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Abstract. The paper deals with periodic systems of ordinary differential equations
(ODEs). A new approach to the investigation of variations of multipliers under
perturbations is suggested. It enables us to establish explicit conditions for the
stability and instability of perturbed systems.
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1 Introduction

This paper deals with perturbations of multipliers and stability of vector linear ODEs
with periodic matrix coefficients. The problem of stability analysis of periodic systems
continues to attract the attention of many specialists despite its long history. It is still
one of the most burning problems of the theory of ODEs, because of the absence of its
complete solution. The classical results on periodic systems are presented in the well-
known books [2, 5, 9]. The recent investigations of stability of linear and nonlinear
periodic systems and periodic solutions can be found in the very interesting papers
mentioned below.

Zevin considers in [11] a periodic canonical system. He proposes a new definition
of the index of stability domains of the system and presents a simple proof for the
Helfide-Lidskij theorem on the structure of stability domains. The directed convexity
of stability domains is also discussed. In the paper [10], Zevin constructs a stability
theory for canonical systems in terms of the index function. His approach allows us to
solve a series of problems from the periodic system theory, in particular, the problem
of strong stability condition; estimation of stability domains of parametric oscillations;
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parametric stabilization of unstable systems. The problem on parametric stabilization
of the upper equilibrium of a pendulum is considered as an example. The paper [6]
should be mentioned. It deals with perturbations of some nonautonomous oscillatory
canonical systems with a small parameter. The continuous dependence of periodic
solutions for the periodic quasilinear ordinary differential system containing a param-
eter is established in the paper [7]. The authors of the paper [1] review results on the
exponential stability of nonautonomous linear periodic evolution equations. In the
paper [8], Chebyshev polynomials are utilized to investigate the solutions higher or-
der scalar linear differential equations with periodic coefficients. As it is well-known,
Lyapunov has obtained conditions on the real periodic function q(t) under which the
second-order differential equation

y′′ + q(t)y = 0,

is stable. In the paper [4] the authors generalize Lyapunov’s result for the differential
equation of the form

(p(t)y′)′ + q(t)y = 0,

with periodic coefficients p(t) and q(t). Certainly we could not survey the whole
subject here and refer the reader to the above listed publications and references given
therein.

Furthermore, as it is well-known [9, pp. 282], the classical methods of the perturba-
tion theory of periodic systems is based on the expansions of the perturbed evolution
operator in fractional powers of the perturbation parameter. Such methods often re-
quire cumbersome calculations. We suggest a new approach to the investigations of
perturbations of multipliers which is based on the recent estimates for the norm of the
resolvent of a matrix. Our results enable us to establish explicit conditions for stability
and instability of perturbed systems. The Hill equations are considered as examples.

2 The basic lemma

Consider the equations

ẋ = A(t)x, (2.1)

ẋ = Ã(t)x, (2.2)

where A(t) and Ã(t) are T-periodic piecewise continuous n × n-matrices.
Let U(t) and Ũ(t) be the Cauchy operators to Eqs. (2.1) and (2.2), respectively.

Then
U(t, s) = U(t)U−1(s) and Ũ(t, s) = Ũ(t)Ũ−1(s),

are the corresponding evolution operators. The eigenvalues µ and µ̃ of U(T) and of
Ũ(T), respectively, taken with their multiplicities are called the multipliers to Eqs. (2.1)
and (2.2), respectively. Denote

γ := ∥U(T)− Ũ(T)∥,
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where ∥ · ∥ is the Euclidean norm.
Let A be a constant n × n-matrix. The following quantity plays a key role in this

paper:

g(A) =
[

N2
2 (A)−

n

∑
k=1

|λk(A)|2
] 1

2
, (2.3)

where λk(A), k = 1, · · · , n are the eigenvalues of A,

N2(A)2 = Trace AA∗,

is the Frobenius (Hilbert-Schmidt norm) of A. Here A∗ is adjoint to A. Since
n

∑
k=1

|λk(A)|2 ≥
∣∣∣ n

∑
k=1

λ2
k(A)

∣∣∣ = |Trace A2|,

one can write
g2(A) ≤ N2

2 (A)− |Trace A2|.
If A is a normal matrix: AA∗ = A∗A, then g(A) = 0, since

N2
2 (A) =

n

∑
k=1

|λk(A)|2,

in this case. Let AI = (A − A∗)/2i. Then

g2(A) ≤ N2
2 (A − A∗)

2
= 2N2

2 (AI),

g(Aeiτ + zI) = g(A), τ ∈ R, z ∈ C,

where I is the unit matrix, see [3, Section 2.1]. Thus,

g(U(T)) =
[

N2
2 (U(T))−

n

∑
k=1

|µk|2
] 1

2
, (2.4)

where µk, k = 1, · · · , m are the multipliers of (2.1).

Lemma 2.1. For any multiplier µ̃ of Eq. (2.2), there is a multiplier µ of Eq. (2.1), such that
|µ − µ̃| ≤ z(γ), where z(γ) is the unique positive root of the algebraic equation

xn = γP(x), (2.5)

with

P(x) =
n−1

∑
k=0

gk(U(T))√
k!

xn−k−1, x > 0.

Proof. This result is due to Theorem 4.4.1 [3]. �
Below we give some estimates for z(γ).
Let us point the following corollary of Lemma 2.1.

Corollary 2.1. If Eq. (2.1) is asymptotically stable and maxk |µk|+ z(γ) < 1, then Eq. (2.2)
is also asymptotically stable; if Eq. (2.1) is unstable and |µk| > 1 + z(γ), for at least one k,
then (2.2) is also unstable.
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3 The main result

Notice that by Lemma 1.6.1 from [3] we have the inequality

z(γ) ≤ δ(γ), (3.1)

where

δ(γ) =

{
n
√

γP(1), if γP(1) ≤ 1,
γP(1), if γP(1) ≥ 1.

Furthermore, the Wintner inequalities

∥U(t, s)∥ ≤ exp
(∫ t

s
Λ(v)dv

)
, (3.2)

and

∥Ũ(t, s)∥ ≤ exp
(∫ t

s
Λ̃(v)dv

)
, (3.3)

are valid, where Λ(t) and Λ̃(t) are the largest eigenvalues of

AR(t) =
(A(t) + A∗(t))

2
and ÃR(t) =

(Ã(t) + Ã∗(t))
2

,

respectively, e.g., [2, Theorem III.4.7]. Furthermore, as it is well-known,

U(t, τ)− Ũ(t, τ) =
∫ t

τ
U(t, s)

(
A(s)− Ã(s)

)
Ũ(s, τ)ds,

see [2, Section III.2]. By Eqs. (3.2) and (3.3),

γ ≤
∫ T

0

∥∥U(T, s)(A(s)− Ã(s))Ũ(s)
∥∥ds ≤ γ̂, (3.4)

where

γ̂ =
∫ T

0
exp

(∫ T

s
Λ(v)dv

)
∥A(s)− Ã(s)∥ exp

(∫ s

0
Λ̃(v)dv

)
ds.

It is not hard to show that

N2(U(T)) ≤
√

n∥U(T)∥ ≤
√

n exp
(∫ T

0
Λ(v)dv

)
,

and thus, g(U(T)) ≤ gT, where

gT :=
[
n exp

(
2
∫ T

0
Λ(v)dv

)
−

n

∑
k=1

|µk|2
] 1

2 ≤
√

n exp
(∫ T

0
Λ(v)dv

)
. (3.5)

Consequently,

P(x) ≤ P̂(x) :=
n−1

∑
k=0

gk
T√
k!

xn−k−1, x > 0.

Now Eq. (3.1) implies the main result of the paper.
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Theorem 3.1. For any multiplier µ̃ of Eq. (2.2), there is a multiplier µ of Eq. (2.1), such that
|µ − µ̃| ≤ δ̂(γ̂), where

δ̂(γ̂) =

 n
√

γ̂P̂(1), if γ̂P̂(1) ≤ 1,

γ̂P̂(1), if γ̂P̂(1) ≥ 1.

4 Perturbations of the Mathieu equations

Consider the Mathieu equation

d2u(t)
dt2 + (a − 2q cos(2t))u(t) = 0, t > 0, a > 0, q ∈ R. (4.1)

Simultaneously consider the equation

d2u(t)
dt2 + c(t)u(t) = 0, t > 0, (4.2)

where
c(t) = a − 2q cos(2t) + c0h(t),

with a positive constant c0 and a measurable π-periodic function h(t) satisfying the
condition

max
0≤t≤π

|h(t)| = 1.

Rewrite Eqs. (4.1) and (4.2) as Eqs. (2.1) and (2.2), respectively, with the matrices

A(t) =
(

0 −a + 2q cos(2t)
1 0

)
and Ã(t) =

(
0 −c(t)
1 0

)
.

It is not hard to show that under consideration

Λ(t) =
1
2
|1 − a + 2q cos(2t)| and Λ̃(t) =

1
2
|1 − c(t)|.

In addition,
∥A(t)− Ã(t)∥ = c0|h(t)| ≤ c0.

So in the considered case we have

γ̂ ≤
∫ π

0
exp

(1
2

∫ π

s
|1 − a + 2q cos(2t)|dt

)
c0 exp

(1
2

∫ s

0
|1 − c(t)|dt

)
ds

=c0

∫ π

0
exp

[1
2

( ∫ π

s
|1 − a + 2q cos(2t)|dt +

∫ s

0
|1 − a + 2q cos(2t)− c0h(t)|dt

)]
ds

≤c0π exp
[1

2

(
c0π +

∫ π

0
|1 − a + 2q cos(2t)|dt

)]
.
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But ∫ π

0
|1 − a + 2q cos(2t)|dt ≤

∫ π

0

(
|1 − a|+ 2q| cos(2t)|

)
dt = π|1 − a|+ 4q.

Thus
γ̂ ≤ ŵ,

where
ŵ := c0π exp

[1
2

π(c0 + |1 − a|) + 2q
]
.

Moreover, by Eq. (3.5),

gT ≤
√

2 exp
[1

2

∫ π

0
|1 − a + 2q cos(2s)|ds

]
≤ ĝ,

where
ĝ :=

√
2 exp

[1
2

π|1 − a|+ 2q
]
.

So δ̂(γ̂) ≤ ẑ(c0), where

ẑ(c0) =

{ √
ŵ(1 + ĝ), if ŵ(1 + ĝ) ≤ 1,

ŵ(1 + ĝ), if ŵ(1 + ĝ) ≥ 1.
(4.3)

Let α1, α2 be the characteristic numbers of the Mathieu equation (4.1). So µk = eiαk

(k = 1, 2). Assume that (4.1) is stable; that is α1 = −α2 > 0 are real. Since

µ̃k = −1
2

Trace Ũ(π)±
√

1
4
(Trace Ũ(π))2 − detŨ(π),

cf. formula (0.5) from [2, Problems and complements to Chapter V], we see that µ̃k
may be real and therefore unstable if and only if

1
4
(Trace Ũ(T))2 > detŨ(T) = 1.

So Eq. (4.2) is stable, if α̃k = i−1 ln µ̃k, (k = 1, 2) remain real. Besides, in this case,

|µk − µ̃k|2 = |eiαk − eiα̃k |2 =(cos αk − cos α̃k)
2 + (sin αk − sin α̃k)

2

≤(cos αk − 1)2 + sin2 αk.

So if
|µk − µ̃k|2 ≤ (cos αk − 1)2 + sin2 αk = 2 − 2 cos αk,

then (4.2) is stable. Thus according to Theorem 3.1, if (4.1) is stable and

ẑ(c0) ≤
√

2 − 2 cos α, α = α1 = −α2, (4.4)
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then Eq. (4.2) is stable. Clearly,

ŵ(1 + ĝ) = c0π exp
[1

2
π(c0 + |1 − a|) + 2q

](
1 +

√
2 exp

[1
2

π|1 − a|+ 2q
])

.

But 1 +
√

2ex ≤ 3ex(x ≥ 0) and therefore,

ŵ(1 + ĝ) ≤ 3c0π exp
[
π
( c0

2
+ |1 − a|

)
+ 4q

]
. (4.5)

Now (4.4) implies the following result.

Lemma 4.1. Let (4.1) be stable. Then in the case cos α ≥ 1/2, Eq. (4.2) is stable, provided

3c0π exp
[
π
( c0

2
+ |1 − a|

)
+ 4q

]
≤ 2 − 2 cos α. (4.6)

In the case cos α ≤ 1/2, Eq. (4.2) is stable, provided

3c0π exp
[
π
( c0

2
+ |1 − a|

)
+ 4q

]
≤

√
2 − 2 cos α. (4.7)

It is not hard to show that

xex ≤ 1
2
(e2x − 1),

for any x ≥ 0. Thus

3c0π exp
[
π

c0

2

]
≤ 6π

c0

2
exp

[
π

c0

2

]
≤ 3(eπc0 − 1).

So (4.6) certainly holds, if

3(eπc0 − 1) exp
[
π|1 − a|+ 4q

]
≤ 2(1 − cos α).

Or

c0 ≤ 1
π

ln
[2

3
exp

(
− π|1 − a| − 4q

)
(1 − cos α) + 1

]
. (4.8)

Similarly, (4.7) certainly holds, if

c0 ≤ 1
π

ln
[1

3
exp

(
− π|1 − a| − 4q

)√
2(1 − cos α) + 1

]
. (4.9)

We thus get

Corollary 4.1. Let (4.1) be stable. Then in the case cos α ≥ 1/2, Eq. (4.2) is stable, provided
(4.8) is valid. In the case cos α ≤ 1/2, Eq. (4.2) is stable, provided (4.9) holds.
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Now let us assume that Eq. (4.1) is unstable. In this case

α1 = w + ib, α2 = w − ib,

with b > 0 and a real w. So

|µ1| = e−b and |µ2| = eb.

By Corollary (2.1), if |µ2| > 1 + ẑ(c0), then (4.2) is unstable. Thanks to (4.5), we get the
following result.

Lemma 4.2. Let (4.1) be unstable. Then in the case b ≤ ln 2, Eq. (4.2) is unstable, provided

3c0π exp
[
π
( c0

2
+ |1 − a|

)
+ 4q

]
≤ (eb − 1)2.

In the case b ≥ ln 2, Eq. (4.2) is unstable, provided

3c0π exp
[
π
( c0

2
+ |1 − a|

)
+ 4q

]
≤ eb − 1.

Hence, repeating the arguments of the proof of the previous corollary we get

Corollary 4.2. Let (4.1) be unstable. Then in the case b ≤ ln 2, Eq. (4.2) is unstable, if

c0 ≤ 1
π

ln
[1

3
exp

(
− π|1 − a| − 4q

)
(eb − 1)2 + 1

]
.

In the case b ≥ ln 2, Eq. (4.2) is unstable, provided

c0 ≤ 1
π

ln
[1

3
exp

(
− π|1 − a| − 4q

)
(eb − 1) + 1

]
.

5 Numerical examples

Example 5.1 (The stable case). Let us consider the Mathieu equation with a = 0.95,
q = 0.001. That is,

d2u(t)
dt2 +

(
0.95 − 0.002 cos(2t)

)
u(t) = 0. (5.1)

By ”Mathematica” we find that the characteristic number α = 0.97, i.e., it is real
and therefore Eq. (5.1) is stable. Now let us consider a perturbation of Eq. (5.1) , with
h(t) = sin(2t), then we get the following equation:

d2u(t)
dt2 +

(
0.95 − 0.002 cos(2t) + c0 sin(2t)

)
u(t) = 0. (5.2)
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Take into account that cos α = 0.56 > 0.5. Then by Corollary (4.2), for

c0 ≤ 1
π

ln
[ 2(1 − cos 0.97)

3 exp[0.05π + 0.004]
+ 1

]
= 0.07,

we obtain the stability of (5.2), if c0 ≤ 0.07. By ”Mathematica” we can see that that for
c0 ≤ 0.07, Eq. (5.2) is stable, but if we take c0 = 0.1, then the simulation in ”Mathemat-
ica” shows that (5.2) is already unstable.

Now take the function

h(t) =


2
( t

π
− 1

)
, if kπ ≤ t ≤

(
k +

1
2

)
π,

2
(

k + 1 − t
π

)
, if

(
k +

1
2

)
π < t ≤ (k + 1)π,

where k = 0, 1, · · · .
It is not hard to check that in this case also maxt |h(t)| = 1 and in the same way we

get stability for c0 ≤ 0.07.

Example 5.2 (The unstable case). Let us consider the Mathieu equation with a = 1,
q = 0.5. That is,

d2u(t)
dt2 + (1 − cos(2t))u(t) = 0. (5.3)

By ”Mathematica” we find that the characteristic numbers of (5.3) are complex:
α1,2 = 1 ± 0.24i complex; therefore Eq. (5.3) is unstable. Now let us consider the
perturbed equation

d2u(t)
dt2 +

(
1 − cos(2t) + c0 sin(2t)

)
u(t) = 0. (5.4)

So h(t) = sin(2t). Take into account that b = 0.24 < ln 2. Then by Corollary 4.2, we
get that (5.4) is unstable, provided

c0 ≤ 1
π

ln
[ (e0.24 − 1)2

3e2 + 1
]
≤ 0.001.

By ”Mathematica” we can see that for c0 = 0.001, Eq. (5.4) is really unstable.
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