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Abstract. Pattern formations by Gierer-Meinhardt (GM) activator-inhibitor model are
considered in this paper. By linear analysis, critical value of bifurcation parameter can
be evaluated to ensure Turing instability. Numerical simulations are tested by using
second order semi-implicit backward difference methods for time discretization and
the meshless Kansa method for spatially discretization. We numerically show the con-
vergence of our algorithm. Pattern transitions in irregular domains are shown. We also
provide various parameter settings on some irregular domains for different patterns
appeared in nature. To further simulate patterns in reality, we construct different kinds
of animal type domains and obtain desired patterns by applying proposed parameter
settings.
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1 Introduction

Many biological process, including animal pigmentation [8, 33, 35, 36], tumor forma-
tion [16] and animal population distribution [9], can be modeled by nonlinear reaction
diffusion systems. Mathematical analysis and simulation can help researchers better un-
derstanding interaction between chemicals in animal growth from a single cell to large
amount patterns we see in nature. In 1952, Turing proposed the first model for mor-
phogens phenomenon in his paper [40]. In the paper, he studied mathematical models,
which can generate the organism structure from a zygote. Prompted by this study, many
Turing models were put forward for different biological and physical process in nature.

∗Corresponding author.
Emails: lisq3@sustech.edu.cn (S. Q. Li), lling@hkbu.edu.hk (L. Ling)

http://www.global-sci.org/aamm 1327 c©2020 Global Science Press



1328 S. Q. Li and L. Ling / Adv. Appl. Math. Mech., 12 (2020), pp. 1327-1352

In 1955, a mathematical model of some threshold phenomenon in the nerve membrane
was posed by Fitzhugh in [19]. In 1979, Schnakenberg [39] proposed a model to describe
trimolecular autocatalytic reactions with two chemicals. The Gierer-Meinhardt activator-
inhibitor model was first introduced by Gierer and Meinhardt in [20] to describe the
spatial pattern of tissue structures starting from almost homogeneous tissue.

Most Turing models can be written by reaction diffusion systems with two chemicals
as 

∂u
∂t

=Du∆u+ f (u,v),

∂v
∂t

=Dv∆v+g(u,v),
in Ω, (1.1)

with u(x,t) and v(x,t) denoting concentrations of two chemicals at spatial position x and
time t, Du and Dv being diffusion constants. Functions f (u,v) and g(u,v) have different
representations in different models and they describe the reactions of two chemicals. In
this paper, we consider the Gierer-Meinhardt (GM) model [30] with f (u,v)= k1+k3

u2

v
−k2u,

g(u,v)= k4u2−k5v,

for some positive parameters k1,··· ,k5. By the manipulation in [34], the GM model can be
written in a non-dimensional form f (u,v)= r

(
1+

u2

v

)
−µu,

g(u,v)= ru2−νv.
(1.2)

where r, ν and µ are positive constants.
Based on some linear analysis, we will study Turing instability of the Gierer-

Meinhardt model for fixed bifurcation parameter. Numerical study for pattern forma-
tion is also essential since the non-uniform solution corresponding to spatial patterns
cannot be found analytically. For time discretization, numerical schemes can be cho-
sen with different convergence behavior. The Runge-Kutta method used in [13, 38] and
the Crank-Nicolson scheme was employed in [22, 23]. The alternating direction implicit
Crank-Nicholson (ADI-CN) was applied in [17] to solve two dimensional Riesz space
fractional diffusion equations. In [18], the authors proposed a two level method for semi-
linear reaction-diffusion equations. We use the implicit-explicit SBDF2 scheme [37] in this
paper which also be employed in [11]. Different numerical methods are also proposed
for the spatial discretization, such as the finite difference method [8, 35, 36], the finite ele-
ment method [28,41] and different kinds of meshless methods (the element free Galerkin
method [14, 29], the local radial basis function method [38]), ect. Compared to methods
with mesh, meshless methods are easier applied to irregular domains, for instance ellipse
domains and butterfly shape domains considered in [29]. Kansa method, proposed by E.
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J. Kansa in 1990 [24, 25], is a typical meshless method to solve partial differential equa-
tions by imposing strong form collocation to PDEs. To overcome the solvability problem
of Kansa method formed in [21], overdetermined Kansa method was applied to solve
PDEs in [26]. Convergence results of the overdetermined Kansa method were proved
in [12,27]. Spectral methods are another kind of meshless method which are widely used
for solving different problems, for instance, flexible multibody dynamics [31] and for
time-fractional advection dispersion equation [32].

In [35], the effects of spatially varying parameters on patterns formation in two di-
mension domains were explored. Since the finite difference methods was used, only
square domains considered in the paper. In our work, we study the Turing instability
and pattern formations by spatially varying parameters of the Gierer-Meinhardt model
in different irregular domains. By applying the second order semi-implicit backward
difference formula (SBDF2) to the time discretization and the Kansa method to the spa-
tially discretization introduced in Section 3, pattern formations as bifurcation parameter
changing are studied in Section 4. Besides constant parameter in spatially space, complex
patterns are also formed by changing the bifurcation parameter continuously or discon-
tinuously. To further simulate patterns in reality, we also construct different kinds of
animal type domains and construct expected patterns by employing proposed parame-
ter settings on different patches of domains.

2 Turing instability

In this section, we study the Turing instability of GM model by linear analysis. The
system (1.1) subject to Neumann boundary conditions (zero flux) is considered as:

∂u
∂n

=0=
∂v
∂n

on ∂Ω,

with n being the unit outward normal vector of the boundary. Zero flux boundary condi-
tions imply that the system is self-organization with no external input. The steady state
(u∞,v∞) of the system (1.1) with function f and g in Eq. (1.2) is given

u∞ =
r+ν

µ
and v∞ =

r(r+ν)2

νµ2 , (2.1)

which can be obtained by solving f (u∞,v∞) = 0 and g(u∞,v∞) = 0. In Eq. (1.2), we set
the bifurcation parameter as µ and treat parameters ν and r as constants. When the other
parameters are fixed, the Turing instability appears when µ is larger than some critical
value. In the following, we will study conditions for Turing instability by the method
in [7].

The Turing instability, also known as diffusion-driven instability, means the situation
where the solution is stable in the absence of diffusion, but unstable in the presence of
diffusion. Conditions for Turing instability can be analysed by studying the behaviors
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of the system with a small perturbation introduced to the steady state as ũ=u−u∞ and
ṽ=v−v∞. Without considering diffusion terms, by the Taylor expansions of functions f
and g at (u∞,v∞), we obtain

(
ũt
ṽt

)
=A

(
ũ
ṽ

)
with A=

(
fu fv
gu gv

)∣∣∣∣
(u∞,v∞)

=


µ(ν−r)

r+ν
− ν2µ2

r(ν+r)2

2r(ν+r)
µ

−ν

,

where ũt represent the derivative of ũ to t and fu is the derivative of function f to u.
Similar expressions are used for ṽt, fv, gu and gv. The system is stable if and only if all
eigenvalues have negative real part (Re(λi)< 0, i = 1,2) with λ computing by solving
|A−λI|=0 as

λ=
Tr(A)±

√
(Tr(A)−4|A|)

2
.

Therefore, linearly stability is guaranteed by two conditions:

Tr(A)= fu+gv =
µ(ν−r)

r+ν
−ν<0, (2.2a)

|A|= fugv− fvgu =−ν
µ(ν−r)

r+ν
+

2ν2µ

(ν+r)
>0. (2.2b)

After reconsidering the diffusion term, the reaction-diffusion system becomes(
ũt
ṽt

)
=A

(
ũ
ṽ

)
+D∇2

(
ũ
ṽ

)
with D=

(
Du 0
0 Dv

)
, (2.3)

whose general solutions is
ũ=∑

k
Ekeλ(k)tuk(x), (2.4)

with Ek being the Fourier coefficients of the initial condition and uk being the eigenfunc-
tion of ∆uk+k2uk = 0 with zero flux boundary condition. For example, in the rectangle
domain Ω=: [−p,p]×[−q,q], solutions become:

ũ=∑
m,n

Em,neλm,nt cos
(mπx

p

)
cos
(nπy

q

)
.

The same argument can be used to obtain the solution for ṽ. The eigenvalues can be got
by solving following characteristic equation

λ2+
(
(Du+Dv)k2−Tr(A)

)
λ+h(k2)=0, (2.5)

with h(k2) = DuDvk4−(Dugv+Dv fu)k2+|A| and pattern formations occur when
Re{λ(k)}> 0 for some k 6= 0. Combining the conditions in (2.2a) and (2.2b), the eigen-
value with positive real part can be obtained when h(k2)< 0. This can be ensured by
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following two conditions

Dugv+Dv fu >0, (2.6a)

(Dugv+Dv fu)
2>4DuDv|A|. (2.6b)

The condition in Eq. (2.6b) is to make the minimum value of h(k2) to be negative.
Combining conditions in Eqs. (2.2a), (2.2b), (2.6a), and (2.6b), we can compute the

critical value of µ in our model is

µT =
dν
(
(3ν+r)(ν+r)+2(ν+r)

√
ν(2ν−r)

)
(ν−r)2 . (2.7)

3 The Meshless methods for pattern formations

In order to study pattern formations as the bifurcation parameter changes, an iterative
numerical scheme is needed. In Eq. (1.1), an second order semi-implicit backward differ-
ence formula (SBDF2) [37] is employed to deal with the time as

3un+1−4un+un−1

2∆t
=Du∆un+1+2 f (un,vn)− f (un−1,vn−1),

3vn+1−4vn+vn−1

2∆t
=Dv∆vn+1+2g(un,vn)−g(un−1,vn−1),

where ∆t is time step, un and vn are concentration of u and v at time t = n∆t. After
simplifying, we obtain

3
2

un+1−∆tDu∆un+1=2∆t f (un,vn)−∆t f (un−1,vn−1)+2un− 1
2

un−1,

3
2

vn+1−∆tDv∆vn+1=2∆tg(un,vn)−∆tg(un−1,vn−1)+2vn− 1
2

vn−1.
(3.1)

From Eq. (3.1), concentration of u and v at time (n+1)∆t can be evaluated by using their
values at time n∆t and (n−1)∆t.

For the spatial discretization, we use the Kansa method. Let Z={z1,··· ,zN} be a set of
discrete trial centers in domain Ω and Φ(·,·) be a radial basis function. The concentration
function un+1 can be approximated as

un+1=
N

∑
i=1

λiΦ(·,zi), (3.2)

with unknown coefficients Λ=[λ1,··· ,λN ]
T. In the domain Ω, from Eq. (3.1), strong form

collocation conditions are imposed as

N

∑
i=1

λi

(
3
2

Ni

∑
j=1

Φ(zj,zi)−∆tDu

Ni

∑
j=1

∆Φ(zj,zi)

)
=h(zj) for zj∈Ω,
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where
h(zj)=2∆t f (un

j ,vn
j )−∆t f (un−1

j ,vn−1
j )+2un

j −
1
2

un−1
j

with un
j denotes concentration of u at zj and t=n∆t. On the boundary, zero flux boundary

conditions are imposed as

∂un+1

∂n
=

N

∑
i=1

λi

Nb

∑
j=1

∂Φ(zj,zi)

∂n
=0 for zj∈∂Ω.

Combined collocation conditions in the domain and on the boundary, unknown coeffi-
cients Λ for un+1 can be obtained by solving following matrix equation

2
3

Φ(Zi,Z)−∆tDu∆Φ(Zi,Z)

∂Φ(Zb,Z)
∂n

Λ=

[
h(Zi)

0

]
, (3.3)

with Z=Zi∪Zb. After finding coefficients Λ, the concentration value un+1 in the domain
Ω is given by Eq. (3.2).

Since the Kansa method in Eq. (3.3) for the spatially discretization is meshless, it can
be applied to irregular domains. We will mainly consider irregular domain shapes in our
simulation.

4 Complex pattern formations by the spatial varying parameters

The Whittle-Matern-Sobolev kernels have the advantage that the stability and conver-
gence of the unsymmetric meshless collocation methods for elliptic PDEs by the kernel
had be proved in the papers [12,27]. Therefore, for all tested examples, the scaled Whittle-
Matárn-Sobolev kernel

Φm(x)=:‖cx‖m−d/2
2 Km−d/2(‖cx‖2) for x∈Rd,

is used where Kν is the Bessel functions of the second kind and c is the scale factor. The
time step is fixed as ∆t=0.01.

4.1 Convergence and stability of the numerical method

In order to show the efficiency of our method to solving the Turing models, instead of
GM model, we use a model for convergence test based on Brusselator as in [15, Example
1]. With system equations in Eq. (1.1), the reaction functions f (u,v) and g(u,v) in the
Brusselator model have representations

f (u,v)=B+u2v−(A+1)u, g(u,v)=Au−u2v.
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The parameters are set as Dv =1, A=1, B=0.5, Du =1. We solve the problem in the unit
square domain Ω=[0,1]2 with the exact solutions as

u∗=cos(t)cos(2πx)cos(πy), v∗=cos(t)cos(πx)cos(2πy).

The initial conditions are generated from the exact solutions as:

u(x,y,0)=cos(2πx)cos(πy), v(x,y,0)=cos(πx)cos(2πy).

In order to ensure the exact solutions of the system, instead of the original functions
f (u,v), g(u,v), we construct the new reaction diffusion functions F(u,v), G(u,v) as

F(u,v)= f̃ (x,y,t)+ f (u,v), G(u,v)= g̃(x,y,t)+g(u,v),

with

f̃ (x,y,t)=
∂u∗

∂t
−Du4u∗− f (u∗,v∗), g̃(x,y,t)=

∂v∗

∂t
−Dv4v∗−g(u∗,v∗).

The Neumann boundary conditions are imposed on the boundary. We compute the
L2(Ω) error for numerical solutions for the fixed time T as

eh =
√

e2
h,u+e2

h,v

with

eh,u =‖un−u∗‖L2≈ 1
N

√√√√ N

∑
n=1

(un
i −u∗i )

2, eh,v≈
1
N

√√√√ N

∑
n=1

(vn
i −v∗i )

2,

with N being the number of evaluation points in the domain.
With fixed kernel smoothness m= 6, final time T = 1 and time step ∆t= 0.01, Fig. 1

shows the numerical results under different RBF scaler parameters c. It can be seen that
small scaler parameter c = 1 results in the smallest numerical errors. However, it also
leads the largest condition number of the collocation matrix in Eq. (3.3) and cannot obtain
the right numerical solution for the cases nZ > 250. For large scale parameter c= 10, we
have the smallest condition number and the largest L2(Ω) error. Therefore, we use scaler
parameter c=5 in the following to balance the condition number of the collocation matrix
and the accuracy of our scheme.

Next, we consider the convergence behaviors and stability of our method. By fixing
c= 5 and time step ∆t= 0.01, Fig. 2(a) shows the convergence of the solution. For fixed
kernel smoothness, numerical solution converges to exact solution as the discrete points
increase. What’s more, higher accuracy and convergence rate can be obatined by using
higher kernel smoomthness m. Under uniformly distributed discrete set with nZ = 312,
Fig. 2(b) shows the L2(Ω) error as time t increase. It can be seen again that higher kernel
smoothness leads to higher accuray solutions for fixed t. For all tested m, the numerical
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Figure 1: For the Brusselator model in the unit square domain with zero flux boundary condition, when use
kernel smoothness m=6, final time T=1 and time step ∆t=0.01, under different RBF scaler parameters c, (a)
the condition number of the collocation matrix; (b) the L2(Ω) error of the numerical solution.

errors are monotone, which is evidence that our method is stable. To show the robust-
ness of our method, we apply the halton points in the domain and regular points on the
bundary. Fig. 2(c) shows the distribution of points for nZ =212 and Fig. 2(d) shows that
we can have convergent solutions for different kernel smoothness under the irregularly
distributed points.

The model to test the convergence of our sheme in the above was also considered
in [15, Example 1]. The ADI extrapolated Crank-Nicolson orthogonal spline collocation
method was used to solve the model in [15]. Under same discrete sets, A, B, Du and Dv,
Tables 1 and 2 show the L2(Ω) error and convergence rate of the solution for c=5, ∆t=
0.01, T=1. The convergence rate is computed as

Rate=
log(eh1 /eh2)

log(h1/h2)
.

In [15, Example 1], the order of convergence rate to discrete sets isO(hr+1) in L2(Ω) error
with r being the degree of polynomial used. From Table 1, although the accuracy of our
method at m=6 is not higher than results in [15, Example 1] at r=3, similar convergence
rates are obtained. From Table 2, the convergence rates of our method at m=8 are almost
two order higher than in [15, Example 1] at r = 5. This means that the accuray of the
numerical solutions may same with the method in [15] as discrete points increase. For
both cases, we can see that more CPUtime used as the increase of discrete points.
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Figure 2: For the Brusselator model in the unit square domain with zero flux boundary condition, when use
RBF scale c= 5 and time step ∆t= 0.01, under different kernel smoothness, (a) the convergence behavior of
the numerical solution with final time T = 1, (b) the L2(Ω) error as time increase with nZ = 312, (c) halton

points in the domain and uniformly distributed points on the boundary with nZ=212 (d) convergence behavior
of numerical solution by irregular points.

4.2 Pattern formations for spatially constant bifurication parameter

In this part, we study patterns for spatially fixed µ. The unit square domain [0,1]×[0,1]
is firstly considered. For the Kansa method, we use 402 uniformly distributed points
in Ω. when we fix parameter as Dv = 0.27, ν = 100.0, r = 0.001, Du = dDv, d = 0.0035,
by the Turing instability conditions in (2.2a), (2.2b), (2.6a) and (2.6b), the critical value
of bifurcation parameter µ to ensure pattern formations is 2.04. In the system (1.1), the
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Table 1: CPUtime, L2(Ω) errors and convergence rates comparsion with [15, Example 1] at ∆t=0.01, T=1,
m=6.

nZ eh,u CPUtime Rate eh1 (r=3 [15]) Rate
102 1.20∗10−3 0.0132 0.6∗10−4

152 2.42∗10−4 0.0509 4.01 0.13∗10−4 4.01
202 7.16∗10−5 0.0865 4.22 0.42∗10−5 4.00

Table 2: CPUtime, L2(Ω) errors and convergence rates comparsion with [15, Example 1] at ∆t=0.01, T=1,
m=8.

nZ eh,u CPUtime Rate eh1 (r=5 [15]) Rate
102 2.46∗10−4 0.0114 0.81∗10−6

152 1.02∗10−5 0.0469 7.89 0.71∗10−7 6.00
202 9.82∗10−7 0.0882 8.19 0.12∗10−7 6.00

initial conditions are set as

u(0,x)=u∞+0.01ξ (4.1)

with ξ denoting a uniform random number in [−1,1] and u∞ being spatially steady state.
We show patterns at µ∈{2.04,2.05,2.15,2.4,3} in Fig. 3 under two different random per-
turbations in Eq. (4.1) to study sensitivity of patterns to initial conditions. From Figs. 3(a)-
(d), concentrations of u keep at steady state in domain for µ= 2.04 and patterns appear
for µ> 2.04, which is consistent with Turing instability analysis in Section 2. Numerical
experiments show that strips are formed for µ∈ [2.1,2.3]. Figs. 3(e) and (f) show stable
states for µ= 2.15 at final time T = 3000. When µ takes any value between 2.3 and 2.5,
bistable patterns are formed in which both striped and spotty patterns are possible states.
Figs. 3(g) and (h) show results for µ=2.4 at T=3000. For µ>2.5, spots are formed with
their size becoming smaller as µ increasing. Figs. 3(i) and (g) are the resulting patterns
when µ= 3. For any fixed value µ, the same type but different patterns are formed by
Kansa method under different initial conditions from Fig. 3, for instance, the direction of
strips for µ=2.15, the position of spots and strips for µ=2.4, locations of spots for µ=3.

From [10], pattern formations are sensitive to domain shapes for some Turing sys-
tems. Since we aim to simulate complicated patterns on irregular domains, it is vital to
investigate effect of domain shapes to pattern transition in the GM model. Specifically, we
consider the peanut shape domain Ω1 defined in Eq. (A.1) with similar curve on fish and
the asterisk shape domain Ω2 defined in Eq. (A.2) with its boundary similar to octopus.
For the domain Ω1, we use Ni = 884 discrete points in the domain and Nb = 222 equally
spaced discrete points on the boundary. Uniformly distributed Ni = 969 and Nb = 260
points are used in the domain Ω2 and on the boundary respectively. Fig. 4 shows pattern
formations for µ ∈ {2.04,2.05,2.15,2.4,3} of these two domains. We can see almost the
same behavior as what happened in the square domain. Therefore, domain shapes do
not have detectable influence on pattern transitions in the GM model.
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(a) µ=2.04, T=400 (b) µ=2.04, T=400

(c) µ=2.05, T=3000 (d) µ=2.05, T=3000

(e) µ=2.15, T=3000 (f) µ=2.15, T=3000

(g) µ=2.4, T=1000 (h) µ=2.4, T=1000

(i) µ=3, T=400 (j) µ=3, T=400
Kansa method 1 Kansa method 2

Figure 3: Pattern transition in unit square domain with dt=0.01, ν=100.0, r=0.001, D1 =dD2 (d=0.0035),
D2 =0.27 and µ∈{2.04,2.05,2.15,2.4,3} by the Kansa method under two initial conditions
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µ=2.04, T=400 µ=2.04, T=10000

µ=2.05, T=3000 µ=2.05, T=5000

µ=2.15, T=3000 µ=2.15, T=3000

µ=2.4, T=3000 µ=2.4, T=3000

µ=3, T=400 µ=3, T=400

Figure 4: Pattern formations in Ω1 and Ω2 defined in Appendix when ∆t=0.01, ν=100.0, r=0.001, D1=dD2
(d=0.0035), D2=0.27 and µ∈{2.04,2.05,2.15,2.4,3} with Ni=884, Nb=222 points for Ω1 and Ni=884,Nb=969
points for Ω2
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(a) (b)

Figure 5: (a): frontosa fish [1] and (b): pufferfish [2].

4.3 Mixed patterns of steady state, strips and spots

Some real-life fishes have mixed patterns of steady state, spots and strips. From Fig. 5(a),
the frontosa fish has vertical strips on its body and keep steady state on its tail. The
sharpnose pufferfish possess both strips and spots on its body from Fig. 5(b). Before
considering complicated fish-shape domains, we first try to generate similar patterns on
Ω1 and Ω2. Mixed patterns can be generated by setting µ as the characteristic function

µ(x,y)=

{
µ1 for (x,y)∈P1,
µ2 for (x,y)∈P2 : Ω\P1,

(4.2)

where µ1 and µ2 are values corresponding to steady state, strip, or spot pattern from Sec-
tion 4.2. When µ1 and µ2 takes values corresponding to steady state and strips, Figs. 6(a)
and (c) show that expected mixed patterns from steady state to vertical strips are gener-
ated. If we set µ1 for spots and µ2 for strips, from Figs. 6(b) and (d), we can have mixed
patterns of horizontal strips and spots. We conclude that mixed patterns can be generated
when µ takes as characteristic functions.

Next, we try to set µ as in Eq. (4.2) to generate patterns in frontosa fishes and sharp-
nose pufferfish in Fig. 5. Domains of these two fishes are constructed as Ω3 in Eqs. (A.3a)-
(A.3b) for frontosa fishes and Ω4 in Eq. (A.4a)-(A.4b) for sharpnose pufferfish as in the
Appendix. Uniformly distributed Ni =1743 and Nb =301 discrete points are used in the
domain and on the boundary of Ω3. Similar patterns with fronsta fishes are formed in
Fig. 7(a) with µ1 and µ2 taking same values as in Fig. 6(a) and (c). Fig. 7(b) is the profile
of the parameter µ in Ω3. For sharpnose pufferfishes, we use equally spaced trial centers
Ni =1746 and Nb =218 in Ω4. Patterns of sharpnose pufferfish in Fig. 7(c) are formed by
using same setting for µ1 and µ2 as in Figs. 6(b) and (d). Fig. 7(d) plot spatially changed
µ used to generate the patterns.

Definitions of subdomain P1, P2 and specified values of µ1, µ2 for each Fig. in this part
are shown in Table 3.
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(a) T=1000 (b) T=1000

(c) T=1000 (d) T=1000

Figure 6: Pattern formations by ∆t=0.01, ν=100.0, r=0.001, D1 =dD2 (d=0.0035), D2 =0.27 and µ as the
scharacteristic function in Eq. (4.2) with µ1, µ1, P1, P2 as in the Table 3.

4.4 Patterns of varying size spots

From Fig. 8(a), patterns of the stingary are spots with different size both on body and tail.
In this part, we focus on construct this kind of patterns.

We first generate varying size spots on some simple domains. In [35], by the finite
difference method, patterns with varying size spots can be formed by changing µ sinu-
soidally in the square domain as

µ(x,y)= p
(
1+0.5cos(qπx)cos(qπy)

)
for (x,y)∈Ω, (4.3)

with p and q are two constants which can be used to adjust size of spots. Here, we use
the same strategy to generate patterns on different domains. For domain Ω1 and Ω2,
Fig. 9 shows our simulation results when p=3 and q=3.5 in Eq. (4.3). Patterns with two
kinds different size spots are formed on both domains. It is once again observed that the
domain shape has little influence to patterns.

We then apply µ in the Eq. (4.3) to construct patterns in a stingray-shape domain Ω5
defined in Eq. (A.5a)-(A.5b) from Appendix. We use Ni = 2155 uniformly distributed
points in the domain and Nb = 241 discrete points on the boundary. Based on different
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(a) T=1000 (b)

(c) T=400 (d)

Figure 7: Pattern simulations of frontosa and sharpnose pufferfishes with ∆t=0.01, ν=100.0, r=0.001, D1=dD2
(d=0.0035), D2 =0.27 and µ as characteristic functions in Eq. (4.2) with µ1, µ2, P1, P2 as in the Table 3.

kinds spot patterns observed from stingray in Fig. 8(a), the domain Ω5 is divided into
three patches

P1 :
{√

x2+y2≤0.6
}

, P2 : Ω∩{x≤−0.94}, P3 : Ω5\(P1∪P2).

We use different formulas of µ on P1, P2 and P3 as

µ(x,y)=


2.5
(
1+0.5cos(3.5πx)cos(3.5πy)

)
for (x,y)∈P1,

2.5
(
1+0.5cos(2.5πx)cos(2.5πy)

)
for (x,y)∈P2,

3.0 for (x,y)∈P3.
(4.4)

Fig. 10(a) plot the pattern of stingray with final time T = 500 and values of bifurcation
parameter µ used in Ω5 is plotted in Fig. 10(b). It can be seen patterns of two different
spots formed on P1 and P2. For subdomain P3, smallest equally sized spots are generated
since constant µ was used.
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(a) (b)

Figure 8: (a): stingray [3] and (b): zebrafish [4].

Figure 9: Pattern formation at T=400 when dt=0.01, ν=100.0, r=0.001, D1 =dD2 (d=0.0035), D2 =0.27
and µ=3.0(1+0.5cos(3.5πx)cos(3.5πy)).

4.5 Strips along fixed direction

Based on findings in Section 4.2, strip patterns can be formed with µ∈ [2.1,2.3]. How-
ever, the direction of strips change with the initial conditions and cannot be controlled.
Yet, some animal patterns in nature are going along some fixed directions. For example,
patterns on zebrafishes are straight strips from head to tail in Fig. 8(b). In this part, we
provide two methods to generate such patterns.

In the first case, straight strips are formed with a characteristic function µ as in
Eq. (4.2) which we used to simulate patterns on frontosa fishes in Fig. 7. In order to
obtain strips along horizontal direction, we take µ1 and µ2 with both corresponding to
strips in Eq. (4.2). Figs. 11(a), (c) and (e) show resulting patterns. We can observe that strip
patterns along the x axis were formed in the square domain. Horizontal patterns were
also formed in Ω1 and Ω2 although some irregular patterns near boundary appeared. To
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(a) (b)

Figure 10: Pattern simulation of stingray at T=500 with ∆t=0.01, ν=100.0, r=0.001, D1=dD2 (d=0.0035),
D2 = 0.27 and the bifurcation parameter takes as µ = 2.5(1+0.5cos(3.5πx)cos(3.5πy)) for

√
x2+y2 < 0.6,

µ=2.5(1+0.5cos(2.5πx)cos(2.5πy)) for x<−0.94, and µ=3 for elsewhere.

further construct patterns on zebrafishes, we apply µ as in Eq. (4.2) in Ω3 with values
of µi, i = 1,2 corresponding to strips. Fig. 12(b) plots parameter setting in domain and
the resulting simulation is shown in Fig. 12(a). Desired three horizonal strips are formed
which is same as patterns on zebrafish in Fig. 8(b).

Numerically results show that strips along the x axis can be formed when µ changes
linearly along the y axis from µ1 to µ2 with both values corresponding to strip patterns.
However, strips are not straight for the influence of domain shapes. Therefore, in our
second method, we divide the domain into two patches and apply constant and linearly
changing µ in these two patches respectively as

µ=

 µ1+
µ2−µ1

y2−y1
(y−y1) for (x,y)∈P1,

µ2 for (x,y)∈P2.
(4.5)

When we use µ1 and µ2 in Eq. (4.5) both corresponds to strips, Figs. 11(b), (d) and (f)
show simulations in the square domain, Ω1 and Ω2. It can be seen straight strip patterns
along the x−axis were formed in most region of the domain except small perturbation
near boundary of Ω2 and Ω3. With same values µ1 and µ2 used in different patches of Ω3
as in Fig. 12(d), we can construct strips in the Fig. 12(c) which is similar with patterns on
zebrafishes.

Definitions of sub-domains P1, P2 and specific values of parameters in Eq. (4.2) and
Eq. (4.5) for construct patterns in this part are shown in Table 4.

4.6 Circular and semicircular patterns

In this part, we aim to construct circular strips centered with an circle on mimic octopus
in Fig. 13(b) and semicircular strips centered with an ellipse on angelfish in Fig. 13(a).
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(a) (b)

(c) (d)

(e) (f)

T=500 T=1000

Figure 11: Pattern formations with ∆t=0.01, ν=100.0, r=0.001, D1=dD2 (d=0.0035), D2=0.27 and spatially
changed parameters µ as step functions in Eq. (4.2) and function as in Eq. (4.5) with parameters values shown
in Table 4.

In [35], when the domain are divided into two patches with a small rectangle as
boundary, circular strips can be generated by finite difference method. Motivated by
this, we use a similar strategy to built circular and semicircular strips. Instead of using
rectangles as boundaries of two patches, we use a small ellipse and spatially changed
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(a) T=500 (b)

(c) (d) T=1000

Figure 12: Pattern simulations of zebrafishes with Ni=1743, NZb=276, ∆t=0.01, ν=100.0, r=0.001, D1=dD2
(d=0.0035), D2=0.27 and the bifurcation parameter takes as : (a) step functions Eq. (4.2), (c) function as in
Eq. (4.5) with parameters values as in Table 4.

(a) (b)

Figure 13: (a): angelfish [5] and (b): mimic octopus [6].

parameter µ set as

µ(x,y)=

 µ1 for P1=:
{
(x,y)

∣∣∣( x−xc

a

)2
+
(y−yc

b

)2
≤1, (x,y)∈Ω

}
,

µ2 for (x,y)∈P2 : Ω\P1.
(4.6)
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(a) (b)

(c) (d)

Figure 14: Patterns with ∆t=0.01, ν=100.0, r=0.001, D1=dD2 (d=0.0035), D2=0.27 and µ as in Eq. (4.6)
with unknown parameters in Table 5.

When the values of a and b are equal in P1 of Eq. (4.6), boundaries of these two patches
become a circle. We first consider this case. Circular and semicircular strips centered
with a spot can be formed if µ1 and µ2 take values corresponding to steady state and
strips. Fig. 14(a) shows that circular strips with spots in the center and near boundary
are formed in the unit square domain. Semicircular strips centered with a spot formed in
Fig. 14(c) for Ω1. When applying similar setting of µ to Ω2, Fig. 15(a) shows that strips on
eight arms and circular strips centered with a spot on bod are formed, which is similar to
patterns on mimic octopus in Fig. 13(b). Fig. 15(b) plot spatially changed µ used in this
simulation.

Lastly, we consider patterns by using an ellipse as boundary of two patches. Values
of µ1 for steady state and µ2 for strips are also used in this case. From Fig. 14(b) and (d),
circular strips centered at an ellipse are formed for the square domain and semicircular
strips centered with an ellipse formed for Ω2, respectively. We use this setting of µ to
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(a) T=500 (b)

Figure 15: Simulations of patterns on minic octopus when Ni=969, Nb=260, ∆t=0.01, ν=100.0, r=0.001, D1=
dD2 (d=0.0035), D2 =0.27, µ=2.0 for

√
x2+y2 <0.1 and µ=2.2 elsewhere.

(a) T=1000 (b)

Figure 16: Pattern simulations of angelfishes with Ni = 1715, Nb = 207, ∆t= 0.01, ν= 100.0, r= 0.001, D1 =
dD2 (d=0.0035), D2 =0.27, µ=1.8 for ( x+0.6

0.1 )2+(
y

0.01 )
2 <1 and µ=2.2 elsewhere.

construct patterns on angelfishes. The domain Ω6 defined in Eqs. (A.6a)-(A.6b) in Ap-
pendix. Uniformly distributed discrete sets with Ni = 1715 and Nb = 207 in the domain
and on boundary are used. When we use parameter µ in Fig. 16(b), semicircular strips
centered at a small ellipse close to tail are formed in Fig. 16(a) which is similar to patterns
on angelfishes (Fig. 13(a)).

Specific values of xc, yc, a and b in Eq. (4.6) used for simulations desired patterns in
this part are shown in Table 5.

5 Conclusions

We studied Turing instability of Gierer-Meinhardt activator-inhibitor models by a linear
analysis and evaluate the critical value of bifurcation parameter analytically. Combining
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the SBDF2 method for time discretization and the meshless Kansa method for spatial
discretization, pattern transition were numerically simulated on irregular domains. We
also construct complex patterns appeared in nature. Varying size spots patterns can be
formed by changed parameter sinusoidally. Mixed patterns of steady state, strips or
spots are formed by some characteristic functions of bifurcation parameter on different
patches of domain. Circular patterns can be built by the step function of parameter with
boundaries of different patches set as circles or ellipses. We also constructed different
animal shape domains and simulated patterns appeared in reality.

Appendix

A.1 Definitions of irregular domains

Beside the unit square domain, peanut shape domain, asterisk domain and some animal
shape domains also used in our numerical simulation. We state definitions of them here.

1. The peanut shape domain defined as

Ω1=:

{
(r,θ)

∣∣∣∣r= 2
5

(
3
2
+cos(2θ)

)
, θ∈ [0,2π]

}
. (A.1)

2. The asterisk shape domain defined as

Ω2=:

{
(r,θ)

∣∣∣∣r= 2
5

(
3
2
+cos(4θ)2

)
, θ∈ [0,2π]

}
. (A.2)

3. Domain Ω3 =: Ω1
3∪Ω2

3 to simulate patterns on frontosa fish and zebrafishes is con-
structed as

Ω1
3=
{
(x,y)|−0.5+0.61(x+1.5)≤y≤0.5−0.61(x+1.5),x∈ [−1.5,−0.94]

}
, (A.3a)

Ω2
3=

{
(x,y)

∣∣∣x2+
y2

0.52 =1, x∈ [−0.94,1], y∈ [0.5,5]
}

. (A.3b)

4. For sharpnose pufferfish, triangles and ellipse are used to built domain Ω4 =: Ω1
4∪

Ω2
4 as

Ω1
4=

{
(x,y)

∣∣∣∣x2+
y2

0.62 =1, x∈ [−0.74,1], y∈ [−0.6,6]

}
, (A.4a)

Ω2
4=
{
(x,y)|−0.37(x+1.8)≤y≤0.37(x+1.8), x∈ [−1.8,−0.74]

}
. (A.4b)
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5. Domain Ω5=:Ω1
5∪Ω2

5 used to simulate patterns on stingray in Fig. 8 is constructed
as

Ω1
5=

{
(x,y)

∣∣∣ x2+
y2

0.82 =1, x∈ [−0.94,1], y∈ [−0.8,8]
}

, (A.5a)

Ω2
5=
{
(x,y)

∣∣ −0.21(x+2.2)≤y≤0.21(x+2.2), x∈ [−2.2,−0.94]
}

. (A.5b)

6. Domain Ω6=: Ω1
6∪Ω2

6 used to simulate patterns on anglefishes is defined as

Ω1
6=

{
(x,y)

∣∣∣ x2+
y2

0.72 =1, x∈ [−0.94,1], y∈ [−0.7,0.7]
}

, (A.6a)

Ω2
6=
{
(x,y)

∣∣ 0.47−0.65(x+1.3)≤y≤0.47+0.95(x+1.3), x∈ [−1.3,−0.94]
}

. (A.6b)

A.2 Parameter settings

In order to simulate patterns appeared in nature, we provide different settings for spa-
tially changed bifurcation parameters, such as characteristic functions or trigonometric
functions in Section 4. In some cases, we also need to divided domains into different
patches and used different values of µ on each patch. In this part, we show specific
values of parameters and definitions of different patches of domains used in numerical
simulations. Table 3 is parameter values used for mixed patterns of steady state, strips
and spots in Section 4.3. Table 4 is parameter values used for strips along fixed direction
in Section 4.5. Table 5 is parameter values used for circular and semicircular strips in
Section 4.6.

Table 3: Parameter values for mixed patterns of steady state, strips and spots in Section 4.3.

Fig. µ1 µ2 P1 P2
Figs. 6(a), (c) 1.8 2.1 Ωi∩{x≤0},i={1,2} Ωi/P1
Figs. 6(b), (d) 2.6 2.1 Ωi∩{y≤0},i={1,2} Ωi/P1

Fig. 7(a) 1.8 2.1 Ω1
3 in Eq. (A.3a) Ω2

3 in Eq. (A.3b)
Fig. 7(c) 2.6 2.1 Ω4∩{y≤0.2} Ω4/P1

Table 4: Parameter values for strips along fixed direction in Section 4.5.

Fig. µ1 µ2 P1 P2 y1 y2
Fig. 11(a) 2.1 2.2 [0,1]×[0.5,1] [0,1]×[0,0.5]
Fig. 11(b) 2.1 2.3 [0,1]×[0,0.9] [0,1]×[0.9,1] 0 0.9

Figs. 11(c), (e) 2.1 2.2 Ωi∩{|y|≤0.3},
i={1,2} Ωi\P1

Fig. 11(d) 2.1 2.3 Ω1∩{y≤0.35} Ω1\P1 −0.5 0.35
Fig. 11(f) 2.1 2.3 Ω2∩{y≤0.3} Ω2\P1 −1 0.3
Fig. 12(a) 2.1 2.2 Ω3∩{y≤0.3} Ω3\P1
Fig. 12(c) 2.1 2.3 Ω3∩{y≤0.3} Ω3\P1 −0.5 0.3
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Table 5: Parameter values for circular and semicircular strips in Section 4.6.

Fig. a b xc yc µ1 µ2
Fig. 14(a) 0.05 0.05 0.5 0.5 2.0 2.2
Fig. 14(b) 0.12 0.02 0.5 0.5 1.8 2.2
Fig. 14(c) 0.07 0.07 0 0 2.0 2.3
Fig. 14(d) 0.3 0.05 0 0 1.8 2.2
Fig. 15(a) 0.1 0.1 0 0 2.0 2.2
Fig. 16(a) 0.1 0.01 −0.6 0 1.8 2.2
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