(l + 1)E|X∆(tsm)|2. (6.14)

By Lemma 6.3, we have 0 < r(l + 1) < 1. If l = m − 1, the above equation can be

written as

E|X∆(t(s+1)m)|2 ≤ r(m)E|X∆(tsm)|2 ≤ · · · ≤
(

r(m)
)s+1|x0|2. (6.15)

Submitting (6.15) into (6.14), we can obtain

E|X∆(tsm+l+1)|2

≤ r(l + 1)r(m)s|x0|2 =
r(l + 1)

r(m)(l+1)∆
|x0|2e(sm+l+1)∆ log(r(m))

≤ 1

r(m)
e(sm+l+1)∆ log(r(m))|x0|2 = He−γ(sm+l+1)∆|x0|2, (6.16)

where H = 1
r(m) and γ = − log(r(m)) > 0.

7. Numerical simulation

This section gives some examples to illustrate the results above. The convergence

theory is tested by the first two examples. The third example verifies the stability.

Example 7.1. We consider the following scalar SDEPCAs

dx(t) =
(

− x3(t) + x([t])
)

dt+
(

|x(t)| 32 + x([t])
)

dB(t) (7.1)

with initial value x(0) = 1, t ∈ [0, 2].
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Figure 1: One path of the exact solution and the
numerical solution for one dimension.
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Figure 2: Convergence order at T = 2.

Let ∆ = 1
m

, then the split-step theta (SST) method for (7.1) is as follows.

x̂sm+l = xsm+l + θ∆
(

− x̂3sm+l + xsm

)

, (7.2)

xsm+l+1 = xsm+l +∆
(

− x̂3sm+l + xsm

)

+
(

|x̂sm+l|
3
2 + xsm

)

∆Bsm+l. (7.3)

According to [14], the SST method with θ ∈ [12 , 1] is strongly convergent to SDE-

PCAs. We use the SST method with step size ∆ = 2−14 and θ = 1 as the ”exact

solution”. The coefficients of (7.1) satisfy Assumptions 2.1, 2.2, 5.1 and 5.2 with

q = 3, q̄ = 2, r = 4 and p = 30. Moreover, let µ(r) = 2r3 and h(∆) = (1254 )∆− 1
10 .

Fig. 1 shows that the truncated EM method is convergent to the exact solution. We

take 100 samples and choose ∆ = 2−8. Table 1 shows the number of truncation ap-

plied in each sample. We also compute the numerical solutions using different step

sizes ∆ = 2−9, 2−8, 2−7, 2−6, 2−5 on the same Brownian path and obtain corresponding

errors. We take M = 5000.

Let ǫ denote the error in mean square, then by the law of large numbers, at the final

Table 1: The number of truncation applied in each sample.

512 448 512 509 512 508 507 496 512 499

490 512 490 507 431 499 493 511 512 512

465 511 455 512 475 512 510 506 508 512

499 492 512 512 504 462 511 512 510 485

512 397 459 480 507 512 499 489 475 482

477 512 512 512 500 512 486 504 512 512

512 487 512 499 491 512 512 512 512 509

511 498 509 512 512 507 511 512 493 495

510 486 512 489 512 509 511 512 502 512

512 492 511 511 509 512 512 512 512 508
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Table 2: The Monte Carlo errors for (7.1).

∆t

M
1000 2000 3000 4000 5000

2
−9 0.00310153 0.00248716 0.00193821 0.00160219 0.00144283

2
−8 0.00380181 0.00312375 0.00244000 0.00205428 0.00193796

2
−7 0.00504908 0.00403356 0.00322514 0.00274647 0.00261020

2
−6 0.00783951 0.00554820 0.00464228 0.00391444 0.00364825

2
−5 0.01303230 0.00953383 0.00758430 0.00639328 0.00568892

integer time T , ǫ satisfies

ǫ(T ) =
(

E|x(T )−X∆(T )|2
) 1

2 ≈
(

1

M

M
∑

i=1

∣

∣x(T,wi)−X∆(T,wi)
∣

∣

2

)

1
2

. (7.4)

The log-log plot of the strong errors against the step sizes is shown in Fig. 2. Compared

with the reference line with order 0.5, it can be verified that the order of the strong

error is close to 0.5.

The Monte Carlo errors with confidence level 1− α is defined as follows.

ε =
λασ√
M

, (7.5)

where λα and α are one-to-one correspondence, σ is the standard deviation of |x(T )−
X∆(T )|2. Since σ can not be obtained exactly, we use the estimation σ̂.

σ̂ =

√

√

√

√

1

M

M
∑

i=1

∣

∣x(T,wi)−X∆(T,wi)
∣

∣

4 −
(

1

M

M
∑

i=1

∣

∣x(T,wi)−X∆(T,wi)
∣

∣

2

)2

. (7.6)

Table 2 shows the Monte Carlo error with α = 0.05 and λα = 1.96.

Example 7.2. Consider the following two dimensional SDEPCA:

{

dx1(t) =
(

−x1(t)− 6x31(t)
)

dt+ |x2(t)|
3
2dB(t),

dx2(t) =
(

−x2(t)− 6x32(t) + x21(t)
)

dt+ |x1([t])|dB(t)
(7.7)

with initial data x1(0) = 1.5 and x2(0) = 1.

Let x(t) = (x1(t), x2(t))
T , y(t) = (x1([t]), x2([t]))

T and

f1(x, y) = −x1 − 6x31, f2(x, y) = −x2 − 6x32 + x21,

g1(x, y) = |x2|
3
2 , g2(x, y) = |y1|,

f(x, y) =
(

f1(x, y), f2(x, y)
)T

, g(x, y) =
(

g1(x, y), g2(x, y)
)T

.
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Figure 3: One path of the exact solution and the nu-
merical solution for multi dimension.
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Figure 4: Convergence order at T = 2.

The coefficients of (7.7) satisfy Assumptions 2.1, 2.2, 5.1 and 5.2. Clearly,

sup
|x|∨|y|≤r

(

|f(x, y)| ∨ |g(x, y)|
)

≤ 14r3, ∀ r ≥ 1. (7.8)

Then we choose µ(r) = 14r3. Moreover, choose h(∆) = 56∆− 1
10 . We use the split-step

theta method with step size ∆ = 2−14 as the ”exact solution”. We also compute the

numerical solutions using different step sizes ∆ = 2−9, 2−8, 2−7, 2−6, 2−5 on the same

Brownian path and obtain the corresponding errors. We take 5000 sample paths. Fig. 3

shows that the truncated EM method converges to the exact solution. The log-log plot

of the strong errors against the step sizes is shown in Fig. 4. Table 3 shows the Monte

Carlo error with confidence level 0.95.

Table 3: The Monte Carlo errors for (7.7).

∆t

M
1000 2000 3000 4000 5000

2
−9 0.00003079 0.00002650 0.00002014 0.00001752 0.00001544

2
−8 0.00007564 0.00007700 0.00005478 0.00004534 0.00003861

2
−7 0.00010589 0.00010254 0.00008480 0.00007772 0.00006680

2
−6 0.00015667 0.00016543 0.00020037 0.00016448 0.00014073

2
−5 0.00046301 0.00032523 0.00027995 0.00024947 0.00022006

Example 7.3. Consider the following SDEPCAs

dx(t) =
(

−x3(t)x2([t])− x(t)
)

dt+
(

x2(t)x([t]) + 0.4x([t])
)

dB(t) (7.9)

with initial data x(0) = 8.

The coefficients satisfy both Assumptions 2.1 and 6.1 with λ1 = 1, λ2 = 0.16.

We test the stability of the truncated Euler-Maruyama method with three different



216 Y. Geng et al.

t

0 1 2 3 4 5 6 7 8 9 10

E
|X

∆
(t

s
m
+
l
)|
2

0

1

2

3

4

5

6

7

8
∆=2 -5

∆=2 -3

∆=2 -1

Figure 5: The mean square exponential stability of the numerical solutions with different step sizes.

step sizes ∆ = 2−5, 2−3 and 2−1. We take 5000 sample paths. The truncated Euler-

Maruyama method is stable if ∆ < 1
2 . The mean square of the numerical solutions is

plotted in Fig. 5.

8. Conclusions

In this paper, we have analyzed the convergence and stability of the truncated Euler-

Maruyama method for SDEPCAs. We obtain that the convergence rate is closed to 0.5
arbitrarily without any restrictions for the step size. Moreover, we have shown that the

truncated Euler-Maruyama method preserves the exponential mean square stability of

the SDEPCAs under some restrictions on the step size.
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