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Abstract. This paper presents a new concept called Unified and Integrated Method for
a shear deformable beam element. In this method, Timoshenko beam theory is unified
and integrated in such a way that takes into account the effect of transverse shear
and maintains the shear locking free condition at the same time to generate proper
behavior in the analysis of thin to thick beams. The unified and integrated method is
applied to finite element analysis (FEA) and isogeometric analysis (IGA) on two-node
beam element. This method will be used to analyze uniformly loaded beams with
various boundary conditions. A shear influence factor of φ, which is a function of beam
thickness ratio (L/h), is expressed explicitly as control of the transverse shear strain
effect. The analysis gives interesting results showing that applying the unified and
integrated method in FEA and IGA will yield exact values of DOF’s and displacement
function even when using only a single element. Numerical examples demonstrate the
validity and efficiency of the unified and integrated methods.
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1 Introduction

Bernoulli-Euler beam theory, also known as classical beam theory, was introduced by
Daniel Bernoulli and Leonhard Euler around 1750. It has been widely used to analyze
the behavior of the bending element because of its simplicity. The theory assumes that
after deformation cross-sections remain plane and orthogonal to the beam axis and that
deformation slopes are small. It suggests that shear deformation γ is neglected and ro-
tation θ is equal to the derivative of deflection. Hence, it is more suitable for a slender
beam. Vertical deflection v is the only unknown variable is this theory. The curvature in
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the Principal of Virtual Work (PVW) is expressed by the second derivatives of v(x) as the
only deformation. This theory requires C1 continuity to ensure a smooth deflection field.

Timoshenko beam theory [1,2] developed later in the early 20th century offers an im-
provement. Unlike the classical theory, it takes into account of shear deformation and
rotational bending effects so that the previously perpendicular plane sections will not
necessarily remain perpendicular to the beam axis after deformation. In this theory, de-
flection (v) and rotation (θ) are independent of each other. The development of Timo-
shenko beam element is simpler than of Bernoulli-Euler beam element as it requires C0

continuity for the deflection and rotation fields. However, the 2-noded Timoshenko beam
element suffers from a phenomenon called shear locking when analyzing thin beams.
They only provide reasonable solutions in the cases of a thick beam, but give unrealisti-
cally stiffer results for thin beams (L/h>20). This phenomenon disqualifies Timoshenko
beam elements for the analysis of slender beams.

A popular method to alleviate shear locking in Timoshenko beam elements is by
under-integrating the terms in shear stiffness using a quadrature of one order less than
needed for exact integration. This method reduces the effect of the transverse shear stiff-
ness and yields constant transverse shear strains along the beam. The terms in bending
stiffness are still integrated exactly. This method is known as Selective Reduced Integra-
tion (SRI).

There are many methods to eliminate shear locking, one of which is the Assumed
Natural Strain (ANS). A number of Timoshenko beam elements have adopted the ANS to
deal with the shear locking problem. By applying the ANS, the transverse shear strain in
a beam element with two nodes and two degrees of freedom per node becomes constant
along with the element [3]. The two-node element with linear interpolation demonstrates
satisfactory outcomes over a wide variety of length to thickness ratio. Yet, in the matter
of convergence speed, it cannot be compared with the Bernoulli-Euler element, which
neglects the shear deformation.

While developing Discrete Shear Gap (DSG) method to overcome shear locking, Blet-
zinger et al. [4] also applied the ANS concept. DSG beam element satisfies the kinematic
equation for the shear strains at discrete nodes and significantly reduces the shear strains.
The key of the DSG method is calculating the discrete shear gap at nodes and interpolat-
ing them across the element domain. Just like reduced integration, the application of the
DSG concept in the beam element with 2 nodes gives a constant shear along the beam.

It is well known that it is possible to derive a 2 nodes beam element that gives exact
results (at least at nodes) based on mixed formulation [5]. Exact here means that the
results are valid for thick to thin beams, without the occurrence of shear locking.

Another beam element that adopts the ANS concept is Discrete Shear Beam (DSB).
DSB element [6] uses cubic interpolations to calculate total vertical displacement (v) and
quadratic interpolations to calculate rotation (θ). In this element, the transverse shear
strain is defined as constant along the beam by using the discrete shear method. DSB
element has been the basis of the development of triangular DKMT and quadrilateral
DKMQ plate and shell elements [7–17]. However, besides the good performance over
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thin to thick beam problems, it only provides exact solutions at nodes.
Recently, a new approach to deal with the shear locking phenomenon in beam and

bending plate problems has been proposed [6, 18–24, 26]. By modifying the Timoshenko
beam and the Reissner-Mindlin plate theory, this approach has created a strong inter-
dependence between the bending displacement and rotation which prevents the shear
locking from occurring to occur in beam and plate problems, respectively.

Kiendl et al. [21] developed a unified approach in an isogeometric analysis for shear
deformable beams. In this approach, the vertical displacement (v) is divided into two
parts, i.e., the bending part (vb) and shear part (vs). The approach shows a strong corre-
lation between the two parts, allowing that all derived variables to be expressed in terms
of the bending displacement (vb) as the only variable. Actually, the same idea of divid-
ing the vertical displacement equation was suggested quite a long time ago in the early
days of finite beam elements by Kapur [22], Li [23] and Falsone et al. [24] with a similar
approach.

Recently Katili et al. [26] published the application of a 2-node beam element using
a unified and integrated approach in functionally graded materials and considering a
coupling axial-bending effect due to unsymmetrical material layer.

This article compares the results of applying the unified and integrated method into
isogeometric and finite element analysis on two-node beam element problems. The or-
ganization of the article is as follows. First, it presents the limitation of the classical and
Timoshenko beam theory. It is followed by the explanation of several elements that used
ANS to cope with the shear locking phenomenon and a brief introduction of the unified
approach that can eliminate the shear locking. In Section 2, the development of a unified
and integrated method is described. It shows how to integrate and unify all equations
in Timoshenko beam theory, resulting in similar equations with Bernoulli theory. Sec-
tion 3 will present the formulation of the Unified and Integrated (UI) beam element. The
formulation of IGA Galerkin for Timoshenko beam will be presented in Section 4. The
performance of the UI beam and IGA Galerkin will be compared in Section 5. Conclu-
sions, acknowledgements, and references are given in Section 6.

2 Unified and integrated method

To establish notation and convention, the equations for Timoshenko beams are first sum-
marized below. Consider a Timoshenko beam [1, 2] with the beam axis x of the local
Cartesian coordinate orientated in the axial direction coinciding with the neutral axis.
The positive beam axis y orientated up orthogonal to the x-axis.

Assuming that displacement is small, and shear deformation γ is uniform at any
cross-section and only dependent on x, the curvature and shear deformation at any point
x along the beam is given by:

χ=−dθb

dx
, γ=

dv
dx
−θb. (2.1)



1568 A. M. Katili and I. Katili / Adv. Appl. Math. Mech., 12 (2020), pp. 1565-1586

Where v(x)= vertical displacement in y direction, θb (x)= bending rotation, χ(x)= cur-
vature, and γ(x)= transverse shear deformation.

The constitutive laws for axial stresses is:

σ=yEχ. (2.2)

The relation between shear stress and shear strain is:

τ=Gγ, (2.3)

where E is the Young modulus of elasticity, G is the shear modulus where G=E/2(1+υ),
ν is the Poisson’s ratio.

The stress resultants M and T are integral of the stress component σ and τ, respec-
tively, as follows:

M=
∫∫

A
yσdA, T=

∫∫
A

τdA. (2.4)

The constitutive equations for the bending moments and shear forces are obtained from
(2.1)-(2.4) and given as follows:

M=EIχ, T=κGAγ, (2.5)

where EI is the bending rigidity, κGA is the shear rigidity, κ is the shear correction factor.
The equilibrium equations for Timoshenko beam:

dM
dx

=T, (2.6a)

dT
dx

= f . (2.6b)

Where f is the uniform load per unit length.
By substituting Eq. (2.1) and (2.5) into Eq. (2.6a) and (2.6b), we get the differential

equations for the exact solution of Timoshenko beam in term of v and θb:

EI
d2θb

dx2 +κGA
(

dv
dx
−θb

)
=0, (2.7a)

κGA
(

d2v
dx2−

dθb

dx

)
= f . (2.7b)

As can be seen in [21, 22], these last two differential equations can be combined into a
single equation with θb as the only unknown variable

−EI
d3θb

dx3 = f . (2.8)
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By integrating Eq. (2.7a), we find the vertical displacement v as follows:

v=
∫ x

0
θbdx− EI

κGA
dθb

dx
+c. (2.9)

Where c is an integration constant.
In Eq. (2.9) the total vertical displacement is divided into two parts: first vb as a bend-

ing displacement and second vs as a shear displacement as follows:

v=vb+vs, (2.10a)

vb =
∫ x

0
θbdx+c, vs =−

EI
κGA

dθb

dx
. (2.10b)

Differentiating Eq. (2.10a) yields:

dv
dx

=
dvb

dx
+

dvs

dx
, (2.11a)

dvb

dx
= θb, (2.11b)

dvs

dx
= θs =−

EI
κGA

d2θb

dx2 =− EI
κGA

d3vb

dx3 . (2.11c)

Substituting (2.11b) into curvature in Eq. (2.1) yields:

χ=−d2vb

dx2 . (2.12)

Substituting (2.10b)-(2.11b) into shear deformation in Eq. (2.1) and from (2.11c), we ob-
tain:

γ= θs =
dvs

dx
=− EI

κGA
d2θb

dx2 =− EI
κGA

d3vb

dx3 . (2.13)

By integrating (2.13) we obtain:

vs =−
EI

κGA
d2vb

dx2 =
EI

κGA
χ. (2.14)

Finally, Eq. (2.10a) can be expressed in terms of vb only:

v=vb−
EI

κGA
d2vb

dx2 . (2.15)

Substituting Eq. (2.11b) into (2.8) we obtain:

−EI
d4vb

dx4 = f . (2.16)
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These differential equations (2.12)-(2.16) are similar to the ones for a Bernoulli-Euler beam
theory with v replacing vb, but have accounted shear deformation. In fact, for very slen-
der beams, where EI

κGA→0, the equations will show that vs→0 and vb→v, confirming that
Eqs. (2.12)-(2.16) are identical to the Bernoulli-Euler equations. Four boundary conditions
are needed to complete the fourth order differential equation (2.16).

The beam boundaries are denoted by Γ={0}U{L}, with L is the length of the beam.
Furthermore, Γv,Γθ ,ΓM,ΓT indicate the boundaries with prescribed v,θ,M and T, respec-
tively. The boundary condition are formulated as follows,

v̄=vb−
EI

κGA
d2vb

dx2 →Γv, (2.17a)

θ̄b =
dvb

dx
→Γθb , (2.17b)

M̄=±−EI
d2vb

dx2 →ΓM, (2.17c)

T̄=−EI
d3vb

dx3 →ΓT. (2.17d)

The barred symbols designate the imposed boundary values.
Take notice that a zero-vertical displacement at boundary condition means that the

sum of vb and vs is zero, i.e., vb+vs =0→vb 6=0, vs 6=0, not that both vb and vs are zero at
the boundary.

The classical of the principle of virtual work (PVW) takes the form:

∫ L

0
χ∗EIχdx+

∫ L

0
γ∗κGAγdx= f

∫ L

0
v∗dx+(θ∗b )|ΓM M̄ +(v∗)|ΓT T̄. (2.18)

The internal virtual work, consisting of bending and shear parts is on the left side of the
equation. The external virtual work is on the right side. As a convention, concentrated
point load T̄ and distributed loads f , acting in the direction of the global y-axis are taken
as positive. Consistent with the definition of the rotation, the concentrated moments
acting at beam points are taken as positive if they act anticlockwise.

3 UI element based on unified and integrated method

The 2-node UI element is formulated based on an unified and integrated method (2.12)-
(2.18). The element has six degrees of freedom (DOFs), e.g., vbi ,vsi ,θi at each node i as
shown in Fig. 1. The only unknown variable in the UI element equation is bending dis-
placement vb, which is approximated by using a 5th-degree polynomial expansion. To
ensure a smooth bending displacement, slopes and curvatures have to be continuous
across adjacent elements. Therefore, C2 Hermite shape functions are required. The PVW
in this element involves the second derivatives of vb(x). The 5th-degree polynomial for
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FEA versus IGA in a two-node beam element based on Unified and Integrated Model 

 

The 5th-degree polynomial for bending displacement is: 

   2 3 4 51b n nv P a x x x x x a          (27) 

From (15) the rotational function is: 
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Fig. 1. Degree of freedom of UI beam element  

By substituting the conditions of each node: 
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                                                (34) 

Then, by substituting (33-34) into (27) we get 

 b nv uN                                                                (35) 

1 21 1 2 1b s b sv v v vN N N N N N N          (36)  

 
1 1 2 21 2

T
n n b s b su u v v v v              (37) 

Where  nu is the nodal displacement. 

1 1 1, ,b sv v   and
2 2 2, ,b sv v  are the bending displacement, shear displacement and the rotation of nodes 1 and 2, 

respectively. N  are the C2 Hermite shape functions. 

0x

1b
v 2bv

1 2

x L

1s
v 2sv

Figure 1: Degree of freedom of UI beam element.

bending displacement is:

vb = 〈P〉{an}=
〈
1 x x2 x3 x4 x5〉{an}. (3.1)

From (2.11b) the rotational function is:

θb =
dvb

dx
= 〈P,x〉{an}=

〈
0 1 2x 3x2 4x3 5x4〉{an}. (3.2)

From (2.14) the shear displacement function is:

vs =−
EI

κGA
〈P,xx〉{an}=−

EI
κGA

〈
0 0 2 6x 12x2 20x3〉{an}. (3.3)

We introduce shear influence factor:

φ=
EI

κGA
12
L2 . (3.4)

And (3.3) become:

vs =−
φL2

12
〈P,xx〉{an}=−

φL2

12
〈
0 0 2 6x 12x2 20x3〉{an}. (3.5)

Where

{an}= 〈an〉T =
〈

a1 a2 a3 a4 a5 a6
〉T. (3.6)

By substituting the conditions of each node:

vb1

vs1

θ1
vb2

vs2

θ2


=



1 0 0 0 0 0
0 0 −2 φL2

12 0 0 0
0 1 0 0 0 0
1 L L2 L3 L4 L5

0 0 −2 φL2

12 −6 φL2

12 L −12 φL2

12 L2 −20 φL2

12 L3

0 1 2L 3L2 4L3 5L4





a1
a2
a3
a4
a5
a6


(3.7)
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Fig.2 Shape functions of UI beam element 

 

The shape functions (38) shows that 1bvN and 2bvN take a unit value at a node and zero at the other node (see 

Fig.2), and their first derivatives are zero at both nodes, while the opposite occurs with
1

N and
2

N . 

Using equation (17), the curvature at a point within the element is obtained in terms of the nodal DOFs by 

 
2

2

b
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d v
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where:  21 21 1 2
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Using equation (18), the shear deformation at a point within the element is obtained in terms of the nodal 

DOFs by 

 
3
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b
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EI d v
B u

GA dx
   


     (41) 

where:   211 1 2 2
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2

,
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L

 


    (42) 

By substituting (39-42) into (26), the PVW for an individual element can be written as  

     *  e
nn nu k fW u                                          (43) 

After simplifying the virtual displacements, the total element stiffness matrix:  

             
0 0

; ;
L L

b s b b b s s sk k EI B B dx k GA B B dxk k                                    (44) 

Where  bk ,  sk and nf are the bending stiffness matrix, the shear stiffness matrix and the equivalent nodal 

force vector for the element, respectively. Splitting the element stiffness matrix as in (44) is more convenient 

as it allows us to identify the bending and shear contributions.  

The bending stiffness for UI element is expressed by: 

Figure 2: Shape functions of UI beam element.

or

{un}=[Pn]{an}→{an}=[Pn]
−1{un}. (3.8)

Then, by substituting (3.7)-(3.8) into (3.1), we get

vb = 〈N〉{un}, (3.9a)

〈N〉=
〈

Nvb1
Nvs1

Nθ1 Nvb2
Nvs1

Nθ2

〉
, (3.9b)

{un}= 〈un〉T =
〈
vb1 vs1 θ1 vb2 vs2 θ2

〉
. (3.9c)

Where {un} is the nodal displacement vb1 ,vs1 ,θ1 and vb2 ,vs2 ,θ2 are the bending displace-
ment, shear displacement and the rotation of nodes 1 and 2, respectively. 〈N〉 are the C2

Hermite shape functions

Node 1

Nvb1
=

1
L5 (L−x)3(L2+3Lx+6x2)

Nvs1
=− 1

φL5 6x2(L−x)3

N
θ1
=

1
L4 x(L+3x)(L−x)3

Node 2

Nvb2
=

x3

L5

(
10L2−15Lx+6x2)

Nvs2
=− 6x3

φL5 (L−x)2

Nθ2 =
x3

L4

(
−4L2+7Lx−3x2)

(3.10)

The shape functions (3.10) shows that Nvb1 and Nvb2 take a unit value at a node and zero
at the other node (see Fig. 2), and their first derivatives are zero at both nodes, while the
opposite occurs with Nθ1 and Nθ2 .
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Using Eq. (2.12), the curvature at a point within the element is obtained in terms of
the nodal DOFs by

χ=−d2vb

dx2 = 〈Bb〉{un}, (3.11)

where

〈Bb〉=−
〈

Nvb1
,xx Nvs1

,xx N
θ1 ,xx Nvb2

,xx Nvs2 ,xx Nθ2,xx
〉

. (3.12)

Using Eq. (2.13), the shear deformation at a point within the element is obtained in terms
of the nodal DOFs by

γ=− EI
κGA

d3vb

dx3 = 〈Bs〉{un}, (3.13)

where

〈Bs〉=−
φL2

12

〈
Nvb1

,xxx Nvs1
,xxx N

θ1 ,xxx Nvb2
,xxx Nvs2

,xxx Nθ2,xxx
〉

. (3.14)

By substituting (3.11)-(3.14) into (2.18), the PVW for an individual element can be written
as

We = 〈u∗n〉([k]{un}−{ fn}). (3.15)

After simplifying the virtual displacements, the total element stiffness matrix:

[k]= [kb]+[ks], [kb]=EI
∫ L

0
{Bb}〈Bb〉dx, [ks]=κGA

∫ L

0
{Bs}〈Bs〉dx. (3.16)

Where [kb], [ks] and { fn} are the bending stiffness matrix, the shear stiffness matrix and
the equivalent nodal force vector for the element, respectively. Splitting the element stiff-
ness matrix as in (3.16) is more convenient as it allows us to identify the bending and
shear contributions.

The bending stiffness for UI element is expressed by:

[kb]=



120EI
7L3 − 3κGA

7L
60EI
7L2 − 120EI

7L3
3κGA

7L
60EI
7L2

− 3κGA
7L

3(κGA)2L
35EI − 11κGA

35
3κGA

7L
(κGA)2L

70EI − 4κGA
35

60EI
7L2 − 11κGA

35
192EI
35L − 60EI

7L2
4κGA

35
108EI
35L

− 120EI
7L3

3κGA
7L − 60EI

7L2
120EI

7L3 − 3κGA
7L − 60EI

7L2

3κGA
7L

(κGA)2L
70EI

4κGA
35 − 3κGA

7L
3(κGA)2L

35EI
11κGA

35
60EI
7L2 − 4κGA

35
108EI
35L − 60EI

7L2
11κGA

35
192EI
35L


. (3.17)



1574 A. M. Katili and I. Katili / Adv. Appl. Math. Mech., 12 (2020), pp. 1565-1586

The shear stiffness for UI element is expressed by:

[ks]=φ



60EI
L3 − 5κGA

L
30EI

L2 − 60EI
L3

5κGA
L

30EI
L2

− 5κGA
L

3(κGA)2L
4EI −3κGA 5κGA

L − (κGA)2L
4EI −2κGA

30EI
L2 −3κGA 16EI

L − 30EI
L2 2κGA 14EI

L
− 60EI

L3
5κGA

L − 30EI
L2

60EI
L3 − 5κGA

L − 30EI
L2

5κGA
L − (κGA)2L

4EI 2κGA − 5κGA
L

3(κGA)2L
4EI 3κGA

30EI
L2 −2κGA 14EI

L − 30EI
L2 3κGA 16EI

L


. (3.18)

The UI element stiffness matrix is obtained from the sum of the bending and shear stiff-
ness matrix:

[k]= [kb]+[ks]. (3.19)

Shear influence factor φ depends on the geometry and the material properties of the
transverse cross-section. A small value of φ indicates that shear strain effects can be ne-
glected. Transverse shear effect is negligible for a slender beam. For slender beams φ→0,
γ and shear stiffness [ks] in (3.18) should disappear, meaning that for slender beams, the
2-node UI element can deliver the same solution as given by the Euler-Bernoulli beam
theory.

For a uniform load f0, the external energy is given as follows:

Πext =
∫ L

0
f0v(x)dx= f0

∫ L

0
(vb(x)+vs(x))dx

= f0

∫ L

0

(
vb−

L2φ

12
d2vb

dx2

)
dx= 〈un〉{ fn}. (3.20)

Where equivalent nodal force vector can be written as:

{ fn}= 〈 fn〉T =
〈

fvb1 fvs1 fθ1 fvb2 fvs2 fθ2

〉T, (3.21a)

〈 fn〉= f0L
〈

1
2

L(6+5φ)

60
− L2

120
1
2
−L(6+5φ)

60
− L2

120

〉
. (3.21b)

4 IGA Galerkin based on unified and integrated beam method

In isogeometric analysis, the B-spline functions are not only used to describe the geo-
metric entities but also to approximate the solution in an isoparametric fashion. Control
point variables function as degrees of freedom and the knot spans represent elements.

4.1 B-Spline basis functions

In one-dimensional case, B-Spline basis functions are determined using the Cox-de Boor [?]
recursion formulas. The construction of the B-Spline basis functions are generated from
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4. IGA GALERKIN BASED ON UNIFIED AND INTEGRATED BEAM METHOD 

In isogeometric analysis, the B-spline (or NURBS) functions are used to define both the geometry and 

approximate the solution field in an isoparametric fashion. The control point variables represent the degrees 

of freedom and the knot spans are considered as elements. 

4.1 B-Spline basis functions 

B-Spline basis functions are defined recursively using the Cox-de Boor [25] formulas in the one-

dimensional case. The construction of the B-Spline basis functions are generated from so-called knot 

vectors  and are defined in a parametric space  0,1 into a set of intervals as follows:  

1 2 10, , , 1n p                                                            (51) 

Where p represents the order of polynomial degree and n represents the number of basis functions. The 

interval  1,i i  is called a knot span, the interval 1 1, n p     is called a patch. The knot vector  is 

called open if the first and the last knots are repeated (p+1) times. We start with piecewise constants 

1
,0

1,  if 
( )       for  0

0,  otherwise

i i
iN p

    
  


                                                                   (52) 

Linear, quadratic and higher order functions are defined by 

1
, , 1 1, 1

1 1

( ) ( ) ( )      for  1
i pi

i p i p i p
i p i i p i

N N N p
 

  
   

    
     

     
                         (53) 

 i  are coordinates of the knots in the parametric space, collected in a knot vector  . 

B-Spline basis functions are not interpolatory in general, except for the first and last basis functions 

which are interpolatory at the ends of the parametric space.  

Basis functions for p = 3 and NELT = 1, knot vectors  0,0,0,0,1,1,1,1     

3 2
1 1,3 2 2,3

2 3
3 3,3 4 4,3

( ) ( ) (1 )         ;      ( ) ( ) 3 (1 )

( ) ( ) 3 (1 )   ;      ( ) ( )

N N N N

N N N N

            

           
                              (54) 

 
Fig. 3 Cubic B-spline basis functions generated from the open knot vector Ξ = [0, 0, 0, 0, 1, 1, 1, 1]. 

Fig. 3 shows an example of a set of cubic B-Spline functions determined from an open knot vector.  

Basis functions for p = 5 and NELT = 1, knot vectors  0,0,0,0,0,0,1,1,1,1,1,1   

   

   

 

5 4
1 1,5 2 2,5

3 22 3
3 3,5 4 4,5

4 5
5 5,5 6 6,5

( ) ( ) 1            ;   ( ) ( ) 5 1

( ) ( ) 10 1   ;   ( ) ( ) 10 1

( ) ( ) 5 1       ;   ( ) ( )

N N N N

N N N N

N N N N

            

             

           

                          (55) 
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Figure 3: Cubic B-spline basis functions generated from the open knot vector Ξξ =[0,0,0,0,1,1,1,1].

the so-called knot vectors Ξξ and are defined in a parametric space ξ ∈ [0,1] into a set of
intervals as follows:

Ξξ =
[
ξ1=0,ξ2,··· ,ξn+p+1=1

]
. (4.1)

Where p represents the polynomial degree order, while n represents the number of basis
functions. The interval [ξi,ξi+1] is called a knot span, and the interval

[
ξ1,ξn+p+1

]
is called

a patch. The knot vector Ξξ is called open if the first and the last knots are repeated (p+1)
times. We start with piecewise constants

Ni,0(ξ)=

{
1, if ξi≤ ξ< ξi+1,
0, otherwise,

for p=0. (4.2)

Linear, quadratic and higher order functions are defined by

Ni,p(ξ)=
ξ−ξi

ξi+p−ξi
Ni,p−1(ξ)+

ξi+p+1−ξ

ξi+p+1−ξi+1
Ni+1,p−1(ξ) for p≥1, (4.3)

ξ i are coordinates of the knots in the parametric space, collected in a knot vector Ξξ .
Basis functions for p=3 and NELT=1, knot vectors Ξξ =[0,0,0,0,1,1,1,1],

N1(ξ)=N1,3(ξ)=(1−ξ)3, N2(ξ)=N2,3(ξ)=3ξ(1−ξ)2, (4.4a)

N3(ξ)=N3,3(ξ)=3ξ2(1−ξ), N4(ξ)=N4,3(ξ)= ξ3. (4.4b)

An example of a set of cubic B-Spline functions generated from an open knot vector is
illustrated in Fig. 3.

Basis functions for p=5 and NELT=1, knot vectors Ξξ =[0,0,0,0,0,0,1,1,1,1,1,1]

N1(ξ)=N1,5(ξ)=(1−ξ)5, N2(ξ)=N2,5(ξ)=5ξ(1−ξ)4, (4.5a)

N3(ξ)=N3,5(ξ)=10ξ2(1−ξ)3, N4(ξ)=N4,5(ξ)=10ξ3(1−ξ)2, (4.5b)

N5(ξ)=N5,5(ξ)=5ξ4(1−ξ), N6(ξ)=N6,5(ξ)= ξ5. (4.5c)
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Fig. 4 Quintic B-spline basis functions generated from the open knot vector Ξ = [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1]. 

Fig. 4 shows an example of a set of quintic B-Spline functions determined from an open knot vector. As 

can be seen, the functions are not interpolatory in general except for the first and last basis functions 

which are interpolatory at the ends of the parametric space, i.e., the patch. 

 

4.2 Displacement function  

Bending displacement variables bv and geometric function are approximated by 

 
1

ˆ( ) ( )    ;   
n

b i bi

i

v N v x L


                         (56) 

ˆbiv as a control variable in isogeometric analysis are equivalent with a degree of freedom in finite element 

analysis.  

 

4.3 Curvature and Shear Strain 

Substituting (56) into (17) we get 

  1 1
1

ˆ ˆ( ) , ( )     ;    , ,
n

i xx bi b n b xx n xx xn
i

N v B v B N N


                        (57) 

Substituting (56) into (18) we get 

 
2 2

1 1
1

ˆ ˆ( ) , ( )    
12 12

;   , ,
n

i xxx bi s n s xxx n xxx xn
i

N v B v B N N
L L



       
 
  (58) 

Where curvature is second derivatives of bending displacement function bv and the transverse shear strain 

is third derivatives of bending displacement function bv . 

4.4 Bending and Shear stiffness 

From (44) we obtain the bending stiffness  bk and shear stiffness  sk , respectively: 

For p = 3:                
3

4 6 0 2

6 12 6 03

0 6 12 6

2 0 6 4

b
EI

k
L

 
 
 
 
  
 

 

     ;      
3

1 3 3 1

3 9 9 33

3 9 9 3

1 3 3 1

s

EI
k

L

  
 
 
  
  
 
  

                    (59) 

From the sum of bending and shear stiffness matrix we obtain the element stiffness matrix  k : 

Figure 4: Quintic B-spline basis functions generated from the open knot vector Ξξ =[0,0,0,0,0,0,1,1,1,1,1,1].

Fig. 4 shows an example of a set of quintic B-Spline functions generated from an open
knot vector. We can see that only the basis functions at both ends of the parametric space
are interpolatory.

4.2 Displacement function

Bending displacement variables vb and geometric function are approximated by

vb(ξ)=
n

∑
i=1

Ni(ξ)v̂bi, x(ξ)= ξL, (4.6)

v̂bi as a control variable in the isogeometric analysis are equivalent to a degree of freedom
in finite element analysis.

4.3 Curvature and shear strain

Substituting (4.6) into (2.12), we get

χ(ξ)=−
n

∑
i=1

Ni,xx(ξ)v̂bi = 〈Bb〉{v̂n}, 〈Bb〉=−
〈

N1,xx ··· Nn,xx
〉

1xn. (4.7)

Substituting (4.6) into (2.13) we get

γ(ξ)=−φL2

12

n

∑
i=1

Ni,xxx(ξ)v̂bi = 〈Bs〉{v̂n}, 〈Bs〉=−
φL2

12
〈

N1,xxx ··· Nn,xxx
〉

1xn. (4.8)

Where curvature is second derivatives of bending displacement function vb and the trans-
verse shear strain is third derivatives of bending displacement function vb.
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4.4 Bending and shear stiffness

From (3.16), we obtain the bending stiffness [kb] and shear stiffness [ks], respectively: For
p=3 :

[kb]=
3EI
L3


4 −6 0 2
−6 12 −6 0
0 −6 12 −6
2 0 −6 4

, [ks]=
3EI
L3 φ


1 −3 3 −1
−3 9 −9 3
3 −9 9 −3
−1 3 −3 1

. (4.9)

From the sum of bending and shear stiffness matrix we obtain the element stiffness matrix
[k]:

[k]= [kb]+[ks]=
3EI
L3


(4+φ) −(6+3φ) 3φ (2−φ)
−(6+3φ) (12+9φ) −(6+9φ) 3φ

3φ −(6+9φ) (12+9φ) −(6+3φ)
(2−φ) 3φ −(6+3φ) (4+φ)

. (4.10)

For p=5 :

[kb]=
20EI
7L3



20 −30 4 3 2 1
−30 52 −13 −8 −3 2

4 −13 12 2 −8 3
3 −8 2 12 −13 4
2 −3 −8 −13 52 −30
1 2 3 4 −30 20

, (4.11a)

[ks]=
10EI

L3 φ



6 −15 10 0 0 −1
−15 40 −30 0 5 0
10 −30 30 −10 0 0
0 0 −10 30 −30 10
0 5 0 −30 40 −15
−1 0 0 10 −15 6

. (4.11b)

The element stiffness matrix [k] is obtained from the sum of the bending and shear stiff-
ness matrix:

[k]=
10EI
7L3


(40+42φ) −(60+105φ) (8+70φ) 6 4 (2−7φ)
−(60+105φ) (104+280φ) −(26+210φ) −16 (−6+35φ) 4
(8+70φ) −(26+210φ) (24+210φ) (4−70φ) −16 6

6 −16 (4−70φ) (24+210φ) −(26+210φ) (8+70φ)
4 (−6+35φ) −16 −(26+210φ) (104+280φ) −(60+105φ)

(2−7φ) 4 6 (8+70φ) −(60+105φ) (40+42φ)

.

(4.12)
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5 NUMERICAL EXAMINATION 

In this section examples with various boundary conditions for beam under a uniform load f0 are presented 

to demonstrate the performance of UI element in static analysis. The results from Isogeometric Analysis 

(IGA) [21] are presented with two different order of polynomial degree (p =3 and p = 5). 

5.1 CANTILEVER BEAM 

 

 

 

 

 
 

 

          
 

Fig.6. Cantilever Beam.  

 

 

Fig.7. Simple - Simple Supported beam  

Fig.5. Cantilever beam  

Boundary conditions: 1 10  ;    0v     5 

Table 1a. Results from UI and IGA for Cantilever beam with 1 element 

UI (p = 5) IGA (p = 3) IGA (p = 5) 

21 1 1 ;  0  ;  0sb sv v v       
1 2 3

ˆ ˆ ˆ
2

b b bv v v


 
 

 
1 2 3

ˆ ˆ ˆ
3 5

b b bv v v
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ˆ
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Table 1b. Displacement functions of cantilever beam with 1 element  

Element Displacement functions 

UI (p = 5) 
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f
v x x x Lx L x
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IGA (p = 3) [21]    0 225 2
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L
Lx

f
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IGA (p = 5) [21]     3 2 220 6
24

4 2
f

v x x x Lx x
E

L
I
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24

4 2
f
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E

L
I

x LL     

v
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Figure 5: Fixed-Free supported beam.

Where equivalent nodal force vector

{ fn}=


...
fi
...


1,n

, fi =
∫ L

0
f
(

Ni−
φL2

12
Ni,xx

)
dx−M̄(Ni,x)+ T̄

(
Ni−

φL2

12
Ni,xx

)
, (4.13)

For uniform distributed load f0, the nodal force vector:

{ fn}= 〈 fn〉T =
1
4

f0L
〈
(1−φ) (1+φ) (1+φ) (1−φ)

〉T, (p=3), (4.14a)

{ fn}= 〈 fn〉T =
1
12

f0L
〈
(2−5φ) (2+5φ) 2 2 (2+5φ) (2−5φ)

〉T, (p=5). (4.14b)

5 Numerical examination

In this section examples with various boundary conditions for a beam under a uniform
load f0 are presented to demonstrate the performance of the UI element in static analysis.
The results from Isogeometric Analysis (IGA) [21] are presented with two different order
of polynomial degree (p=3 and p=5).

5.1 Fixed-free supported beam

Boundary conditions: v1=0, θ1=0.
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Table 1: Results from UI and IGA for fixed-free supported beam with 1 element.

UI (p=5) IGA (p=3) IGA (p=5)
vb1

=−vs1 , θ1 =0, vs2 =0, v̂b1
= v̂b2 =

φ
2+φ v̂b3 v̂b1

= v̂b2 =
5φ

3+5φ v̂b3

vb1
vs1
θ1
vb2
vs2
θ2


=

f0 L2

24EI



L2φ
−L2φ

0
L2(3+φ)

0
4L




v̂b1
v̂b2
v̂b3
v̂b4

=
f0 L4

144EI


5φ
5φ

10+5φ
18+5φ





v̂b1
v̂b2
v̂b3
v̂b4
v̂b5
v̂b6


=

f0 L4

120EI



5φ
5φ

3+5φ
7+5φ
11+5φ
15+5φ



Table 2: Displacement functions of fixed-free supported beam with 1 element.

Element Displacement functions

UI (p=5)
vb(x)= f0

24EI x
(

L3−2Lx2+x3)
vs(x)= f0L2

24EI φx(L−x)
v(x)= f0

24EI x
(
x3−4Lx2+6L2x+φL2(2L−x)

)
IGA (p=3) [21] v(x)= f0L

24EI x
(
5Lx−2x2+L2φ

)
IGA (p=5) [21] v(x)= f0

24EI x
(
x3−4Lx2+6L2x+φL2(2L−x)

)
EXACT [21] v(x)= f0

24EI x
(
x3−4Lx2+6L2x+φL2(2L−x)

)
Table 3: Results from UI and IGA for Simply-Simply Supported beam with 1 element.

UI (p=5) IGA (p=3) IGA (p=5)
vb1 =−vs1 =0 v̂b1 =

2φ
φ−2 v̂b2 =

φ
2−φ v̂b3 v̂b1 =

10φ
5φ−3 v̂b2 =

5φ
3−5φ v̂b3

vb2 =−vs2 =0 v̂b4 =
2φ

φ−2 v̂b3 =
φ

2−φ v̂b2 v̂b6 =
10φ

5φ−3 v̂b5 =
5φ

3−5φ v̂b4

vb1
vs1
θ1
vb2
vs2
θ2


= f0L3

24EI



0
0
1
0
0
−1




v̂b1
v̂b2
v̂b3
v̂b4

=− f0L4

144EI


φ

−2+φ
−2+φ

φ





v̂b1
v̂b2
v̂b3
v̂b4
v̂b5
v̂b6


= f0L4

120EI



0
1
2
4
2
0


5.2 Simply-simply supported beam

Boundary conditions: v1=0, v2=0.

5.3 Fixed-simply supported beam

Boundary conditions: v1=0, θ1=0, v2=0.
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5.2 SIMPLE SUPPORTED BEAM 

 

 

 
  
 

 

 

 

 

 

 

 

 

 

 

 

Fig.6. Simple - Simple Supported beam  

Boundary conditions: 1 0v    ;   2 0v   

Table 2a. Results from UI and IGA for Simple – Simple Supported beam with 1 element 

UI (p = 5) IGA (p = 3) IGA (p = 5) 
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Table 2b. Displacement functions of Simple – Simple supported beam with 1 element  

Element Displacement functions 

UI (p = 5) 
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Figure 6: Simple-Simple Supported beam.

Table 4: Displacement functions of Simply-Simply supported beam with 1 element.

Element Displacement functions

UI (p=5)
vb(x)= f0

24EI(4+φ)

(
φL4+6L2x2−(10L+2φL)x3+(4+φ)x4)

vs(x)= f0
24EI(4+φ)

φL2(L−x)(4x−L+φx)

v(x)= f0
24EI x

(
x3−2Lx2+L3+L2φ(L−x)

)
IGA (p=3) [21] v(x)= f0L2

24EI x(L−x)
IGA (p=5) [21] v(x)= f0

24EI x
(

x3−2Lx2+L3+L2φ(L−x)
)

EXACT [21] v(x)= f0
24EI x

(
x3−2Lx2+L3+L2φ(L−x)

)
Table 5: Results from UI and IGA for Fixed-Simply Supported beam with 1 element.

UI (p=5) IGA (p=3) IGA (p=5)
vb1 =−vs1 θ1=0, v̂b1 = v̂b2 =

φ−2
4+φ v̂b4 v̂b1 = v̂b2 =

5φ
3+5φ v̂b3

vb2 =−vs2 =0 v̂b3 =
−4+φ2

(4+φ)φ
v̂b4 v̂b6 =

10φ
5φ−3 v̂b5 =

5φ
3−5φ v̂b4

vb1
vs1
θ1
vb2
vs2
θ2


= f0L2

24EI(4+φ)



L2φ
−L2φ

0
0
0

−2L(1+φ)




v̂b1
v̂b2
v̂b3
v̂b4

=− f0L4

144EI


(−2+φ)φ

4+φ
(−2+φ)φ

4+φ
(−4+φ2)

4+φ

φ





v̂b1
v̂b2
v̂b3
v̂b4
v̂b5
v̂b6


= f0L4

240EI(4+φ)



10φ
10φ

6+10φ
8+8φ
4+4φ

0
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5.3 FIXED - SIMPLE SUPPORTED BEAM 

  
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Fixed - Simple Supported beam 

Boundary conditions: 1 1 20 ; 0 ; 0v v           

Table 3a. Results from UI and IGA for Fixed-Simple Supported beam with 1 element 

UI (p = 5) IGA (p = 3) IGA (p = 5) 

1 1 1; 0b sv v       
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Table 3b. Displacement functions of Fixed -Simple Supported beam with 1 element  
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Figure 7: Fixed-Simply Supported beam.

Table 6: Displacement functions of Fixed -Simple Supported beam with 1 element.

Element Displacement functions

UI (p=5)
vb(x)= f0

24EI(4+φ)

(
φL4−10Lx3+φx4+4x4+6L2x2−2φLx3)

vs(x)= f0
24EI(4+φ)

φL2(L−x)(4x−L+φx)

v(x)= f0
24EI(4+φ)

x(L−x)
(

Lx(6+φ)−x2(4+φ)+L2φ(5+φ)
)

IGA (p=3) [21] v(x)= f0L
24EI(4+φ)

x(L−x)(2x+Lφ)

IGA (p=5) [21] v(x)= f0
24EI(4+φ)

x(L−x)
(

Lx(6+φ)−x2(4+φ)+L2φ(5+φ)
)

EXACT [21] v(x)= f0
24EI(4+φ)

x(L−x)
(

Lx(6+φ)−x2(4+φ)+L2φ(5+φ)
)

5.4 Simply-fixed roll supported beam

Boundary conditions: v1=0, θ2=0.

5.5 Fixed-fixed roll supported beam

Boundary conditions: v1=0, θ1=0, θ2=0.

5.6 Fixed-fixed supported beam

Boundary conditions: v1=0, θ1=0, v2=0, θ2=0.
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Table 4b. Displacement functions of Simple - Fixed Roll supported beam with 1 element  

Element Displacement functions 
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Figure 8: Simple-Fixed Roll supported beam.

Table 7: Results from UI and IGA for Simply-Fixed Roll Supported beam with 1 element.

UI (p=5) IGA (p=3) IGA (p=5)
vb1 =−vs1 =0, θ2=0 v̂b1 =

2φ
φ−2 v̂b2 =

φ
2−φ v̂b3 , v̂b3 = v̂b4 v̂b1 =

10φ
5φ−3 v̂b2 =

5φ
3−5φ v̂b3 , v̂b5 = v̂b6

vb1
vs1
θ1
vb2
vs2
θ2


= f0L2

24EI



0
0

8L
5L2

φL2

0




v̂b1
v̂b2
v̂b3
v̂b4

=− f0L4

144EI


φ

−16+φ
−30+φ
−30+φ





v̂b1
v̂b2
v̂b3
v̂b4
v̂b5
v̂b6


= f0L4

120EI



0
8

16
22
25
25



Table 8: Displacement functions of Simply-Fixed Roll supported beam with 1 element.

Element Displacement functions

UI (p=5)
vb(x)= f0

72EI
(
2φL4+12L2x2−12Lx3+3x4)

vs(x)=− f0
72EI φL2(2L2−6Lx+3x2)

v(x)= f0
24EI x

(
x3−4Lx2+8L3+L2φ(2L−x)

)
IGA (p=3) [21] v(x)= f0L

24EI x
(
8L2−Lx−2x2+L2φ

)
IGA (p=5) [21] v(x)= f0

24EI x
(
x3−4Lx2+8L3+L2φ(2L−x)

)
EXACT [21] v(x)= f0

24EI x
(
x3−4Lx2+8L3+L2φ(2L−x)

)

Only UI (p=5) and IGA (p=5) give an exact displacement function.
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Fig.9.  Fixed – Fixed Roll supported beam 

 

Boundary conditions: 1 1 20 ; 0 ; 0v             

Table 5a. Results from UI and IGA for Fixed - Fixed Roll Supported beam with 1 element 

UI (p = 5) IGA (p = 3) IGA (p = 5) 
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Table 5b. Displacement functions of Fixed -Fixed Roll supported beam with 1 element  

Element Displacement functions 
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Figure 9: Fixed-Fixed Roll supported beam.

Table 9: Results from UI and IGA for Fixed-Fixed Roll Supported beam with 1 element.

UI (p=5) IGA (p=3) IGA (p=5)
vb1 =−vs1 , θ1=0 v̂b1 = v̂b2 =

φ
2+φ v̂b3 , v̂b3 = v̂b4 v̂b1 = v̂b2 =

5φ
3+5φ v̂b3 , v̂b5 = v̂b6

vb1
vs1
θ1
vb2
vs2
θ2


= f0L2

72EI



2L2φ
−2L2φ

0
L2(3+2φ)

L2φ
0




v̂b1
v̂b2
v̂b3
v̂b4

= f0L4

48EI


φ
φ

φ+2
φ+2





v̂b1
v̂b2
v̂b3
v̂b4
v̂b5
v̂b6


= f0L4

360EI



10φ
10φ

6+10φ
12+10φ
15+10φ
15+10φ


Table 10: Displacement functions of Fixed-Fixed Roll supported beam with 1 element.

Element Displacement functions

UI (p=5)
vb(x)= f0

72EI
(
2φL4+12L2x2−12Lx3+3x4)

vs(x)=− f0
72EI φL2(2L2−6Lx+3x2)

v(x)= f0
24EI x

(
x3−4Lx2+4L2x+L2φ(2L−x)

)
IGA (p=3) [21] v(x)=− f0L

24EI x
(
3Lx−2x2+L2φ

)
IGA (p=5) [21] v(x)= f0

24EI x
(
x3−4Lx2+4L2x+L2φ(2L−x)

)
EXACT [21] v(x)= f0

24EI x
(
x3−4Lx2+4L2x+L2φ(2L−x)

)
6 Conclusions

In this paper, the performance of UI and IGA Galerkin elements based on the unified
and integrated method are compared. In the unified and integrated method, the total
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Fig. 10 Fixed – Fixed supported beam 

 

Boundary conditions: 1 1 2 20 ; 0 ; 0 ; 0v v                 

Table 6a. Results from UI and IGA for Fixed - Fixed Supported beam with 1 element 

UI (p = 5) IGA (p = 3) IGA (p = 5) 

1 1 2 2
;b s b sv v v v        

1 2 3 4
0ˆ ˆ ˆ ˆb b b bv v v v     

1 2 3
ˆ ˆ ˆ

3 5
b b bv v v


 

 
 

5 6 4
ˆ ˆ ˆ

3 5
b b bv v v


 

 
 

1

1

2

2

2

2

2

2
1 0

2

2

14

0

0

4

b

s

b

s

L

L

L

v

v

f L

v E

L

I

v

 
 
 
 

 
 
  
 
 

  
 

 
 

 
 
 
 
 
  


 
 

 

1

2

3

4

ˆ
0

ˆ 0

ˆ 0

0ˆ

b

b

b

b

v

v

v

v

 
 

 
 

   
   

   
    
 

 

2

6

1

3

4

5

4
0

ˆ

ˆ

ˆ

ˆ 1440

10

10

6 10

6 10

10

10ˆ

ˆ

b

b

b

b

b

b

v

v

v f L

v EI

v

v

 
 


 
   
 

  
 

 
 
 
 
 

 

 


 
 

  
 
 
 

 

Table 6b. Displacement functions of Fixed -Fixed supported beam with 1 element  

Element Displacement functions 
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Figure 10: Fixed-fixed supported beam.

Table 11: Results from UI and IGA for Fixed-Fixed Supported beam with 1 element.

UI (p=5) IGA (p=3) IGA (p=5)
vb1 =−vs1 , vb2 =−vs2 v̂b1 = v̂b2 = v̂b3 = v̂b4 =0 v̂b1 = v̂b2 =

5φ
3+5φ v̂b3 , v̂b5 = v̂b6 =

5φ
3+5φ v̂b4

vb1
vs1
θ1
vb2
vs2
θ2


= f0L2

144EI



L2φ
−L2φ

0
L2φ
−L2φ

0




v̂b1
v̂b2
v̂b3
v̂b4

=


0
0
0
0





v̂b1
v̂b2
v̂b3
v̂b4
v̂b5
v̂b6


= f0L4

1440EI



10φ
10φ

6+10φ
6+10φ

10φ
10φ


Table 12: Displacement functions of Fixed -Fixed supported beam with 1 element.

Element Displacement functions

UI (p=5)
vb(x)= f0

144EI
(
6L2x2−12Lx3+6x4+φL4)

vs(x)=− f0
144EI φL2(L2−6Lx+6x2)

v(x)= f0
24EI x

(
x3−2Lx2+L2x+L2φ(L−x)

)
IGA (p=3) [21] v(x)=0
IGA (p=5) [21] v(x)= f0

24EI x
(
x3−2Lx2+L2x+L2φ(L−x)

)
EXACT [21] v(x)= f0

24EI x
(
x3−2Lx2+L2x+L2φ(L−x)

)
displacement is split into bending displacement and shear displacement, which is the
key to combine Bernoulli and Timoshenko theory. The weak form differential equation or
principal virtual work (PVW), that is the symmetric form of the second-order derivative
for the bending part and the third order derivative for the shear part, gives completely
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locking-free results.
Conclusions drawn from the results of the numerical examination are:

1. The formulation of the shear deformable UI element and IGA Galerkin (p=5) can
give exact solutions not only at nodes but also along the beam, proving that it is
free from shear locking, which is due to the strong relationship between shear dis-
placement, rotation, curvature, transverse shear.

2. IGA Galerkin (p=3) element only give exact DOFs values at nodes.

3. Since f0 is constant, the analytical solution is of fourth order in all cases. Therefore,
all results presented by only one element indicate that UI (p=5) and IGA Galerkin
(p=5) are able to give exact DOFs values and displacement functions.

4. When this element is applied to the thin beam case, i.e., φ = 0, all equations will
automatically be transformed into Bernoulli theory in which the total displacement
is equal to bending displacement.
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