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Abstract

This paper deals with the numerical computation and analysis for Caputo fractional

differential equations (CFDEs). By combining the p-order boundary value methods (B-

VMs) and the m-th Lagrange interpolation, a type of extended BVMs for the CFDEs with

γ-order (0 < γ < 1) Caputo derivatives are derived. The local stability, unique solvability

and convergence of the methods are studied. It is proved under the suitable conditions

that the convergence order of the numerical solutions can arrive at min {p,m− γ + 1}. In

the end, by performing several numerical examples, the computational efficiency, accuracy

and comparability of the methods are further illustrated.
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1. Introduction

In this paper, we consider the following initial value problems of CFDEs

y′(t) = f
(
t, y(t),Ct0D

γ
t y(t)

)
, t ∈ [t0, T ]; y(t0) = y0, (1.1)

where f : [t0, T ]×R
d ×R

d → R
d is a given sufficiently smooth function, y0 ∈ R

d is an assigned

initial value and C
t0D

γ
t y(t) is the γ-order Caputo derivative of the unknown function y(t) defined

by (cf. [30, 32, 36])

C
t0D

γ
t y(t) =

1

Γ(1− γ)

∫ t

t0

y′(v)

(t− v)γ
dv, 0 < γ < 1. (1.2)

The model (1.1) has a wide application in science and technology. For example, in McKee [28]

and McKee & Stokes [29], the diffusion of discrete particles in a turbulent fluid is modeled by

the so-called Basset equation:

y′(t) = f(t, y(t)) + c(t)

∫ t

t0

y′(v)

(t− v)γ
dv + g(t), t ∈ [t0, T ]; y(t0) = y0, (1.3)

where f(t, y(t)), c(t) and g(t) are the assigned functions. An extended Basset equation

y′(t) = f(t, y(t)) +
1

Γ(1− γ)

∫ t

t0

k(t, v, y′(v))

(t− v)γ
dv, t ∈ [t0, T ]; y(t0) = y0, (1.4)
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can be found in Brunner & Tang [7] and Hairer & Maass [14]. Another example is the Babenko’s

model describing the gas pressure in a fluid (cf. [3]) which is given by







∂

∂t

[

V0 g(t/θ) P (t, 0)
M

RT

]

= FD ∂C

∂x

∣
∣
∣
∣
x=0

,

−
√
D ∂C

∂x

∣
∣
∣
∣
x=0

= C
0 D

1/2
t [C(t, 0)− C(0, x)], t ∈ [0, θ],

P (t, 0) = κC(t, 0), P (0, x) = κC(0, x), x ∈ [0,∞),

(1.5)

where V0 is the initial gas volume, θ is the time of the gas compression to zero volume, g(t/θ) is

the function reflecting the change of gas volume with g(0) = 1 and g(1) = 0, M,R,D, F denote

the gas molar weight, universal gas constant, diffusion coefficient of gas in the fluid and contact

surface between the gas and the fluid, respectively, κ is the Henry’s constant, C(t, x) is the

gas concentration and P (t, x) is the unknown gas pressure. The gas temperature T is assumed

to be constant. From the problem (1.5), we can obtain the following initial-value problem for

determining the dimensionless gas pressure p(t) ≡ p(t, x) = P (t,x)
P (0,x) near the contact surface:

d

dt
(g(t)p(t)) + λC

0 D
1/2
t [p(t)− 1] = 0, t ∈ [0, 1]; p(0) = 1. (1.6)

Let y(t) = p(t) − 1, G(t) = g(t)/g′(t) and Ĝ(t) = λ/g′(t). Then (1.6) can be written as a FDE

of the form (1.1):

G(t)y′(t) + Ĝ(t)C0 D
1/2
t y(t) + y(t) = −1, t ∈ [0, 1]; y(0) = 0.

Besides the above real models, with the semi-discrete method for the spatial variable x, which is

also called method of lines, the following fractal mobile/immobile transport models (cf. [26,33]):







a1
∂u(x, t)

∂t
+ a2

C
0 D

γ
t u(x, t) = a3

∂2u(x, t)

∂x2
+ f(x, t), (x, t) ∈ [a, b]× [t0, T ],

u(x, 0) = ϕ0(x), x ∈ [a, b],

u(a, t) = φ1(t), u(b, t) = φ2(t), t ∈ [t0, T ]

can be transformed into (1.1). A detailed description for this approach refers to Example

6.2. Moreover, some other fractional partial differential equations, such as fractional reaction-

subdiffusion equation (cf. [21, 24]), fractional cable equation (cf. [25]) and the equations in

references [30, 32, 36], can also be cast into (1.1) by the method of lines.

In contrast to the classical regular Volterra integro-differential equations, the CFDEs have

the weakly singular factor (t − v)−γ (0 < γ < 1), which leads to the difficulties to obtain the

solutions of the equations. Hence, developing various numerical methods for CFDEs becomes an

important issue. In [28,29], for Basset equation (1.3), McKee and Stokes proposed the product

integration methods based on backward difference interpolation. Subsequently, for the extended

Basset equations (1.4), Brunner and Tang [7] constructed the polynomial spline collocation

methods and Hairer and Maass [14] presented the fractional linear multistep methods. As to

the other related researches for CFDEs, the readers can find them in [22,26,30,32,36] and the

references therein. It should be pointed out that, most of the existed numerical methods for

CFDEs are presented for the regularity problems (see e.g. [8, 22, 27]). However, in general, the

solutions of problems (1.1) have the weak singularity at initial point. Hence, it is necessary

to consider some computational techniques to treat this issue in order to obtain the expected
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accuracy of the solution. For this, several approaches have been proposed. For example,

in [24, 34] the authors used the nonuniform grids to keep errors small near the singularity, and

in [9, 17] the authors employed the correction terms to restore the theoretical accuracy.

In recent years, due to the fact that BVMs and their block schemes have better stability

behavior than the usual linear multistep methods, they have been applied widely to solve

various initial and boundary value problems (see e.g. [1, 2, 4–6, 10–12, 15, 16, 18, 19, 38–44]).

These researches devoted mainly to the regular equations excepting those in Aceto, Magherini

and Novati [1, 2], where the authors extended the generalized Adams methods to solve the

following fractional differential equations:

C
t0D

γ
t y(t) = f (t, y(t)) , t ∈ [t0, T ], 0 < γ < 1; y(t0) = y0. (1.7)

It is remarkable that model (1.7) belongs to integral equations because it does not contain any

derivative. This shows that model (1.7) is different from CFDEs (1.1). In fact, the research for

(1.1) has a greater challenge since it contains both fractional derivative and integer derivative.

As we know, up to now, no result has been presented for the BVMs applied to CFDEs (1.1).

Hence, in the present paper, we will extend the underlying BVMs to solve (1.1).

The paper is organized as follows. In Section 2, we consider the Lagrange interpolation for

γ-order (0 < γ < 1) Caputo derivatives and investigate its local truncation error. In Section 3,

by combining BVMs with the Lagrange interpolation, we derive a class of extended BVMs to

solve (1.1). In Section 4, we analyze the local stability and unique solvability of the extended

BVMs. In Section 5, under the suitable conditions, we prove that the convergence order of the

extended BVMs for (1.1) can arrive at min {p,m− γ + 1}, where p and m are the local order

of the extended BVMs and the degree of the Lagrange interpolation, respectively. In Section

6, some numerical examples are given to illustrate the computational efficiency, accuracy and

comparability of the methods.

2. The Lagrange Interpolation for Caputo Derivatives

Let m and N be two assigned positive integers, y(t) ∈ C(m+1)([t0, T ]), tn = t0 + nh (n =

0, 1, . . . , N) and h = T−t0
N . Define the following sets:

Aij = {a| a ∈ [0, j], a 6= i, a ∈ Z} , Bij = {b| b ∈ [−j, 0], b 6= i− j, b ∈ Z} ,
Cm
ij = {c| c ∈ [j −m, j], c 6= j −m+ i, c ∈ Z} .

For any given positive integer s with s < m, we introduce the following notations:

• µm,s
j,i is the sum of products of all the different combinations of m− s elements in Aij ;

• νm,s
j,i is the sum of products of all the different combinations of m− s elements in Bij ;

• σm,s
j,i is the sum of products of all the different combinations of m− s elements in Cm

ij .

When s = m, we set µm,s
j,i = νm,s

j,i = σm,s
j,i = 1 for all i, j.

In order to construct a class of numerical methods for (1.1) in the subsequent section, we

first consider an approximation to the Caputo derivative at tn. The approximation is divided

into the following two cases:
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(i) When t ∈ [tj−m, tj ] (m < j ≤ n, m < n ≤ N), y(t) can be approximated by the Lagrange

interpolation polynomial of degree m:

Lm,j(t) =

m∑

i=0

y(tj−i)

m∏

l=0,l 6=i

t− tj−l

tj−i − tj−l
,

and thus

1

Γ(1− γ)

∫ tj

tj−m

y′(v)

(tn − v)γ
dv ≈ 1

Γ(1− γ)

∫ tj

tj−m

L′
m,j(v)

(tn − v)γ
dv

=
1

Γ(1− γ)

m∑

i=0

(−1)iy(tj−i)

i!(m− i)!hm

∫ tj

tj−m

(tn − v)−γ





m∏

l=0,l 6=i

(v − tj−l)





′

dv

=
1

Γ(1− γ)







m∑

i=0

(−1)i+1y(tj−i)

i!(m− i)!hm







m∑

s=1

(tn − v)s−γ

s∏

l=1

(l − γ)





m∏

l=0,l 6=i

(v − tj−l)





(s)












∣
∣
∣
∣
∣
∣
∣
∣

tj

tj−m

=
h−γ

Γ(1− γ)

m∑

i=0

ωm
i,j,ny(tj−i),

where

ωm
i,j,n =

(−1)i+1

i!(m− i)!

m∑

s=1







s!
s∏

l=1

(l − γ)
(µm,s

m,i (n− j)
s−γ − νm,s

m,i (n− j +m)
s−γ

)






, 0 ≤ i ≤ m.

(ii) When t ∈ [t0, tj ] (1 ≤ j ≤ m, j ≤ n ≤ N), y(t) can be approximated by Lm,m(t) and

thus

1

Γ(1− γ)

∫ tj

t0

y′(v)

(tn − v)γ
dv ≈ h−γ

Γ(1− γ)

m∑

i=0

̟m
i,j,ny(tm−i),

where

̟m
i,j,n =

(−1)i+1

i!(m− i)!

m∑

s=1







s!
s∏

l=1

(l − γ)
(σm,s

j,i (n− j)
s−γ − νm,s

m,i n
s−γ)






, 0 ≤ i ≤ m.

Let Rn
m be the truncation error of Lagrange interpolation for the Caputo derivative at tn. Then,

when 1 ≤ n ≤ m, we have that

C
t0D

γ
t y(tn) =

1

Γ(1− γ)

∫ tn

t0

y′(v)

(tn − v)γ
dv =

1

Γ(1− γ)

∫ tn

t0

L′
m,m(v)

(tn − v)γ
dv +Rn

m

=
h−γ

Γ(1− γ)

m∑

i=0

̟m
m−i,n,ny(ti) +Rn

m, (2.1)

and, when m < n ≤ N , we have by selecting a positive integer r with m(r + 1) ≥ n that

C
t0D

γ
t y(tn) =

1

Γ(1− γ)

∫ tn

t0

y′(v)

(tn − v)γ
dv
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=
1

Γ(1− γ)

∫ tn−rm

t0

L′
m,m(v)

(tn−v)γ
dv+

1

Γ(1− γ)

r−1∑

j=0

∫ tn−(r−j−1)m

tn−(r−j)m

L′
m,n−(r−j−1)m(v)

(tn−v)γ
dv+Rn

m

=
h−γ

Γ(1− γ)
Λn
n,mΩn,mYn +Rn

m, (2.2)

where Yn = (y(t0), y(t1), · · · , y(tn))
T and

Ωn,m=

















̟m
m,1,n · · · · · · ̟m

0,1,n 0 · · · 0
... · · · · · ·

...
... · · ·

...

̟m
m,m−1,n · · · · · · ̟m

0,m−1,n 0 · · · 0

̟m
m,m,n · · · · · · ̟m

0,m,n 0 · · · 0

0 ωm
m,m+1,n · · · · · · ωm

0,m+1,n

. . .
...

...
. . .

. . .
. . . 0

0 · · · 0 ωm
m,n,n · · · · · · ωm

0,n,n

















n×(n+1)

,

and Λn
n,m denotes the n-th row of matrix

Λn,m =
































1

0 1
...

. . .
. . .

0
. . .

. . .

1
. . .

. . .
. . .

0 1
. . .

. . .
. . .

...
. . .

. . .
. . .

. . .
. . .

0
. . .

. . .
. . .

. . .
. . .

1 0
. . .

. . .
. . .

. . .
. . .

...
. . .

. . .
. . .

. . .
. . .

. . .
. . .

... · · · 1 0 · · · 0 1 0 · · · 0 1
































n×n

,

in which the first column of Λn,m is the vector (1,

m−1
︷ ︸︸ ︷

0, · · · , 0, 1,
m−1

︷ ︸︸ ︷

0, · · · , 0, 1, · · · )T . Write

θmi,n =

{
̟m

m−i,n,n, 0 ≤ i ≤ m, 1 ≤ n ≤ m,

(i+ 1)-th element of vector Λn
n,mΩn,m, 0 ≤ i ≤ n, m < n ≤ N.

Then Eqs. (2.1) and (2.2) can be rewritten as

C
t0D

γ
t y(tn) =







h−γ

Γ(1−γ)

m∑

i=0

θmi,ny(ti) +Rn
m, 1 ≤ n ≤ m,

h−γ

Γ(1−γ)

n∑

i=0

θmi,ny(ti) +Rn
m, m < n ≤ N.

(2.3)

In order to analyze truncation error Rn
m in (2.3), the following lemma is needed.
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Lemma 2.1 (see e.g. [35]). Suppose that y(t) ∈ C(m+1)([t0, T ]). Then the interpolation

Lm,j(t) satisfies for all t ∈ (tj−m, tj) (m ≤ j ≤ N) that

‖y(t)− Lm,j(t)‖∞ ≤ M j
m+1h

m+1, (2.4)

‖y′(t)− L′
m,j(t)‖∞ ≤ M j

m+1h
m, (2.5)

where M j
m+1 = max

t∈[tj−m,tj ]
‖y(m+1)(t)‖∞.

We are now in a position to give the estimation of the truncation error Rn
m in (2.3).

Theorem 2.1. Let y(t) ∈ C(m+1)([t0, T ]). Then, there exists a constant c0 > 0 such that

‖Rn
m‖∞ ≤ c0h

m−γ+1, 1 ≤ n ≤ N, 0 < γ < 1.

Proof. In the following, we will perform the proof in two cases. When 1 ≤ n ≤ m, it follows

from (2.1) and Lemma 2.1 that

‖Rn
m‖∞ =

∥
∥
∥
∥

1

Γ(1− γ)

[∫ tn

t0

y′(v)

(tn − v)γ
dv −

∫ tn

t0

L′
m,m(v)

(tn − v)γ
dv

]∥
∥
∥
∥
∞

=

∥
∥
∥
∥
∥

1

Γ(1−γ)

[

y(v)−Lm,m(v)

(tn−v)γ

∣
∣
∣
∣

tn−1

t0

−γ

∫ tn−1

t0

y(v)− Lm,m(v)

(tn − v)γ+1
dv +

∫ tn

tn−1

[y(v)− Lm,m(v)]′

(tn − v)γ
dv

]∥
∥
∥
∥
∥
∞

=

∥
∥
∥
∥
∥

−γ

Γ(1 − γ)

∫ tn−1

t0

y(v)− Lm,m(v)

(tn − v)γ+1
dv +

1

Γ(1− γ)

∫ tn

tn−1

[y(v)− Lm,m(v)]′

(tn − v)γ
dv

∥
∥
∥
∥
∥
∞

≤ γMm
m+1

Γ(1− γ)
hm+1

∣
∣
∣
∣

∫ tn−1

t0

(tn − v)−γ−1 dv

∣
∣
∣
∣
+

Mm
m+1

Γ(1 − γ)
hm

∣
∣
∣
∣
∣

∫ tn

tn−1

(tn − v)−γ dv

∣
∣
∣
∣
∣

≤ Mm
m+1

Γ(1− γ)

(

1 +
1

1− γ

)

hm−γ+1.

When m < n ≤ N , by (2.2) and Lemma 2.1 we have that

‖Rn
m‖∞ =

∥

∥

∥

∥

∥

1

Γ(1−γ)

[

∫ tn

t0

y′(v)

(tn−v)γ
dv−

∫ tn−rm

t0

L′

m,m(v)

(tn−v)γ
dv−

r−1
∑

j=0

∫ tn−(r−j−1)m

tn−(r−j)m

L′

m,n−(r−j−1)m(v)

(tn−v)γ
dv

]∥

∥

∥

∥

∥

∞

=

∥

∥

∥

∥

∥

1

Γ(1−γ)

[

y(v)−Lm,m(v)

(tn−v)γ

∣

∣

∣

∣

tn−rm

t0

−γ

∫ tn−rm

t0

y(v)−Lm,m(v)

(tn−v)γ+1
dv+

r−2
∑

j=0

y(v)−Lm,n−(r−j−1)m(v)

(tn − v)γ

∣

∣

∣

∣

tn−(r−j−1)m

tn−(r−j)m

− γ
r−2
∑

j=0

∫ tn−(r−j−1)m

tn−(r−j)m

y(v)− Lm,n−(r−j−1)m(v)

(tn − v)γ+1
dv +

∫ tn

tn−m

[y(v)− Lm,n(v)]
′

(tn − v)γ
dv

]∥

∥

∥

∥

∥

∞

=

∥

∥

∥

∥

∥

−γ

Γ(1− γ)

∫ tn−rm

t0

y(v)− Lm,m(v)

(tn − v)γ+1
dv +

−γ

Γ(1− γ)

r−2
∑

j=0

∫ tn−(r−j−1)m

tn−(r−j)m

y(v)− Lm,n−(r−j−1)m(v)

(tn − v)γ+1
dv

+
1

Γ(1− γ)

∫ tn

tn−m

[y(v)− Lm,n(v)]
′

(tn − v)γ
dv

∥

∥

∥

∥

∥

∞

≤
γMm

m+1

Γ(1−γ)
hm+1

∣

∣

∣

∣

∫ tn−rm

t0

(tn−v)−γ−1dv

∣

∣

∣

∣

+
γ

Γ(1−γ)
hm+1

∣

∣

∣

∣

∣

r−2
∑

j=0

M
n−(r−j−1)m
m+1

∫ tn−(r−j−1)m

tn−(r−j)m

(tn−v)−γ−1dv

∣

∣

∣

∣

∣

+
Mn

m+1

Γ(1−γ)
hm

∣

∣

∣

∣

∣

∫ tn

tn−m

(tn − v)−γdv

∣

∣

∣

∣

∣
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Table 2.1: Absolute errors and convergence orders of schemes (2.3) for computing C
0 D

γ
t [sin(πt)].

m=1 m=2 m=3

γ h err1(h) p̄1 err2(h) p̄2 err3(h) p̄3
0.25 1/4 7.0241e–2 – 2.6755e–2 – 1.5071e–2 –

1/8 2.4071e–2 1.5450 4.1355e–3 2.6937 1.1982e–3 3.6528

1/16 7.7592e–3 1.6333 6.2175e–4 2.7336 9.4202e–5 3.6690

1/32 2.4595e–3 1.6576 9.2843e–5 2.7435 7.2358e–6 3.7025

0.5 1/4 2.2343e–1 – 9.9015e–2 – 5.5287e–2 –

1/8 8.8408e–2 1.3375 1.8250e–2 2.4397 5.2092e–3 3.4078

1/16 3.2846e–2 1.4285 3.2643e–3 2.4831 4.7478e–4 3.4557

1/32 1.1950e–2 1.4588 5.7926e–4 2.4945 4.2526e–5 3.4809

0.75 1/4 5.5005e–1 – 2.6502e–1 – 1.4931e–1 –

1/8 2.4642e–1 1.1585 5.8219e–2 2.1865 1.6704e–2 3.1600

1/16 1.0622e–1 1.2140 1.2381e–2 2.2334 1.7908e–3 3.2216

1/32 4.5201e–2 1.2327 2.6109e–3 2.2455 1.8939e–4 3.2411

≤
Mm+1

Γ(1− γ)

[

1

(rm)γ
+

1

mγ
+

1

(1− γ)mγ−1

]

hm−γ+1,

where Mm+1 = max
t∈[t0,T ]

‖y(m+1)(t)‖∞. Therefore, this completes the proof. �

We have noted that Li et al. [22] also used the m-th Lagrange interpolation to approximate

the γ-order Caputo dervative. When m = 1, their scheme is the same as scheme (2.3), which

is just L1 method (see e.g. [30, 36]). However, when m > 1, they use Lj,j(t) to approximate

y(t) on ∈ [tj−1, tj ] (0 ≤ j ≤ m), which leads to that the approximation can not arrive at the

accuracy of order m− γ+1 on [t0, tj ] unless y
(j)(t0) = 0 (0 ≤ j ≤ m). While, in our approach,

y(t) is approximated by the m-th interpolation Lm,m(t) on [t0, tj ] (1 ≤ j ≤ m), which, together

with Theorem 2.1, implies a high-accuracy numerical approximation for y(t) can be achieved.

This also can be testified by the following numerical example.

Example 2.1. In the following, we use the above two numerical schemes to compute the γ-

order Caputo derivative of function y(t) = sin(πt) on [0, 5]. Let

errm(h) = max
1≤n≤N

|Rn
m|, p̄m = log2

[
errm(h)

errm(h/2)

]

,

to characterize the absolute errors and convergence orders of the schemes, respectively. Taking

h = 1/2i (i = 2, 3, 4, 5) and m = 1, 2, 3, respectively, and then applying scheme (2.3) and Li

et al.’s scheme (7) in [22] to compute C
0 D

γ
t [sin(πt)] (γ = 0.25, 0.5, 0.75) on [0, 5]. The derived

numerical results are displayed in Tables 2.1-2.2, which show that, when m = 1, the both

schemes have the same accuracy under the same stepsize; and when m > 1, scheme (2.3) can

arrive at the convergence order m − γ + 1, but Li et al’s scheme doesn’t arrive at the desired

order m− γ + 1.

3. The Extended BVMs for CFDEs

In the recent years, BVMs have been used successfully to solve various differential equations

(see e.g. [1, 2, 4–6, 10–12, 15, 16, 18, 19, 38, 39, 41–43]). A detailed introduction on BVMs for
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Table 2.2: Absolute errors and convergence orders of Li et al’s scheme for computing C
0 D

γ
t [sin(πt)].

m=1 m=2 m=3

γ h err1(h) p̄1 err2(h) p̄2 err3(h) p̄3
0.25 1/4 7.0241e–2 – 3.0561e–2 – 2.9155e–2 –

1/8 2.4071e–2 1.5450 5.1022e–3 2.5825 4.5778e–3 2.6710

1/16 7.7592e–3 1.6333 8.2352e–4 2.6312 7.3963e–4 2.6298

1/32 2.4595e–3 1.6576 1.3124e–4 2.6496 1.1220e–4 2.7208

0.5 1/4 2.2343e–1 – 1.0680e–1 – 1.0365e–1 –

1/8 8.8408e–2 1.3375 2.0414e–2 2.3873 1.9073e–2 2.4421

1/16 3.2846e–2 1.4285 3.7627e–3 2.4397 3.5217e–3 2.4372

1/32 1.1950e–2 1.4588 6.8363e–4 2.4605 6.3636e–4 2.4684

0.75 1/4 5.5005e–1 – 2.7312e–1 – 2.6966e–1 –

1/8 2.4642e–1 1.1585 6.0728e–2 2.1691 5.9183e–2 2.1879

1/16 1.0622e–1 1.2140 1.3031e–2 2.2204 1.2575e–2 2.2346

1/32 4.5201e–2 1.2327 2.7655e–3 2.2363 2.6915e–3 2.2241

ordinary differential equations (ODEs) refers to Brugnano and Trigiante’s monograph [4], where

BVMs are verified to have the better stability than the classical linear multistep methods. We

note that, up to now, no result has been found on BVMs for CFDEs (1.1). Hence, in this

section, we will extend BVMs to solve (1.1).

For convenience, we first give a brief review to the BVMs for the following d-dimensional

problems of ODEs:

y′(t) = f(t, y(t)), t ∈ [t0, T ]; y(t0) = y0. (3.1)

For solving (3.1), the BVMs with k1 initial values {yi}k1−1
i=0 and k2(= k − k1) final values

{yi}Ni=N−k2+1 (N ∈ N) can be defined as follows:

k2∑

i=−k1

αi+k1yn+i = h

k2∑

i=−k1

βi+k1fn+i, n = k1, k1 + 1 . . . , N − k2, (3.2)

k∑

i=0

α
(j)
i yi = h

k∑

i=0

β
(j)
i fi, j = 1, 2, . . . , k1 − 1, (3.3)

k∑

i=0

α
(j)
k−iyN−i = h

k∑

i=0

β
(j)
k−ifN−i, j = N − k2 + 1, N − k2 + 2, . . . , N, (3.4)

where yn ≈ y(tn), fn = f(tn, yn), and αi, βi, α
(j)
i and β

(j)
i are some real coefficients such that

schemes (3.2)-(3.4) have the same consistency order. Let ⊗ be the Kronecker product, Id the
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d× d identity matrix, Y =
(
yT1 , y

T
2 , . . . , y

T
N

)T
, F (Y ) =

(
fT
1 , fT

2 , . . . , fT
N

)T
,

Ae :=
[
a0|A

]
=
























α
(1)
0 α

(1)
1 · · · α

(1)
k

...
... · · ·

...

α
(k1−1)
0 α

(k1−1)
1 · · · α

(k1−1)
k

α0 α1 · · · αk

α0 α1 · · · αk

. . .
. . .

. . .
. . .

α0 α1 · · · αk

α
(N−k2+1)
0 α

(N−k2+1)
1 · · · α

(N−k2+1)
k

...
... · · ·

...

α
(N)
0 α

(N)
1 · · · α

(N)
k
























∈ R
N×(N+1),

and Be :=
[
b0|B

]
, which is defined similar to Ae by replacing αi (resp. α

(j)
i ) with βi (resp.

β
(j)
i ). Then BVMs (3.2)-(3.4) can be written in a compact form:

(A⊗ Id)Y + a0 ⊗ y0 = h(B ⊗ Id)F (Y ) + hb0 ⊗ f(t0, y0). (3.5)

A BVM (3.5) is called consistent of order q if its local truncation error

δ̌ := (A⊗ Id)Ȳ + a0 ⊗ y0 − h(B ⊗ Id)F (Ȳ )− hb0 ⊗ f(t0, y0) = O(hq+1), (3.6)

where Ȳ =
(
y(t1)

T , . . . , y(tN )T
)T

. Write Z =
(
zT1 , . . . , z

T
N

)T
, where

zn =







h−γ

Γ(1−γ)

m∑

i=0

θmi,nyi, 1 ≤ n ≤ m,

h−γ

Γ(1−γ)

n∑

i=0

θmi,nyi, m < n ≤ N

(3.7)

denotes the interpolation approximation for z(tn) := C
t0D

γ
t y(tn), 0 = (0, . . . , 0)T ∈ R

d and

F (Y, Z) =
(
f(t1, y1, z1)

T , . . . , f(tN , yN , zN )T
)T

. Adapting BVMs (3.5) to problem (1.1) yields

the following extended BVMs:

(A⊗ Id)Y + a0 ⊗ y0 = h(B ⊗ Id)F (Y, Z) + hb0 ⊗ f(t0, y0,0). (3.8)

Let Z̄ =
(
z(t1)

T , . . . , z(tN )T
)T

. An extended BVM (3.8) is called consistent of order q if its

local truncation error

δ̃ := (A⊗ Id)Ȳ + a0 ⊗ y(t0)− h(B ⊗ Id)F (Ȳ , Z̄)− hb0 ⊗ f(t0, y(t0),0) = O(hq+1). (3.9)

Remark 3.1. Since, for problem (3.1) it holds that

F (Ȳ ) =
(
[y′(t1)]

T , . . . , [y′(tN )]T
)T

, f(t0, y0) = y′(t0),

and for problem (1.1) it holds that

F (Ȳ , Z̄) =
(
[y′(t1)]

T , . . . , [y′(tN )]T
)T

, f(t0, y(t0),0) = y′(t0),

we conclude from (3.6) and (3.9) that an extended BVM (3.8) and its corresponding underlying

BVM (3.5) have the same consistency order.



Boundary Value Methods for Caputo Fractional Differential Equations 117

4. Local Stability and Unique Solvability of the Extended BVMs

Let 〈·, ·〉 be the Euclidean inner product on R
d and ‖ · ‖2 the induced norm by this inner

product. For any given vectors U =
(
uT
1 , . . . , u

T
N

)T
and V =

(
vT1 , . . . , v

T
N

)T
in R

Nd, we further

define the inner product 〈·, ·〉h and the corresponding norm ‖ · ‖h as follows:

〈U, V 〉h = h

N∑

i=1

〈ui, vi〉, ‖U‖h =

√
√
√
√h

N∑

i=1

‖ui‖22.

Based on vector norm ‖ · ‖h, we also introduce the following matrix norm ‖ · ‖h:

‖M‖h = max
‖U‖h=1

‖MU‖h, ∀M ∈ R
(Nd)×(Nd).

It is easy to check that ‖M‖h = ‖M‖2 for all M ∈ R
(Nd)×(Nd). In the following, we always

assume that there exist constants L1, L2 > 0 such that function f in (1.1) satisfies that

〈f(t, y, z)− f(t, ŷ, z), y − ŷ〉 ≤ L1‖y − ŷ‖22, ∀t ∈ [t0, T ], y, ŷ, z ∈ R
d, (4.1)

‖f(t, y, z)− f(t, y, ẑ)‖2 ≤ L2‖z − ẑ‖2, ∀t ∈ [t0, T ], y, z, ẑ ∈ R
d. (4.2)

On the basis of the above settings, we will deal with local stability and unique solvability of

the extended BVMs (3.8). Let Ŷ =
(
ŷT1 , . . . , ŷ

T
N

)T
be the solution of the following perturbed

equation with local perturbation δ ∈ R
Nd:

(A⊗ Id)Ŷ + a0 ⊗ y0 = h(B ⊗ Id)F (Ŷ , Ẑ) + hb0 ⊗ f(t0, y0,0) + δ, (4.3)

where

ẑn =







h−γ

Γ(1−γ)

m∑

i=0

θmi,nŷi, 1 ≤ n ≤ m,

h−γ

Γ(1−γ)

n∑

i=0

θmi,nŷi, m < n ≤ N,

ŷ0 = y0, Ẑ =
(
ẑT1 , . . . , ẑ

T
N

)T
.

Subtracting (3.8) from (4.3) yields that

(A⊗ Id)v = h(B ⊗ Id)w+ δ, (4.4)

where v = Ŷ − Y, w = F (Ŷ , Ẑ) − F (Y, Z). An extended BVM (3.8) is called locally stable if

there exists a constant c > 0 such that ‖v‖h ≤ c‖δ‖h. In order to derive the local stability

criterion, we first present the following lemma.

Lemma 4.1. Let D = diag(d1, d2, . . . , dN ) be a given N × N positive diagonal matrix and

conditions (4.1) and (4.2) hold. Then the vectors v and w in (4.4) satisfy that

〈v, (D ⊗ Id)w〉h ≤ µ〈v, (D ⊗ Id)v〉h, (4.5)

where

µ = L1+
L2h

−γω1ω2

Γ(1− γ)
, ω2 =

√
√
√
√

N∑

i=1

N∑

j=1

di
dj

,

ω1 = max

{

max
0≤i≤m

max
1≤n≤m

|θmi,n|, max
0≤i≤n

max
m<n≤N

|θmi,n|
}

.
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Proof. It follows from (4.1), (4.2) and the discrete Cauchy-Schwartz inequality that

〈v, (D ⊗ Id)w〉h = h

N∑

i=1

di〈ŷi − yi, f(ti, ŷi, ẑi)− f(ti, yi, zi)〉

=h
N∑

i=1

di〈ŷi − yi, f(ti, ŷi, ẑi)− f(ti, yi, ẑi)〉+ h
N∑

i=1

di〈ŷi − yi, f(ti, yi, ẑi)− f(ti, yi, zi)〉

≤L1h

N∑

i=1

di‖ŷi − yi‖22 + L2h

N∑

i=1

di‖ŷi − yi‖2‖ẑi − zi‖2

≤L1〈v, (D ⊗ Id)v〉h +
L2h

1−γω1

Γ(1− γ)

N∑

i=1

di‖ŷi − yi‖2
N∑

j=1

‖ŷj − yj‖2

≤L1〈v, (D ⊗ Id)v〉h +
L2h

1−γω1

Γ(1− γ)

√
√
√
√

N∑

i=1

di

√
√
√
√

N∑

i=1

di‖ŷi − yi‖22

√
√
√
√

N∑

i=1

1

di

√
√
√
√

N∑

i=1

di‖ŷi − yi‖22

=

[

L1 +
L2h

−γω1ω2

Γ(1− γ)

]

〈v, (D ⊗ Id)v〉h.

Hence the lemma is proven. �

Refer to references [10, 15, 37], we introduce the following hypothesis:

H: There exist h0 > 0, N ×N positive diagonal matrices D̃ and D̂, and a positive bounded

function S(h) on (0, h0] such that

λmin

(ABT + BAT

2
− hµBBT

)

≥ S(h), h ∈ (0, h0], (4.6)

where A = (D̃AD̂) ⊗ Id, B = (D̃BD̂) ⊗ Id and λmin(·) denotes the minimum eigenvalue of a

matrix.

With the above arguments, a local stability criterion can be stated as follows.

Theorem 4.1. Assume that conditions (4.1), (4.2) and H are satisfied. Then the extended

BVM (3.8) is locally stable with

‖v‖h ≤
[

‖D̂‖h‖BT‖h‖D̃‖h
S(h)

]

‖δ‖h, h ∈ (0, h0]. (4.7)

Proof. Since S(h) is a positive bounded function on (0, h0], it suffices to prove that (4.7) is

true. Let ṽ be a vector with BT ṽ = (D̂−1 ⊗ Id)v. Then equation (4.4) can be written as

ABT ṽ = hB(D̂−1 ⊗ Id)w+ (D̃ ⊗ Id)δ. (4.8)

Taking the inner product with ṽ on both sides of (4.8) yields that

〈
ṽ,ABT ṽ

〉

h
= h

〈

ṽ,B(D̂−1 ⊗ Id)w
〉

h
+
〈

ṽ, (D̃ ⊗ Id)δ
〉

h
. (4.9)

In terms of the usual properties of inner product, (4.9) is equivalent to

〈
ṽ,ABT ṽ

〉

h
= h

〈

v, (D̂−2 ⊗ Id)w
〉

h
+
〈

ṽ, (D̃ ⊗ Id)δ
〉

h
. (4.10)
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Also, it follows from Lemma 4.1 that
〈

v, (D̂−2 ⊗ Id)w
〉

h
≤ µ

〈

v, (D̂−2 ⊗ Id)v
〉

h
= µ

〈
ṽ,BBT ṽ

〉

h
. (4.11)

Substituting (4.11) into (4.10) and then applying the Cauchy-Schwartz inequality and equality:

‖D̃ ⊗ Id‖h = ‖D̃‖h derive that

〈
ṽ,ABT ṽ

〉

h
≤ hµ

〈
ṽ,BBT ṽ

〉

h
+

〈

ṽ, (D̃ ⊗ Id)δ
〉

h
≤ hµ

〈
ṽ,BBT ṽ

〉

h
+ ‖ṽ‖h‖D̃‖h‖δ‖h. (4.12)

Moreover, applying identity: 〈ṽ,ABT ṽ〉h = 〈ṽ, (ABT +BAT

2 )ṽ〉h to (4.12) gives that

〈

ṽ,

(ABT + BAT

2
− hµBBT

)

ṽ

〉

h

≤ ‖ṽ‖h‖D̃‖h‖δ‖h. (4.13)

Whereas, by the property of inner product, the following inequality holds:

〈

ṽ,

(ABT + BAT

2
− hµBBT

)

ṽ

〉

h

≥ λmin

(ABT + BAT

2
− hµBBT

)

‖ṽ‖2h. (4.14)

A combination of (4.6), (4.13) and (4.14) generates that

‖ṽ‖h ≤ ‖D̃‖h‖δ‖h
S(h)

, h ∈ (0, h0]. (4.15)

Since v=(D̂⊗Id)BT ṽ, inequality (4.7) can be followed immediately by (4.15). �

With Theorem 4.1, we can obtain a unique solvability criterion of the extended BVMs (3.8).

Theorem 4.2. Assume that conditions (4.1), (4.2) and H are satisfied. Then the extended

BVM (3.8) is uniquely solvable.

Proof. Write

Qe :=
[
q0|Q

]
=

h−γ

Γ(1−γ)














θm0,1 θm1,1 · · · θmm,1
...

... · · ·
...

θm0,m θm1,m · · · θmm,m

θm0,m+1 θm1,m+1 · · · θmm,m+1 θmm+1,m+1
...

... · · ·
...

...
. . .

θm0,N θm1,N · · · θmm,N θmm+1,N · · · θmN,N














∈ R
N×(N+1).

Then, it follows from (3.7) that Z = q0 ⊗ y0 + (Q ⊗ Id)Y . Let Y̆ be a vector such that

BT Y̆ = (D̂−1⊗Id)Y . With this, the unique solvability of the extended BVM (3.8) is equivalent

to the unique solvability of the following equation:

ABT Y̆ + (D̃a0)⊗ y0 =hB(D̂−1 ⊗ Id)F
(

(D̂ ⊗ Id)BT Y̆ , q0 ⊗ y0 + ((QD̂)⊗ Id)BT Y̆
)

+ h(D̃b0)⊗ f(t0, y0,0). (4.16)

Firstly, we show that the existence of equation (4.16)’s solution. For this, we introduce

function G : RNd → R
Nd as follows:

G(U) =ABTU + (D̃a0)⊗ y0 − hB(D̂−1 ⊗ Id)F
(

(D̂ ⊗ Id)BTU, q0 ⊗ y0 + ((QD̂)⊗ Id)BTU
)
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− h(D̃b0)⊗ f(t0, y0,0), U ∈ R
Nd.

In terms of Theorem 6.4.4 in [31], if we assume that equation (4.16) has its solution, it suffices

to prove that G(U) is uniformly monotone. Namely, we need only to show that there exists a

constant η > 0 such that
〈

G(U)−G(Ũ), U − Ũ
〉

h
≥ η‖U − Ũ‖2h, ∀ U, Ũ ∈ R

Nd. (4.17)

In fact, it follows from condition H, Lemma 4.1 and the properties of inner product that
〈

G(U)−G(Ũ), U − Ũ
〉

h

=
〈

ABT (U − Ũ), U − Ũ
〉

h
− h

〈

B(D̂−1 ⊗ Id)F
(

(D̂ ⊗ Id)BTU, q0 ⊗ y0 + ((QD̂)⊗ Id)BTU
)

−B(D̂−1 ⊗ Id)F
(

(D̂ ⊗ Id)BT Ũ , q0 ⊗ y0 + ((QD̂)⊗ Id)BT Ũ
)

, U − Ũ
〉

h

=
〈

ABT (U − Ũ), U − Ũ
〉

h
− h

〈

(D̂−2 ⊗ Id)F
(

(D̂ ⊗ Id)BTU, q0 ⊗ y0 + ((QD̂)⊗ Id)BTU
)

−(D̂−2 ⊗ Id)F
(

(D̂ ⊗ Id)BT Ũ , q0 ⊗ y0 + ((QD̂)⊗ Id)BT Ũ
)

, (D̂ ⊗ Id)BT (U − Ũ)
〉

h

≥
〈

ABT (U − Ũ), U − Ũ
〉

h
− hµ

〈

(D̂−1 ⊗ Id)BT (U − Ũ), (D̂ ⊗ Id)BT (U − Ũ)
〉

h

=
〈

ABT (U − Ũ), U − Ũ
〉

h
− hµ

〈

BBT (U − Ũ), U − Ũ
〉

h

=

〈(ABT + BAT

2
− hµBBT

)

(U − Ũ), U − Ũ

〉

h

≥S(h)‖U − Ũ‖2h.

Since S(h) is a positive bounded function on (0, h0], (4.17) holds and hence the existence of the

solution of the extended BVM (3.8) is proven.

The uniqueness of the solution of (3.8) can be shown with a direct application of Theorem

4.1 when setting δ = 0. Hence the proof is completed. �

5. Convergence of the Extended BVMs

This section will deal with convergence of the extended BVMs. An extended BVM (3.8) is

called convergent of order p if it has global error ‖Ȳ − Y ‖h = O(hp). A convergence theorem

of methods (3.8) can be stated as follows.

Theorem 5.1. Assume that conditions (4.1), (4.2) and H hold and the extended BVM (3.8)

has consistent order q. Then, when method (3.8) is applied to problem (1.1) with y(t) ∈
C(m+1)([t0, T ]), the derived numerical solution Y is convergent of order min {q,m− γ + 1}.

Proof. Let δ̂ = h(B ⊗ Id)[F (Ȳ , Z̄)− F (Ȳ , Z̃)], Z̃ = (z̃T1 , . . . , z̃
T
N )T and

z̃n =







h−γ

Γ(1−γ)

m∑

i=0

θmi,ny(ti), 1 ≤ n ≤ m,

h−γ

Γ(1−γ)

n∑

i=0

θmi,ny(ti), m < n ≤ N,
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Taking use of the above symbols and (3.9), we have

(A⊗ Id)Ȳ + a0 ⊗ y(t0) = h(B ⊗ Id)F (Ȳ , Z̃) + hb0 ⊗ f(t0, y(t0),0) + δ̃ + δ̂. (5.1)

It follows from Theorem 2.1 that there exists a constant c0 > 0 such that

‖z(tn)− z̃n‖∞ ≤ c0h
m−γ+1, 1 ≤ n ≤ N. (5.2)

This, together with condition (4.2) and Nh = T − t0, implies that

‖δ̂‖h ≤ h‖B‖h‖F (Ȳ , Z̄)− F (Ȳ , Z̃)‖h

= h‖B‖h

√
√
√
√h

N∑

i=1

‖f(ti, y(ti), z(ti))− f(ti, y(ti), z̃i)‖22

≤ h‖B‖hL2

√
√
√
√h

N∑

i=1

‖z(ti)− z̃i‖22 ≤ c0L2‖B‖h
√
Ndhm−γ+ 5

2

= c0L2‖B‖h
√

d(T − t0) h
m−γ+2. (5.3)

Subtracting (3.8) from (5.1) yields

(A⊗ Id)
(
Ȳ − Y

)
= h(B ⊗ Id)

[

F (Ȳ , Z̃)− F (Y, Z)
]

+ δ̃ + δ̂. (5.4)

Applying Theorem 4.1 to (5.4) yields for all h ∈ (0, h0] that

‖Ȳ − Y ‖h ≤
[

‖D̂‖h‖BT‖h‖D‖h
S(h)

]

‖δ̃ + δ̂‖h ≤
[

‖D̂‖h‖BT‖h‖D‖h
S(h)

]

(‖δ̃‖h + ‖δ̂‖h). (5.5)

Also, since by hypothesis H that S(h) is a positive bounded function S(h) on (0, h0], there exist

constants c1 > 0 and h1 ∈ (0, h0] such that

S(h) ≥ c1h, ∀h ∈ (0, h1]. (5.6)

Moreover, the q-order consistency of the method implies that there exists a constant c2 > 0

such that

‖δ̃‖h ≤ c2h
q+1. (5.7)

Therefore, a combination of (5.3), (5.5)–(5.7) concludes that the extended BVM (3.8) is con-

vergent of order min {q,m− γ + 1}. This completes the proof. �

Remark 5.1. In Theorem 5.1, in order to assure that the convergence order of numerical

solution Y can arrive at min {q,m− γ + 1}, we ask that y(t) ∈ C(m+1)([t0, T ]) (m ≥ 1). The

same assumption can be seen in [8, 22, 27] and the references therein. However, this type of

strong smooth assumption could not be satisfied at initial point t0 for some realistic problems

of the form (1.1). Hence, Theorem 5.1 is only applicable to the problems with smooth initial

data. As to the high-order convergence condition for the case of nonsmooth initial data, it keeps

unknown at present because of the lack of analytical techniques. A similar open issue was also

proposed in Ford & Yan [13]. Although it is difficult to give a high-order convergence criterion

for the problems with nonsmooth initial data, luckily, some numerical treatment methods have
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been suggested (see e.g. [23]). Inspired by the idea in Li, Liang & Yan [23], in the following,

we will adopt a technique to improve the computational accuracy of methods (3.8) when the

problem has the nonsmooth initial data. Firstly, we divide the subinterval [t0, tm] (m ≥ 1) by

the equispaced nodes with stepsize h̃:

t0 = t(0)m < t(1)m < · · · < t(n1)
m = tm, where n1 =

⌊

mh1−min{q,m−γ+1}
2−γ

⌋

,

which leads to O
(

h̃2−γ
)

≈ O
(
hmin{q,m−γ+1}

)
. Secondly, we apply the second-order extended

trapezoidal rule (cf. [4]) and the piecewise linear interpolation to problem (1.1) on [t0, tm]. It is

well-known that the piecewise linear interpolation for Caputo derivative (2.3) is just L1 method

(cf. [30]) and its convergence order is O
(

h̃2−γ
)

(cf. [22]). Hence we have that

‖ỹm − y(tm)‖h = O
(

h̃2−γ
)

, where ỹm ≈ y(tm).

Then, we choose ỹm as the computational initial value and apply the extended BVMs (3.8) to

problem (1.1) on [tm, T ]. In this way, the numerical solution Y can arrive at the theoretical

accuracy O
(
hmin{q,m−γ+1}

)
.

6. Numerical Experiments

In this section, to illustrate the computational efficiency, accuracy and comparability of

the extended BVMs, we present several numerical examples. Combining the underlying BVMs:

second-order ETR, third-order GBDF and fourth-order ETR2 in Brugnano & Trigiante [4] with

m-th (m = 1, 2, 3) interpolation (3.7) for the Caputo derivatives, respectively, we can obtain a

series of extended BVMs for problems (1.1). For convenience, correspondingly, we write these

extended BVMs as ETR(2, 1), GBDF(3, 2) and ETR2(4, 3). Moreover, in order to show the

computational advantages of the extended BVMs, we will consider an adapted version of the

product integration methods (PIMs) in [28,29] for (1.1). The adapted k-step (k+ 1− γ)-order

PIMs (APIM(k)) can be expressed as follows:

k+1∑

l=1

∇lyn
l

=hf(tn, yn, zn), zn=
h−γ

Γ(1− γ)

k∑

l=1

n∑

j=k+1

al(n− j)∇lyn, k + 1 ≤ n ≤ N, (6.1)

where ∇ is the backward difference operator and

al(n− j) =

∫ 0

−1

1

(n− j − ξ)γ l!

d

dξ
[ξ(ξ + 1) · · · (ξ + l− 1)]dξ.

For the implementation of APIM(k), we will use some (k + 1)-order one-step methods to get

its starting values. Besides the comparison with APIM(k), we will also consider another class

of extended BVMs, which are constructed by combining the underlying BVMs and Li et al’s

interpolation scheme (7) in [22]. For example, we can combine the second-order ETR, third-

order GBDF and fourth-order ETR2 with Li et al’s interpolation scheme with m = 1, 2, 3

and write the derived methods as AETR(2, 1), AGBDF(3, 2) and AETR2(4, 3), respectively.

In the following, global error and convergence order of the above methods will be computed

respectively by the formulas:

err(h) := ‖Ȳ − Y ‖h, p̂ := log2

[
err(h)

err(h/2)

]

.
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Table 6.1: Global errors and convergence orders of ETR(2, 1), GBDF(3, 2) and ETR2(4, 3) for problem

(6.2).

ETR(2, 1) GBDF(3, 2) ETR2(4, 3)

h err(h) p̂ err(h) p̂ err(h) p̂

1/2 8.3408e–2 – 3.1622e–2 – 1.6331e–2 –

1/4 3.2184e–2 1.3738 6.8565e–3 2.2054 1.7017e–3 3.2625

1/8 1.2028e–2 1.4199 1.1524e–3 2.5728 1.4692e–4 3.5339

1/16 4.4184e–3 1.4448 2.2832e–4 2.3355 1.1208e–5 3.7124

Table 6.2: Global errors and convergence orders of APIM(k) (k = 1, 2, 3) for problem (6.2).

APIM(1) APIM(2) APIM(3)

h err(h) p̂ err(h) p̂ err(h) p̂

1/2 1.7484e–1 – 3.2093e–2 – 3.1642e–2 –

1/4 6.5514e–2 1.4162 7.6183e–3 2.0747 7.2058e–3 2.1346

1/8 2.5109e–2 1.3836 2.6825e–3 1.5059 1.9667e–3 1.8734

1/16 9.5292e–3 1.3978 1.1017e–3 1.2838 6.7490e–4 1.5430

Table 6.3: Global errors and convergence orders of AETR(2, 1), AGBDF(3, 2) and AETR2(4, 3) for

problem (6.2).

AETR(2, 1) AGBDF(3, 2) AETR2(4, 3)

h err(h) p̂ err(h) p̂ err(h) p̂

1/2 8.3408e–2 – 3.8400e–2 – 1.7947e–2 –

1/4 3.2184e–2 1.3738 8.0270e–3 2.2582 1.9063e–3 3.2349

1/8 1.2028e–2 1.4199 1.5110e–3 2.4094 2.0790e–4 3.1968

1/16 4.4184e–3 1.4448 3.4198e–4 2.1435 3.2784e–5 2.6648

Example 6.1. Consider the nonlinear problem of CFDEs:

y′(t) = − y2(t)

1 + y2(t)
+

1

5
cos

(
C
0 D

0.5
t y(t)

)
+ g(t), t ∈ [0, 3]; y(0) = 0, (6.2)

where g(t) is a given function such that problem (6.2) has the exact solution y(t) = t
√
t.

Taking stepsizes h = 1/2i (i = 1, 2, 3, 4) and then applying ETR(2, 1), GBDF(3, 2) and

ETR2(4, 3) to problem (6.2), respectively, we can obtain a series of numerical solutions of

(6.2), where, for attaining the theoretical accuracy presented in Theorem 5.1, we also use

the algorithm in Remark 5.1 to cope with the nonsmooth initial condition. As an example,

the numerical solution yn solved by ETR2(4, 3) with h = 1/16 is plotted in Fig. 6.1(a), and

the error εn = |y(tn) − yn| is shown in Fig. 6.1(b). A detailer description on the global

errors and convergence orders of the above extended BVMs for (6.2) is displayed in Table 6.1.

These numerical results confirm the computational effectiveness of the extended BVMs and the

theoretical accuracy shown in Theorem 5.1.

In order to exhibit the computational advantage of the extended BVMs, we further apply

APIM(k) (k = 1, 2, 3), AETR(2, 1), AGBDF(3, 2) and AETR2(4, 3) with h = 1/2i (i =

1, 2, 3, 4) to problem (6.2), where the nonsmooth initial condition is treated by an algorithm

similar to Remark 5.1. The errors and convergence orders of the above methods are listed

in Tables 6.2-6.3. By comparing the numerical results in Tables 6.1-6.3, we can find that,
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Fig. 6.1. (a) Numerical solution of problem (6.2) by ETR2(4, 3) with h = 1/16; (b) Error of ETR2(4,

3) with h = 1/16 for problem (6.2).
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Fig. 6.2. The CPU times (in seconds) of ETR2(4, 3), APIM(3) and AETR2(4, 3) with N = (i+1)6 (i =

0, 1, . . . , 7) for problem (6.2).

when the stepsize is small enough, the extended BVMs (3.8) have higher accuracy than the

other two classes methods with the same order, and APIM(k) have the phenomenon of order

reduction. Moreover, we also plot the CPU times of ETR2(4, 3), APIM(3) and AETR2(4,

3) with N = (i + 1)6 (i = 0, 1, . . . , 7) for problem (6.2) in Fig. 6.2, which shows that, in

computational efficiency, the extended BVMs (3.8) is not better than these with Li et al’s

interpolation scheme but better than APIM(k).

Example 6.2. Consider the following fractal mobile/immobile transport models (cf. [26, 33]):







∂u(x, t)

∂t
+ C

0 D
γ
t u(x, t) =

∂2u(x, t)

∂x2
+ f(u) + g(x, t), (x, t) ∈ [0, 1]× [0, 3],

u(x, 0) = 0, x ∈ [0, 1],

u(0, t) = u(1, t) = 0, t ∈ [0, 3],

(6.3)

where γ ∈ (0, 1), f(u) = u(1 − u2) and g(x, t) is a given function such that problem (6.3) has

the exact solution u(x, t) = [x(1 − x)]4 sin(πt). In the following, we will adopt the method of

lines to solve this problem.

Firstly, similar to the discretization idea for delay-reaction-diffusion equations in paper

[20], we apply a compact difference scheme to discretize the space variable x. Let M be a

positive integer, xi = i∆x (i = 0, 1, . . . ,M) spatial grid-points with stepsize ∆x = 1/M , and

W := {vi : 0 ≤ i ≤ M} grid function space on grid set Ω∆x := {xi : 0 ≤ i ≤ M}. Define the
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Fig. 6.3. (a) Numerical solution of problem (6.3) with γ = 0.5 by ETR2(4, 3) with h = 1/16 and

∆x = 1/80; (b) Error of ETR2(4, 3) with h = 1/16 and ∆x = 1/80 for problem (6.3) with γ = 0.5.
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Fig. 6.4. The CPU times (in seconds) of ETR2(4, 3), APIM(3) and AETR2(4, 3) with ∆x = 1/80 and

N = (i+ 1)6 (i = 0, 1, . . . , 7) for problem (6.3) with γ = 0.5.

following difference operators:

δ2xvi =
1

∆x2
(vi+1 − 2vi + vi−1), Dvi =

1

12
(vi+1 + 10vi + vi−1).

Then a compact difference scheme for (6.3) can be obtained as follows:

D∂ui(t)

∂t
+D C

0 D
γ
t ui(t) = δ2xui(t) +Df(ui(t)) +Dg(xi, t), ui(0) = 0, 1 ≤ i ≤ M, (6.4)

where ui(t) is an approximation to u(xi, t). When the following notations are introduced:

Q(t) =











f(u1(t)) + g(x1, t)

f(u2(t)) + g(x2, t)
...

f(uM−2(t)) + g(xM−2, t)

f(uM−1(t)) + g(xM−1, t)











, q(t) =
1

12











f(u0(t)) + g(x0, t)

0
...

0

f(uM (t)) + g(xM , t)











,

P =











5
6

1
12 0 · · · 0

1
12

5
6

1
12 · · · 0

...
. . .

. . .
. . .

...

0 · · · 1
12

5
6

1
12

0 · · · 0 1
12

5
6











, J =











−2 1 0 · · · 0

1 −2 1 · · · 0
...

. . .
. . .

. . .
...

0 · · · 1 −2 1

0 · · · 0 1 −2











∈ R
(M−1)×(M−1),
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Table 6.4: Global errors and convergence orders of ETR(2, 1), GBDF(3, 2) and ETR2(4, 3) with

∆x = 1/80 for problems (6.3) with γ = 0.25, 0.5, 0.75, respectively.

ETR(2, 1) GBDF(3, 2) ETR2(4, 3)

γ h err(h) p̂ err(h) p̂ err(h) p̂

0.25 1/2 1.6977e–3 – 2.3258e–3 – 6.4404e–4 –

1/4 3.2183e–4 2.3992 2.9792e–4 2.9647 4.6988e–5 3.7768

1/8 8.1896e–5 1.9744 3.4452e–5 3.1123 3.2047e–6 3.8740

1/16 2.2643e–5 1.8547 4.3265e–6 2.9933 2.0667e–7 3.9548

0.5 1/2 1.5969e–3 – 2.4827e–3 – 1.1515e–3 –

1/4 4.7657e–4 1.7445 3.7071e–4 2.7436 1.1528e–4 3.3202

1/8 1.7872e–4 1.4150 4.9302e–5 2.9106 1.0843e–5 3.4103

1/16 6.6121e–5 1.4345 7.3897e–6 2.7381 9.5079e–7 3.5116

0.75 1/2 2.2629e–3 – 2.9855e–3 – 2.0329e–3 –

1/4 1.0753e–3 1.0734 6.0230e–4 2.3094 2.8450e–4 2.8371

1/8 4.8749e–4 1.1414 1.1175e–4 2.4302 3.3280e–5 3.0957

1/16 2.1178e–4 1.2028 2.2659e–5 2.3021 3.5662e–6 3.2222

Table 6.5: Global errors and convergence orders of APIM(k) (k = 1, 2, 3) with ∆x = 1/80 for problems

(6.3) with γ = 0.25, 0.5, 0.75, respectively.

APIM(1) APIM(2) APIM(3)

γ h err(h) p̂ err(h) p̂ err(h) p̂

0.25 1/2 3.3106e–3 – 3.0310e–3 – 3.5194e–3 –

1/4 1.0885e–3 1.6048 6.9830e–4 2.1179 3.8015e–4 3.2107

1/8 2.9990e–4 1.8597 9.6552e–5 2.8545 2.5729e–5 3.8851

1/16 7.7447e–5 1.9532 1.2263e–5 2.9770 1.7029e–6 3.9173

0.5 1/2 3.5919e–3 – 3.1167e–3 – 3.6611e–3 –

1/4 1.1938e–3 1.5891 7.3156e–4 2.0910 4.0402e–4 3.1798

1/8 3.4644e–4 1.7849 1.0313e–4 2.8265 2.7769e–5 3.8629

1/16 9.9953e–5 1.7933 1.3625e–5 2.9202 1.9315e–6 3.8457

0.75 1/2 4.3676e–3 – 3.4820e–3 – 4.0693e–3 –

1/4 1.6370e–3 1.4158 8.9347e–4 1.9624 5.0667e–4 3.0057

1/8 5.9337e–4 1.4640 1.4770e–4 2.5968 4.2661e–5 3.5700

1/16 2.2884e–4 1.3746 2.5723e–5 2.5215 3.9640e–6 3.4279

and y(t) = (u1(t), . . . , uM−1(t))
T
, then (6.4) can be written in an equivalent form:







y′(t) + C
0 D

γ
t y(t) =

1

∆x2
P−1Jy(t) +Q(t) + P−1q(t), t ∈ [0, 3],

y(0) = 0 ∈ R
M−1,

(6.5)

Secondly, we take stepsizes ∆x = 1/80, h = 1/2i (i = 1, 2, 3, 4) and then apply ETR(2, 1),

GBDF(3, 2) and ETR2(4, 3) to solve (6.5) with γ = 0.25, 0.5, 0.75, respectively. In this way, a

series of effective numerical solutions for (6.3) can be obtained. For simplicity, in Fig. 6.3(a),

we only plot the numerical solution of (6.3) with γ = 0.5 solved by ETR2(4, 3) with ∆x = 1/80

and h = 1/16, and the global errors |u(xi, tn) − un
i | (0 ≤ i ≤ 80, 0 ≤ n ≤ 16) are plotted

in Fig. 6.3(b). A whole description to the global errors and convergence orders of the above
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Table 6.6: Global errors and convergence orders of AETR(2, 1), AGBDF(3, 2) and AETR2(4, 3) with

∆x = 1/80 for problems (6.3) with γ = 0.25, 0.5, 0.75, respectively.

AETR(2, 1) AGBDF(3, 2) AETR2(4, 3)

γ h err(h) p̂ err(h) p̂ err(h) p̂

0.25 1/2 1.6977e–3 – 2.2265e–3 – 6.7201e–4 –

1/4 3.2183e–4 2.3992 2.9227e–4 2.9294 5.2910e–5 3.6669

1/8 8.1896e–5 1.9744 3.6030e–5 3.0200 4.6995e–6 3.4930

1/16 2.2643e–5 1.8547 4.6904e–6 2.9414 3.9299e–7 3.5799

0.5 1/2 1.5969e–3 – 2.2763e–3 – 1.2429e–3 –

1/4 4.7657e–4 1.7445 3.5974e–4 2.6617 1.4566e–4 3.0930

1/8 1.7872e–4 1.4150 5.4326e–5 2.7272 1.6634e–5 3.1304

1/16 6.6121e–5 1.4345 8.6396e–6 2.6526 1.6936e–6 3.2960

0.75 1/2 2.2629e–3 – 2.7745e–3 – 2.2374e–3 –

1/4 1.0753e–3 1.0734 6.0675e–4 2.1930 3.6124e–4 2.6308

1/8 4.8749e–4 1.1414 1.2270e–4 2.3060 4.8412e–5 2.8995

1/16 2.1178e–4 1.2028 2.5055e–5 2.2920 5.7590e–6 3.0715

methods can be seen in Table 6.4. Again, the numerical results verify the computational

effectiveness of the extended BVMs (3.8) and their theoretical accuracy shown in Theorem 5.1.

For giving a comparison, in Tables 6.5-6.6, we also present the global errors and convergence

orders of APIM(k) (k = 1, 2, 3), AETR(2, 1), AGBDF(3, 2) and AETR2(4, 3) with stepsizes

∆x = 1/80 and h = 1/2i (i = 1, 2, 3, 4) for problems (6.3) with γ = 0.25, 0.5, 0.75, respectively.

From Tables 6.4-6.6, we can find that the extend BVMs (3.8) have the best accuracy under the

same order and stepsize. Moreover, in Fig. 6.4, we also plot CPU times (in seconds) of ETR2(4,

3), APIM(3) and AETR2(4, 3) with ∆x = 1/80 and N = (i + 1)6 (i = 0, 1, . . . , 7) for problem

(6.3) with γ = 0.5. This, again, shows that the computational efficiency of the extended BVMs

(3.8) is not better than that of the methods with Li et al’s interpolation scheme but better than

that of APIM(k).
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