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Abstract Clustering data streams has drawn lots of attention in the last few years due to their ever-growing presence. Data
streams put additional challenges on clustering such as limited time and memory and one pass clustering. Furthermore,
discovering clusters with arbitrary shapes is very important in data stream applications. Data streams are infinite and
evolving over time, and we do not have any knowledge about the number of clusters. In a data stream environment due
to various factors, some noise appears occasionally. Density-based method is a remarkable class in clustering data streams,
which has the ability to discover arbitrary shape clusters and to detect noise. Furthermore, it does not need the number of
clusters in advance. Due to data stream characteristics, the traditional density-based clustering is not applicable. Recently, a
lot of density-based clustering algorithms are extended for data streams. The main idea in these algorithms is using density-
based methods in the clustering process and at the same time overcoming the constraints, which are put out by data stream’s
nature. The purpose of this paper is to shed light on some algorithms in the literature on density-based clustering over data
streams. We not only summarize the main density-based clustering algorithms on data streams, discuss their uniqueness
and limitations, but also explain how they address the challenges in clustering data streams. Moreover, we investigate the
evaluation metrics used in validating cluster quality and measuring algorithms’ performance. It is hoped that this survey

will serve as a steppingstone for researchers studying data streams clustering, particularly density-based algorithms.
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1 Introduction

Every day, we create 2.5 quintillion bytes of data; 90
percent of current data in the world has been created
in the last two years alone. This data overtakes our ca-
pability to store and to process. In 2007, the amount of
information created exceeded available storage for the
first time. For example, in 1998 Google indexed 26 mil-
lion pages, by 2000 it reached one billion, and in 2012
Google indexed over 30 trillion Web pages. This dra-
matic expansion can be attributed to social networking
applications, such as Facebook and Twitter.

In fact, we have a huge amount of data generated
continuously as data streams from different applica-
tions. Valuable information must be discovered from
these data to help improve the quality of life and make
our world a better place. Mining data streams is
related to extracting knowledge structure represented
in streams information. The research of mining data
streams has attracted a considerable amount of re-
searchers due to the importance of its application and
the increasing generation of data streams!'-¢.

data stream, density-based clustering, grid-based clustering, micro-clustering

Clustering is a significant class in mining data
streams(>7 11 The goal of clustering is to group the
streaming data into meaningful classes. Clustering data
streams puts additional challenges to traditional data
clustering such as limited time and memory, and fur-
ther one pass clustering.

It is desirable for clustering data streams to have
an algorithm which is able to, first discover clusters
of arbitrary shapes, second handle noise, and third
cluster without prior knowledge of number of clusters.
There are various kinds of clustering algorithms for data
Among them, density-based clustering has
emerged as a worthwhile class for data streams due to
the following characteristics:

Firstly, it can discover clusters with arbitrary
shapes. Partitioning-based methods are restricted to
clusters structured on a convex-shaped. Discovery of
clusters with a broad variety of shapes is very impor-
tant for many data stream applications. For exam-
ple, in the environment observations the layout of an
area with similar environment conditions can be any
shape.

streams.
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Secondly, it has no assumption on the number of
clusters. Most of the methods require previous knowle-
dge of the domain to determine the best input parame-
ters. Nevertheless, there is not a priori knowledge in a
large amount of real life data.

Finally, it has the ability to handle outliers. For in-
stance, due to the influence of different factors such as
temporary failure of sensors in data stream scenario,
some random noises appear occasionally. Detecting
noise is one of the important issues specifically in evolv-
ing data streams in which the role of real data changes
to noise over time.

There are different surveys recently been published
in the literature for mining data streams. A number
of them survey the theoretical foundations and min-
ing techniques in data streams('2 1 as well as clus-
tering as a significant class of mining data streams.
Some of them review the well-known clustering meth-
ods in datasets!'>16] Five clustering algorithms in data
streams are reviewed and compared based on different
characteristics of the algorithms in [17]. Furthermore,
[18-20] review papers on different approaches in clus-
tering data streams based on density. The work pre-
sented in [21] surveys existing clustering methods on
data stream and gives a brief review on density-based
methods. Different from them, this paper is a thor-
ough survey of state-of-the-art density-based clustering
algorithms over data streams.

Motivation. In real world applications, naturally oc-
curring clusters are typically not spherical in shape and
there are large amounts of noise or outliers in some of
them. Density-based clustering can be applicable in
any real world application. They can reflect the real
distribution of data, can handle noise or outliers effec-
tively, and do not make any assumptions on the num-
ber of clusters. Therefore, they are more appropriate
than other clustering methods for data stream envi-
ronments. Density-based method is an important data
stream clustering topic, which to the best of our knowle-
dge, has not yet been given a comprehensive coverage.
This work is a comprehensive survey on the density-
based clustering algorithms on data stream. We decou-
ple density-based clustering algorithms in two different
categories based on the techniques they use, which help

the reader understand the methods clearly. In each
category, we explain the algorithms in detail, includ-
ing their merits and limitations. The reader will then
understand how the algorithms overcome challenging
issues. Moreover, it addresses an important issue of
the clustering process regarding the quality assessment
of the clustering results.

The remainder of this paper is organized as follows.
In the next section, we discuss about the basic and
challenges of clustering data streams as well as density-
based clustering validation. Section 3 overviews the
density-based clustering algorithms for data streams.
Section 4 examines how the algorithms overcome the
challenging issues and also compares them based on
evaluation metrics. Finally, Section 5 concludes our
study and introduces some open issues in density-based
clustering for data streams.

2 Clustering Data Streams

Clustering is a key data mining task!®7' which
classifies a given dataset into groups (clusters) such
that the data points in a cluster are more similar to
each other than the points in different clusters.

Unlike clustering static datasets, clustering data
streams poses many new challenges. Data stream comes
continuously and the amount of data is unbounded.
Therefore it is impossible to keep the entire data stream
in main memory. Data stream passes only once, so
multiple scans are infeasible. Moreover data stream re-
quires fast and real time processing to keep up with the
high rate of data arrival and mining results are expected
to be available within short response time.

There are an extensive number of clustering algo-
rithms for static datasets!’® 16l where some of them
have been extended for data streams. Genera-
lly, clustering methods are classified into five major
categories®?: partitioning, hierarchical, density-based,
grid-based, and model-based methods (Fig.1).

A partitioning-based clustering algorithm organizes
the objects into some number of partitions, where each
partition represents a cluster. The clusters are formed
based on a distance function like k-means algori-
thm(23-24] which leads to finding only spherical clusters
and the clustering results are usually influenced by

Data Stream Clustering
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Partitioning Hierarchical Density-Based Grid-Based Model-Based
Clustering Clustering Clustering Clustering Clustering
CluStream ClusTree DenStream D-Stream SWEM

(22]

Fig.1. Data stream clustering algorithms!®<).
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noise. Two of the well-known extensions of k-means
on data streams are presented in [25] where k-means
algorithm clusters the entire data stream and in
STREAM[™9 which has LOCALSERACH algorithm
based on k-median for data streams. Aggarwal et al.
proposed an algorithm called CluStream!'”! based on
k-means for clustering evolving data streams. CluS-
tream introduces an online-offline framework for clus-
tering data streams which has been adopted for the
majority of data stream clustering algorithms.

A hierarchical clustering method groups the given
data into a tree of clusters which is useful for data sum-
marization and visualization. In hierarchical clustering
once a step (merge or split) is done, it can never be un-
done. Methods for improving the quality of hierarchical
clustering have been proposed such as integrating hier-
archical clustering with other clustering techniques, re-
sulting in multiple-phase clustering such as BIRCHI26!
and Chameleon?”). BIRCH is extended for data stream
as microcluster in [10]. Furthermore, ClusTree?®! is a
hierarchical index for maintaining cluster feature. In
fact, ClusTree builds a hierarchy of micro-clusters at
different levels.

Grid-based clustering is independent of distribution
of data objects. In fact, it partitions the data space
into a number of cells which form the grids. Grid-based
clustering has fast processing time since it is not depen-
dent on the number of data objects. Some examples of
the grid-based approach include: STING?29, which ex-
plores statistical information stored in the grid cells;
WaveCluster®®)| which clusters objects using a wavelet
transform method; and CLIQUER!Y, which represents
a grid-based and density-based approach. Grid-based
methods are integrated with density-based methods for
clustering data streams which are referred to as density
grid-based. In density grid-based clustering methods
data points are mapped into the grids. Then, the grids
are clustered based on their density. Some of the den-
sity grid based clustering algorithms are D-Stream![*32]
and MR-Stream!33],

Model-based clustering methods attempt to opti-
mize the fit between the given data and some mathe-
matical model like EM (Expectation Maximization) al-
gorithm B4, EM algorithm can be viewed as an exten-
sion of the k-means. However, EM assigns the objects
to a cluster based on a weight representing the mem-
bership probability. In [35], SWEM (clustering data
streams in a time-based sliding window with expecta-
tion maximization technique) is proposed which is a
clustering data stream method using EM algorithm.

Most partitioning methods cluster objects based on
the distance between objects. Such methods can find
only spherical-shaped clusters and encounter difficulty
in discovering clusters of arbitrary shapes such as the
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“S” shape and oval clusters. Given such data, they
would likely inaccurately identify convex regions, where
noise or outliers are included in the clusters.

Density-based methods have been developed based
on the notion of density. The clusters are formed as
dense areas which are separated from sparse regions.
The main idea is to continuously grow a given cluster as
long as the density (number of objects or data points)
in the neighborhood exceeds some threshold. Such a
method can be used to filter out noise or outliers and to
discover clusters of arbitrary shape. The main density-
based algorithms include: 1) DBSCANS! which grows
clusters according to a density-based connectivity ana-
lysis, 2) OPTICSP7 which extends DBSCAN to pro-
duce a cluster ordering obtained from a wide range of
parameter settings, 3) DENCLUE?8! which clusters ob-
jects based on a set of density distribution functions.
Extensions of density-based algorithms are proposed as
well and are discussed in Section 3 in details.

2.1 Basic of Clustering Data Streams

In clustering data streams, an important issue is how
to process this infinite data which is evolving over time
or how to keep the huge amount of data for later pro-
cessing. There are some methods such as processing in
one-pass, evolving and in online-offline manner as well
as different methods for summarization of data streams.
A short description of these methods is described as fol-
lows.

1) Processing.

One-Pass. In the one-pass, data streams are
clustered by scanning data streams only once with
the assumption that data objects arriving in chunks
like k-means which was extended to be used for
data streams!®2542] Another well-known algorithm is
STREAM!™9 which partitions the input stream into
chunks and computes (for each chunk) a cluster using
a local search algorithm from [25]. DUCstream(*?! is a
one-pass grid-based clustering algorithm which assumes
the arrival of data in chunks.

FEvolving. In the one-pass approaches the clusters
are computed over the entire data streams; however,
data streams are infinite and they continuously evolve
with time. Hence, the clustering results may change
considerably over time. In the evolving approaches,
the behaviors of streams are considered as an evolv-
ing process over time and processed in different forms
of window model. Different clustering algorithms such
as [10, 32-33, 40, 44-46] were developed based on this
approach. In the window model, the data is separated
into several basic windows and these basic windows are
used as updating units. Three kinds of window models
are as follows!47]:
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o Landmark Window Model. The window is deter-
mined by a specific time point called landmark and the
present. It is used for mining over the entire history of
the data streams (Fig.2(a)).

o Sliding Window Model. Data is considered from a
certain range in the past to a present time. The idea
behind “sliding window” is to perform detailed analysis
over both the most recent data points and the summa-
rized version of the old ones (Fig.2(b)).

o Fading (Damped) Window Model. A weight
is given for each data stream based on a fading
function!*#!, and more weights are given to recent data
compared with outdated data. The use of a damped
window model is to diminish the effect of the old data
on the mining result (Fig.2(c)).

The summarization of the window models with some
example(s) of the clustering algorithm as well as their
advantages and disadvantages are presented in Table 1.
All the models have been considered in clustering data
streams. Choice of the window model depends on the
applications’ needs!*7.

/Al

(@) (b) ©

Fig.2. Window models®®. (a) Landmark window model. (b)

Sliding window model. (c¢) Fading window model.

Online-Offline. Sometimes a data stream cluster-
ing algorithm needs to investigate the clusters over dif-
ferent parts of the stream. A different time window
model is used for tracing evolving behavior of data
streams. However, we cannot perform dynamic clus-
tering over all possible time horizons of data streams.
Therefore, online-offline approach was introduced by
Aggarwal et al. in [10]. The online component keeps
summary information (overcoming real-time and mem-
ory constraints) about fast data streams and the of-

fline component gives an understanding of the clus-
ters. The majority of data stream clustering developed
for evolving data streams use CluStream’s two-phase
framework[410,32-33,40,44-45]

2) Summarization. The large volume of data streams
put space and time constraints on the computation pro-
cess. Data streams are massive and infinite, so it is im-
possible to record the entire data. Therefore, synopsis
information can be constructed from data items in the
streams. The design and choice of a particular synopsis
method depends on the problem being solved. A brief
description about different methods of summarization
is as follows!®22:

Sampling Methods. Instead of recording the entire
data streams which seems impossible, we can make a
sampling from the data stream. Reservoir sampling[*®!
is a technique which is used to select an unbiased ran-
dom sample of data streams and it is useful for data
streams.

Histograms.  Histogram-based methods are used
for static datasets; however, their extension for data
streams is a challenging task. Some of the methods are
discussed in [49] for data streams. One of the recent
algorithms, called SWClustering!*?!, keeps summary in-
formation of data streams in the form of histogram.

Wavelets. Wavelets are popular multi-resolution
techniques for data streams’ summarization. Wavelets
are traditionally used for image and signal processing.
They are used for multi-resolution hierarchy structures
over an input signal, in this case, the stream data.
Furthermore, wavelet-based histograms can be dynami-
cally kept over timel50-52,

Sketches. Sketch is a probabilistic summary tech-
nique for analyzing data streams. Sketch-based meth-
ods can be considered as a randomized version of
wavelets technique. While other methods emphasize
on small part of data, sketches summarize the entire
dataset at multiple levels of details!®.

Table 1. Window Models in Clustering Data Streams

Window Model  Definition Advantages

Disadvantages Example (s)

Landmark
window model

Analyze
the entire history
of data stream

algorithms!®]

Suitable for one-pass clustering

All the data are equally 9]
important and the amount of data in-

side the window would quickly grow

to unprocessable sizes

Sliding Analyze Suitable for applications where Ignoring part of streams [40-41]
window model the most recent interest exists only in the most
data points recent information like stock mar-
keting
Fading Assign Suitable for applications where Unbounded time window (the win- [3-4, 33]
(damped) different weights old data has an effect on the dow captures all historical data, and

window model to data points

mining results, and the effect de-

its size keeps growing as time elapses)

creases as time goes on diminish-

ing the effect of the old data
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Microcluster. Microcluster is a method to keep
statistical information about the data locality. It
can adjust well with the evolution of underlying data
streams. We will elaborate on microcluster further in
Subsection 3.2.

Grid. In this method, the data space is partitioned
into some small segments called grids and the data
points in streams are mapped to them. Each grid has a
characteristic vector which keeps a summary about all
the data points mapped to it [4].

According to the reviewed papers, the most applica-
ble summarization methods for density-based clustering
algorithms are micro-clustering and grid-based. There-
fore, we categorize the reviewed algorithms based on
these two summarization methods!?!l.

2.2 Challenges in Clustering Data Streams

Considering their dynamic behavior, clustering
over data streams should address the following
challenges!1:22:25,28,33,53].

e Handling noisy data. Any clustering algorithm
must be able to deal with random noises present in the
data since outliers have great influence on the formation
of clusters.

e Handling evolving data. The algorithm has to con-
sider that the data streams considerably evolve over
time.

e Limited time. Data streams arrive continuously,
which requires fast and real-time response. Therefore,
the clustering algorithm needs to handle the speed of
data streams in the limited time.

e Limited memory. A huge amount of data streams
are generated rapidly, which needs an unlimited mem-
ory. However, the clustering algorithm must operate
within memory constraints.

e Handling high-dimensional data. Some of data
streams are high dimensional in their nature such as
gene expression or clustering text documents. There-
fore, the clustering algorithm has to overcome this chal-
lenge in case of its data being high dimensional.

We will discuss how different density-based cluster-
ing algorithms over data streams address aforemen-
tioned challenges in Subsection 4.1.

2.3 Density-Based Clustering Validation

One of the important issues of clustering algorithms
is evaluating (validating) the goodness of the clustering
results. There are some metrics for evaluating the qua-
lity of clustering results and testing the performance
of the algorithms. The performance of the algorithms
is tested with synthetic as well as real datasets. In

J. Comput. Sci. & Technol., Jan. 2014, Vol.29, No.1

the following parts, we introduce the most applicable
real datasets and the evaluation metrics. Furthermore,
we discuss new tools and models that have been de-
veloped recently for evaluating data stream clustering
algorithms.

2.3.1 Datasets in Clustering Data Streams

There are some well-known real datasets for measur-
ing the performance of clustering algorithms including:
charitable donation, network intrusion detection, and
forest cover type which is explained as follows:

e KDD Cup98 Charitable Donation. The dataset
contains 95 412 records with 481 fields, which has infor-
mation about people who have made charitable dona-
tions in response to direct mailing requests. Clustering
can be used to group donors showing similar donation
behaviors. The dataset was also used for predicting
users who are more likely to donate to charity!*?.

e KDD Cup99 Network Intrusion Detection. The
goal of the dataset is to build a network intrusion de-
tector capable of distinguishing attack, intrusion and
other types of connection®. It has 494020 connec-
tion records and each connection has 42 continuous and
categorical attributes. Each record can correspond ei-
ther to a normal connection or to an intrusion, which
is classified into 22 types.

e Forest Cover Type. The Forest Cover Type real
world dataset, is obtained from the UCI machine learn-
ing repository®. The dataset is comprised of 581012
observations of 54 attributes, where each observation is
labeled as one of the seven forest cover classes.

2.3.2 Evaluation Metrics

e Cluster Quality. A multitude of evaluation metrics
were introduced in the literature for measuring cluster
quality. Evaluation quality metrics can be categorized
into two main classes, internal and external measures.
The main difference is whether the external information
is used for the cluster evaluation. Some of the internal
and external evaluation measures are: C-index[®!, sum
of squared distance (SSQ)!??, silhouette coefficient!>%!,
Rand Index[7%8 purity[®!, van Dongenl%!, B Cubed
precision!!], V-measurel%! variation of information!6?!,
F-measurel®3! precision®?!, and recalll®!. The com-
plete list can be found in [64] for the internal and the
external measures. However, the most often evaluation
quality metrics used in clustering data streams in the
reviewed algorithms are SSQ, purity, and Rand Index.

— SSQ measures how closely related are the objects
in the cluster. In fact, it defines the compactness of the
spherical clusters in convex approaches.

®Frank A, Asuncion A. UCI machine learning repository, 2010. http://archive.ics.uci.edu/ml/, Nov. 2013.
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— Purity is defined as the average percentage of the
dominant class labels in each cluster. The higher per-
centage of the dominant class labels in each cluster, the
higher the cluster purity. In fact, the purity of the clus-
ters is defined with respect to the true cluster (class)
labels that are known for the datasets.

— Rand index (RI) measures the similarity between
two data clusterings, having the highest value 1 when
the clusters are exactly the same. In fact, it shows how
the clustering results are close to the original classes.

SSQ and cluster purity are the two performance met-
rics used extensively in density-based data stream clus-
tering. SSQ is more applicable in the convex shapes to
define how the points are near the center. If we have the
class labels of data, the better choice is to use the purity
in the density-based clustering rather than SSQ[*4l.

In [65], the authors showed that if we use the
other evaluation methods likes NMI (Normalized Mu-
tual Information)[%%! we would get better results rather
than purity which is sensitive to the number of the
clusters. They proved their results especially for MR-
Stream. The NMI is a measure that evaluates how simi-
lar two clusterings arel67.

e Algorithm Performance.

— Scalability. The scalability test shows how the al-
gorithm is scalable with both dimensionality and the
number of the clusters. The scalability of the algo-
rithms is defined in terms of execution time and mem-
ory usage.

Execution time is defined based on the total clock
time used by an algorithm to process all the data. It
is evaluated with various dimensionalities and differ-
ent numbers of natural clusters. Synthetic datasets
are used for these evaluations, because any combination
of dimensionalities and any number of natural clusters
could be used in the generation of datasets.

Memory usage is the amount of memory used by the
algorithm. It depends on the data structure used for

saving summary information of data streams such as:
the number of micro-clusters, the number of grids in
the hash table or the number of nodes in the tree. The
memory usage is defined based on the real and synthetic
datasets.

— Sensitivity. The sensitivity analysis evaluates the
algorithms based on the analysis of the important al-
gorithm parameters. It shows how the algorithm’s
parameters affect the clustering quality and what the
best ranges for the algorithm’s parameters are.

2.3.3 Tools and Software

The MOA

framework®(8] is an open source benchmarking soft-
ware for data streams that is built on the work of
WEKA®I69], MOA has a set of stream clustering algo-
rithms and a collection of evaluation measures. MOA
has considered stream classification algorithms; what
is more, recently a stream clustering evaluation tool
was added!™. Furthermore, another evaluation mea-
sure called cluster mapping measure (CMM)[”] was
integrated to MOA for evolving data streams. CMM
has a mapping component which can handle emerging
and disappearing clusters correctly. Kremer et all™!],
showed that the proposed measure can reflect the errors
in data stream context effectively. SAMOA (Scalable
Advanced Massive Online Analysis)["? is another up-
coming tool for mining big data streams. The goal
of SAMOA is to provide a framework for mining data
streams using a cluster/cloud environment.

(Massive ~ On-line  Analysis)

3 Density-Based Clustering over Data Streams

Based on a comprehensive review on existing
density-based clustering algorithms on data stream,
these algorithms are categorized in two broad groups
called density micro-clustering algorithms and density
grid-based clustering algorithms>' (Fig.3).

Density-Based Data Stream Clustering Algorithms

|

|
Density Micro-Clustering Algorithms

{ 1 ! l ]

}
Density Grid-Based Clustering Algorithms

[ I l l l

DenStream | |StreamOptics| | (C-DenStream| | rDenStream | | SDStream

DUCStream

[ l ] l ]

D-Stream I ‘ DD-Stream ‘ ID-Stream 1T MR-Stream

| l l

HDenStream| [FlockStream| | SOStream | [HDDStream

PreDeConStream

PKS-Stream DCUStream| |DENGRIS-Stream ExCC

Fig.3. Density-based data stream clustering algorithms’s categorization.

®http://mloss.org/software/view/258/, Nov. 2013.
®http://WWW.CS.Waikato.ac.nz/ml/weka/, Nov. 2013.
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In density micro-clustering algorithms, micro-
clusters keep summary information about data and
clustering is performed on the synopsis information.
The reviewed algorithms in this category include:
DenStreaml®!,  StreamOptics!™!,  C-DenStream!™!,
rDenStream!(™! SDStream!*!], HDenStream!6),
FlockStream!6”, SOStream[™, HDDStream!™!, and
PreDeConStream!™).

In the density grid-based clustering algorithms
group, the data space is divided into grids, data
points are mapped to these grids, and the clusters

are formed based on the density of grids. The re-
viewed algorithms in this category include: DUC-
stream[*3], D-Stream I, DD-Stream[®), D-Stream

111321 MR-Stream[®3!, PKS-Stream®!), DCUStream!8?!,
DENGRIS-Stream!®3!| and ExCC[84.

In the following subsections, we will discuss in details
about the algorithms, their advantages and disadvan-
tages as well as evaluation metrics used. Additionally,
we examine how they address the challenging issues in
clustering data streams.

3.1 Density-Based Clustering

Density-based clustering has the ability to discover
arbitrary-shape clusters and to handle noises. In
density-based clustering methods, clusters are formed
based on the dense areas that are separated by sparse
areas. DBSCAN is one of the density-based cluster-
ing algorithms, which is adopted for data stream algo-
rithms, described in details as follows.

DBSCAN (Density-Based Spatial Clustering of Ap-
plications with Noise)% is developed for clustering
large spatial databases with noise, based on connected
regions with high density. The density of each point
is defined based on the number of points close to
that particular point called the point’s neighborhood.
The dense neighborhood is defined based on two user-
specified parameters: the radius (e) of the neighbor-
hood (e-neighborhood), and the number of the objects
in the neighborhood (MinPts). The basic definitions in
DBSCAN are introduced in the following, where D is a
current set of data points:

e c-neighborhood of a point: the neighborhood
within a radius of €. Neighborhood of a point p is de-
noted by N.(p):

Ne(p) = {q € Dldist(p,q) < ¢},

where dist(p, q) denotes the Euclidean distance between
points p and ¢;

e MinPts: the minimum number of points around a
data point in the e-neighborhood;
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e core point: a point the cardinality of whose e-
neighborhood is at least MinPts;

e border point: a point is a border point if the
cardinality of its e-neighborhood is less than MinPts
and at least one of its e-neighbors is a core point;

e noise point: a point is a noise point if the cardina-
lity of its e-neighborhood is less than MinPts and none
of its neighbors is a core point;

e directly density reachable: a point p is directly den-
sity reachable from point ¢, if p is in the e-neighborhood
of ¢ and ¢ is a core point;

e density reachable: a point p is density reachable
from point g, if p is in the e-neighborhood of ¢ and ¢ is
not a core point but they are reachable through chains
of directly density reachable points;

e density-connected: if two points p and ¢ are den-
sity reachable from a core point o, p and ¢ are density-
connected;

e cluster: a maximal set of density-connected points.

Core, border and noise points are shown in Fig.4.

Border

Noise

Core

Fig.4. DBSCAN: core, border, and noise points.

DBSCAN starts by randomly selecting a point and
checking whether the e-neighborhood of the point con-
tains at least MinPts points. If not, it is considered as
a noise point, otherwise it is considered as a core point
and a new cluster is created. DBSCAN iteratively adds
the data points, which do not belong to any cluster and
are directly density reachablel*®! from the core points
of a new cluster. If the new cluster can no longer be
expanded, the new cluster is completed. In order to
find the next cluster, DBSCAN randomly selects the
unvisited data points and the clustering process con-
tinues until all the points are visited and no new point
is added to any cluster.

Therefore, a density-based cluster is a set of density-
connected data objects with respect to density reacha-
bility. The points that are not placed in any cluster are
considered as noise. Fig.5 shows DBSCAN algorithm
performing on a small synthetic dataset. Figs.5(a),
5(b), and 5(c) are the steps of the clustering and
Fig.5(d) is the final clustering results.
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Fig.5. DBSCAN algorithm on a small synthetic dataset: ¢ = 20, MinPts = 5.

3.2 Density-Based Micro-Clustering
Algorithms on Data Streams

Micro-clustering is a remarkable method in stream
clustering to compress data streams effectively and to
record the temporal locality of datal’’. The micro-
cluster concept was first proposed in [26] for large
datasets, and subsequently adapted in [10] for data
streams. The micro-cluster concept is described as fol-
lows (Fig.6):
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Fig.6. Micro-clusters in density-based clustering generated by
MOA.

Micro-cluster is a temporal extension of cluster fea-
ture (CF)I?9, that is a summarization triple main-
tained about a cluster. The triple vector comprises the
number of data points, the linear sum of data points,
and their squared sum. Therefore, a micro-cluster for
a set of d-dimensional points p;, ...p;, is defined as
the (2 x d + 3) tuple (CF2*,CF1*,CF2!,CF1',n),

wherein C' F2” and CF1% each correspond to a vector
of d entries respectively.

e CF27: for each dimension, the sum of squares of
data values is maintained in C F2*. Therefore, C F2*
contains d values. The p-th entry of CF2% is equal to
Z? 1= (wzgj)z-

e CF1*: for each dimension, the sum of the data
values is maintained in CF1%. Therefore, CF1* con-
tains d values. The p-th entry of CF1% is equal to
Yoy = i

o CF2

e CF1t: the sum of timestamps T}y ... T;,

e n: the number of data points.

The micro-cluster for a set of points C' is denoted by
CFT(C).

Micro-clustering method uses micro-clusters to save
summary information about the data streams, and per-
forms the clustering on these micro-clusters.

the sum of squares of timestamps

3.2.1 DenStream

Feng et al®l proposed a clustering algorithm,
termed as DenStream, for evolving data stream, which
has the ability to handle noises as well. The algorithm
extends the micro-cluster concept as core micro-cluster,
potential micro-cluster, and outlier micro-cluster in or-
der to distinguish real data and outliers. The core-
micro-cluster synopsis is designed to summarize the
clusters with arbitrary shape in data streams. Potential
and outlier micro-clusters are kept in separate memo-
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ries since they need different processing. DenStream
is based on the online-offline framework. In the on-
line phase it keeps micro-clusters with real data and re-
moves micro-clusters with noises. In the offline phase,
density-based clustering is performed on the potential
micro-clusters which have the real data.

The algorithm uses the fading window model to clus-
ter data streams. In this model the weight of each data
point decreases exponentially with time ¢ via a fading
function f(t) = 27, where A > 0. Historical data di-
minishes its importance when \ assumes higher values.

DenStream extends the micro-cluster concepts
to core-micro-clusters, potential-micro-clusters, and
outlier-micro-clusters (Fig.7) which are described for
a group of close points p;;...p;, with timestamps
T;q ... 15, as follows:

)
L
%

@ Points of Data Streams
@ Potential Micro Clusters
© Outlier Micro Clusters

Fig.7. Potential and outlier microclusters.

Core-micro-cluster is defined as CMC(w, ¢, r):
ow=>"_, = f(t—Ti), is the weight and w > p,
_ 2= FOTi)py f(f;T”)p” is the center,

Z;lzl f(t—Tij)dist(pij,c)

e C

" r < € is the radius.
dist(pi;, c) is the Euclidean distance between point p;;
and the center c.

o r =

Note that the weight of a micro-cluster must be
above a predefined threshold p in order to be considered
as a core.

Potential micro-cluster at the time t is defined as
(CF',CF?w).

o w =37, f(t—Ti), is the weight and w > Bu.
[ is the parameter to determine the threshold of the
outlier relative to core-micro-clusters (0 < 8 < 1),

e CF' = > iy f(t = Tij)pij, is the weighted linear
sum of the points,

e CF? = > f(t=T;;)pi3, is the weighted squared
sum of the points.

The center of potential micro-cluster is ¢ = Cf L
And the radius of potential micro-cluster is r =

Vier - i o <o
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Outlier micro-clusteris defined as (CF*', CF? w, ty).
The definition of w, CF!, CF?, center, and radius are
the same as in the potential-micro-cluster. ty, = Tj;
denotes the creation time of the outlier micro-cluster.
In an outlier micro-cluster the weight w must be below
the fixed threshold, thus w < Bu. However, it could
grow into a potential micro-cluster when, by adding
new points, its weight exceeds the threshold.

Weights of micro-clusters are periodically calculated
and decision about removing or keeping them is made
based on the weight threshold.

Online Phase. For initialization of the online phase,
DenStream uses the DBSCAN algorithm on the first
initial points, and forms the initial potential micro-
clusters. In fact, for each data point, if the aggregate
of the weights of the data points in the neighborhood
radius is above the weight threshold, then a potential
micro-cluster is created. When a new data point ar-
rives, it is added to either the nearest existing potential
micro-cluster or outlier micro-cluster. The Euclidean
distance between the new data point and the center of
the nearest potential or outlier micro-cluster is mea-
sured. A micro-cluster is chosen with the distance less
than or equal to the radius threshold. If it does not
belong to any of them, a new outlier micro-cluster is
created and it is placed in the outlier buffer.

Offline Phase. 1t adopts DBSCAN to determine the
final clusters on the recorded potential micro-clusters.

DenStream has a pruning method in which it fre-
quently checks the weights of the outlier-micro-clusters
in the outlier buffer to guarantee the recognition of the
real outliers. The algorithm defines a density thresh-
old function, which calculates the lower limit of density
threshold. If the outlier micro-cluster weights below the
lower limit, it is a real outlier and can be omitted from
the outlier buffer.

Merits and Limitations. DenStream handles the
evolving data stream effectively by recognizing the po-
tential clusters from the real outliers. DenStream crea-
tes a new micro-cluster if the arriving records are in-
corporated into existing micro-clusters. However, the
algorithm does not release any memory space by ei-
ther deleting a micro-cluster or merging two old micro-
clusters. Furthermore, the storage for the new micro-
cluster is repeatedly allocated until it is eliminated in
the pruning phase. Nevertheless, the pruning phase for
removing outliers is a time consuming process in the
algorithm.

3.2.2 StreamOptics

In [73], Tasoulis et al. developed a streaming clus-
ter framework that graphically represents the clus-
ter structure of data stream. It addresses visualiza-
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tion challenges in clustering data streams. The al-
gorithm is called StreamOptics that extends the OP-
TICS (Ordering Points to Identify the Clustering Struc-
ture) algorithm[®7 for data streams using micro-cluster
concept. Core-distance and reachability distance from
OPTICS algorithm are changed in the form of micro-
cluster as follows.

Definition 1. Micro-cluster core-distance is equal
to micro-cluster radius. In OPTICS, the core distance
for a data point is the smallest value of € (neighboring
radius) that makes the data point as a core object. If
the data point is not a core object, its core-distance is
undefined.

Definition 2. The reachability-distance is the same
as that in OPTICS. Reachability-distance of an object
p1 with respect to another object py is chosen based on
the mazimum value between Fuclidean distance of p1,
p2 and the core distance of ps. If pa is not a core ob-
ject, the reachability-distance between py and po is unde-
fined. However, in StreamOptics the distance is calcu-
lated between the potential micro-clusters. Reachability-
distance between micro-clusters mcy and mco is chosen
based on the mazimum value between the Euclidean dis-
tance of mcy and mcy and the core distance of mes. If
mco 1S not a core object, the reachability-distance be-
tween mcy, and mco is undefined.

StreamOptics also uses potential micro-cluster and
outlier micro-cluster from DenStream. StreamOptics
keeps an ordered list from potential micro-clusters
and discards outlier micro-clusters. Therefore, micro-
cluster neighborhood and cluster ordering are defined
based on the potential micro-clusters as follows.

Definition 3. Micro-cluster neighborhood is defined
based on the Euclidean distance between two potential
micro-clusters.

Definition 4. Cluster ordering orders the potential
micro-clusters based on their reachability distance.

In StreamOptics, firstly the neighborhood of each
potential micro-cluster is determined, and an ordered
list of potential micro-clusters is made based on their
reachability distance. StreamOptics produces a reach-
ability plot that represents the micro-cluster structure
using OPTICS algorithm.

Since data streams are changed by time, in
StreamOptics, time is considered as the third dimen-
sion which is added to the two-dimensional plots of
OPTICS. The StreamOptics plot allows the user to
recognize the changes in cluster structure in terms of
emerging and fading clusters.

Merits and Limitations. StreamOptics is based on
micro-clustering framework, which uses OPTICS algo-
rithm to provide the three-dimensional plot that shows
the evolution of the cluster structure over the time.

However, it is not a supervised method for cluster ex-
traction; it needs manual checking of the generated
three-dimensional plot.

3.2.3 (C-DenStream

Ruiz et al. in [74] developed a density-based cluster-
ing algorithm with constraints for data streams. The
algorithm is referred to as C-DenStream, which ex-
tends the concept of instance-level constraints from
static data to stream data. Instance-level con-
straints are a particular form of background knowledge,
which refer to the instances that must belong to the
same cluster (Must-Link constraints) and those that
must be assigned to different clusters (Cannot-Link
constraints)[". In C-DenStream, instance level con-
straints are converted to potential micro-clusters level
constraint (Fig.8) and final clusters are generated on
the potential micro-clusters using C-DBSCANI®!,

ﬂ A MCO MC2

Cluster C2

Cluster C1 MC1

\4
\ 4

Must-Link (PO, P1)
Cannot-Link (PO, P2)

Cannot-Link (P0, P2)
(@) (b)

Must-Link (MC0, MC1)
Cannot-Link (MCO0, MC2)

Cannot-Link (MCO0, MC2)

Fig.8. Micro-cluster constraint[85]

Merits and Limitations. C-DenStream includes do-
main information in the form of constraints by adding
the constraints to the micro-clusters. The algorithm
is very useful in the applications, which have a priori
knowledge on the group membership of some records.
It prevents the formation of the clusters that is included
in the applications’ semantics. However, the algorithm
needs an expert to define its constraints. Moreover, the
algorithm has DenStream limitations as well.

3.2.4 rDenStream

In [75] the authors developed a density-based clus-
tering algorithm for applications with a large amount
of outliers. The algorithm is a three-step clustering
algorithm based on DenStream, which is referred to as
rDenStream (DenStream with retrospect). rDenStream
improves the accuracy of the clustering algorithm by
forming a classifier from the clustering result. In the
retrospect step of the algorithm, the misinterpreted dis-
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carded data points get a new chance to be re-learned
and to improve the robustness of the clustering.

In rDenStream the potential and the outlier micro-
clusters are determined as in DenStream. However,
instead of discarding the outlier micro-cluster, which
cannot be converted to a potential-micro-cluster or to
satisfy the density requirements, they are placed in a
historical outlier buffer. In the retrospect phase, final
clusters from performing DBSCAN on potential micro-
clusters, are used to form a classifier. This classifier is
applied to re-learn the outlier micro-cluster in the his-
torical outlier buffer. In this phase, the micro-clusters
that were chosen wrongly as outliers are modified to
improve the clustering accuracy.

Merits and Limitations. rDenStream is useful for
extracting knowledge pattern from the initial arriving
data streams. However, the memory usage and the time
complexity are high since it retains and processes the
historical buffer. rDenStream is only applicable in the
applications with a large amount of outliers, which are
worthwhile to spend time and memory to gain better
accuracy. The space complexity of rDenStream is simi-
lar to that of DenStream; however, it needs extra mem-
ory for keeping the historical outlier buffer.

3.2.5 SDStream

The SDStream algorithm![*!l has the ability to dis-
cover the clusters with arbitrary shapes over sliding
window!*”). In the algorithm, the distribution of the
most recent data stream is considered and the data
points that are not accommodated in sliding window
length are discarded. It uses potential and outlier
micro-clusters; however, they are stored in the form of
exponential histogram. It is also an offline-online phase
algorithm.

In the online phase, the new data points are added
to the nearest micro-cluster. The nearest micro-cluster
is either a potential-micro-cluster or an outlier-micro-
cluster. The updated radius of the micro-cluster is
less than its respective threshold radius. Otherwise,
a new micro-cluster is created. Since the number of
micro-clusters is limited, either a micro-cluster has to
be deleted or two clusters be merged. For deleting a
micro-cluster, the outdated micro-cluster is chosen ac-
cording to its time value: if the time value does not
belong to the length of sliding window. In the merging
case, the two nearest micro-clusters, which are density-
reachablel®9 are merged*”). In the offline phase, the
final clusters of arbitrary shape are generated on po-
tential micro-clusters using a modified DBSCAN.

Merits and Limitations. SDStream uses the sliding
window model, processing the most recent data and
summarizing the old data. In the real applications,
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users are interested in the distribution characteristics
of the most recent data points. The authors of SD-
Stream did not clarify the main usage of exponential
histogram for their algorithm.

3.2.6 HDenStream

HDenStream!™ is a density-based clustering over
evolving heterogeneous data stream. It adopts poten-
tial and outlier micro-cluster concepts from DenStream
algorithm and uses distance method for categorical data
from HCluStream®%!. HDenStream adds another entry
to potential and outlier micro-cluster concept which is
a two-dimensional (2D) array keeping the frequency of
categorical data. In fact, for measuring distance be-
tween two micro-clusters with categorical data, the dis-
tances between two categorical attributes and continu-
ous attributes are calculated separately. The algorithm
has online and offline phases and the pruning phase is
similar to that of DenStream as well.

Merits and Limitations. The algorithm can cover
categorical and continuous data, which makes it more
useful since in the real world applications we have any
kind of data. However, the algorithm does not discuss
how to save categorical features in an efficient way for
data stream environment.

3.2.7 SOStream

SOStream (Self Organizing Density-Based Cluster-
ing Over Data Stream)["”) detects structure within fast
evolving data streams by automatically adapting the
threshold for density-based clustering. The algorithm
has only online phase in which all mergings and updat-
ings are performed. SOStream uses competitive learn-
ing as introduced for SOMs (Self Organizing Maps)[®”]
where a winner influences its immediate neighborhood.
When a new data point arrives, a winner cluster is de-
fined based on Euclidean distance of existing micro-
clusters. If the calculated distance is less than a
dynamically defined threshold, the micro-cluster is con-
sidered as a winner micro-cluster and the new data
point will be added to it. It also affects the micro-
cluster neighbors of the winner cluster. The neighbors
are defined based on MinPts parameter of DBSCAN
algorithm. The algorithm finds all the clusters overlap-
ping with the winner. For each overlapping cluster its
distance to the winner cluster is calculated. Any cluster
with a distance less than that of the merge-threshold
will be merged with the winner. If the new point is
not added to any existing micro-cluster, a new micro-
cluster is created for it. SOStream dynamically creates,
merges, and removes clusters in an online manner.

Merits and Limitations. SOStream is a density-
based clustering algorithm that can adapt its thresh-
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old to the data stream. SOM is a time consum-
ing method, which is not suitable for clustering data
streams. SOStream is a micro-cluster based algorithm;
however, its authors compared its result with two grid-
based methods.

3.2.8 HDDStream

HDDStream!™! is a density-based algorithm for clus-
tering high-dimensional data streams. It has online and
offline phases. The online phase keeps summarization
of both points and dimensions and the offline phase
generates the final clusters based on a projected clus-
tering algorithm called PreDeCon(®8!. The algorithm
uses DenStream concepts; however, it introduces pre-
fer vector for each micro-cluster which is related to
prefer dimension in high-dimensional data. A prefer
dimension is defined based on variance along this di-
mension in micro-cluster. A micro-cluster prefers a di-
mension if data points of micro-clusters are more dense
along this dimension. The micro-cluster with preferred
vector is called a projected micro-cluster. Projected
term shows that the micro-cluster is based on a sub-
space of feature space and not the whole feature space.
Based on this concept, the algorithm changes the po-
tential and outlier micro-clusters to projected potential
micro-clusters and projected outlier micro-clusters re-
spectively. HDDStream has pruning time similar to
DenStream in which the weights of the micro-clusters
are periodically checked.

Merits and Limitations. HDDStream can cluster
high-dimensional data stream; however, in the prun-
ing time it only checks micro-cluster weights. Since the
micro-cluster fades over time the prefer vector should
be checked as well because it may change over time.

3.2.9 PreDeConStream

PreDeConStream!™) is similar to HDDStream; how-
ever, PreDeConStream improves the efficiency of the
HDDStream by working on the offline phase. This al-
gorithm also introduces a subspace prefer vector which
is defined based on the variance of micro-clusters and
their neighbors. The algorithm keeps two lists including
potential and outlier micro-clusters.

In the pruning time, the neighbors of newly in-
serted potential micro-clusters as well as deleted po-
tential micro-clusters are checked. The subspace prefer
vectors of these neighboring micro-clusters are updated
and put in a list as affected micro-clusters. The af-
fected micro-cluster list is used in the offline phase as
expanding clusters to improve the efficiency of the of-
fline phase.

Merits and Limitations. The algorithm can clus-
ter high-dimensional data stream based on the density

method. However, searching the affected neighboring
clusters is a time consuming process.

3.2.10 FlockStream

FlockStream!”! is a density-based clustering algo-
rithm based on a bio-inspired model. It is based on
flocking model® in which agents are micro-clusters
and they work independently but form clusters to-
gether. It considers an agent for each data point, which
is mapped in the virtual space. Agents move in their
predefined visibility range for a fixed time. If they visit
another agent, they join to form a cluster in case they
are similar to each other. It merges online and offline
phases since the agents form the clusters at any time.
In fact, it does not need to perform offline clustering to
get the clustering results.

Since, FlockStream only compares each new point
with the other agents in its agent visibility distance,
it reduces the number of comparisons in the neigh-
borhood of each point. The visibility distance has a
threshold which is defined by the users. The agents
have some rules in order to move in the virtual space
such as cohesion, separation and alignment[®”). These
rules are executed for each agent over the time. Flock-
Stream has three kinds of agents: basic representative
agents for new data point and p-representative, and o-
representative agents which are based on potential- and
outlier-micro-clusters respectively. Actually, when the
similar basic agents merge to each other, they form a
p-representative or an o-representative agent based on
their weights.

Merits and Limitations. FlockStream is more effi-
cient compared with DenStream since the number of
comparisons is so limited. In DenStream, for each new
data point, the distances to all existing potential and
outlier micro-clusters have to be calculated. Further-
more, it does not perform offline phase frequently. Al-
though the algorithm forms an outlier agent to handle
noise, there is not any clear strategy to show when and
how to remove the outliers from the agents list.

Table 2 summarizes some of the main characteristics
of the reviewed density micro-clustering algorithms.

3.3 Density Grid-Based Clustering
Algorithms on Data Streams

Using density-based and grid-based methods, re-
searchers developed several hybrid clustering algo-
rithms for data streams referred to as density grid-based
clustering algorithms!*32733]. In these algorithms, the
data space is partitioned into small segments called
grids. Each data point in data streams is mapped into
a grid and then the grids are clustered based on their
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Table 2. Main Characteristics of Density Micro-Clustering Algorithms
Name Year Type of Data Input Parameters Results Objective
DenStream![3! 2006 Continuous  Cluster radius, cluster weight, out- Arbitrary shape clusters Clustering evolving data

lier threshold, decay factor

StreamOptics!™] 2007 Continuous

C-DenStream(7™! 2009 Continuous

streams

Potential micro-cluster list, core Cluster structure plot Cluster visualization
distance, reachability distance

over time

Cluster radius, minimum number of Arbitrary shape clusters Applying constraint in
points in the neighborhood, outlier with constraint

clustering

radius, decay factor, a stream of in-

stance level constraint

rDenStream(73] 2009 Continuous

SDStream[41] 2009 Continuous

cluster weight

HDenstream!(76 2009 Continuous,
categorical

SOStream!”7] 2012 Continuous  Cluster radius

HDDStream(?8 2012 Continuous

PreDeCon- 2012 Continuous
Stream(7]

FlockStream(®7l 2013 Continuous

Cluster radius, cluster weight, out- Arbitrary shape clusters Improving accuracy
lier threshold, decay factor

sliding window size, cluster radius, Arbitrary shape clusters Clustering over sliding

over sliding window window

Cluster radius, cluster weight, out- Arbitrary shape clusters Improving quality
lier threshold, decay factor

Clustering threshold Automating clustering

threshold selection

Cluster radius, cluster weight, out- Arbitrary shape clusters Clustering
lier threshold, decay factor

high-dimensional data

Cluster radius, cluster weight, out- Arbitrary shape clusters Clustering
lier threshold, decay factor

high-dimensional data

Cluster radius, cluster weight, out- Arbitrary shape clusters Density-based clustering
lier threshold, decay factor

using flocking model

density. Density grid-based algorithms not only can dis-
cover arbitrary shape clusters and detect the outliers,
but also have fast processing time which only depends
on the number of cells (Fig.9).
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Fig.9. Density grid-based clustering framework[32].

According to the reviewed algorithms, some defi-
nitions form the basis of the density grid-based algo-
In these algorithms, the data space is par-
titioned into density grids and each data point x =
{x1,29,...,24} is mapped to a density grid g(z). Based
on this assumption the following concepts are described:

rithms.

e Density Coefficient. For each data point, a density
coefficient is considered to capture the dynamic changes
of the clusters. The density of each grid is associated
with a decay factor, which is decreased over time. In
fact, the grids are processed in the form of fading win-
dow model.

e (Grid Density. The density of each grid is defined
based on the aggregation of density coefficient of all the
data points in that grid*. However, in an algorithm
called DUC-Stream!*3 the density of the grid is defined
based on its number of data points.

e Dense, Sparse and Transitional Grid. Density
grid-based algorithms consider a threshold for the den-
sity of each grid. This density threshold categorizes the
grid as dense, sparse, and transitional. A grid is con-
sidered as dense if its density is higher than a special
threshold. If the grid density is lower than another spe-
cial threshold, the grid is a sparse grid. The grid with
density between the dense and sparse density thresholds
is considered as a transitional grid.

o Characteristic Vector. Keeps some information
about the data points, which are mapped to the grid,
such as grid density, update time, creation time, and
grid type.

e Grid Cluster. A group of dense neighboring grids,
which has higher density than the surrounding grids,
form a grid cluster!*.

In the following subsections, we explain the density
grid-based algorithms in details and discuss their ad-
vantages and disadvantages.

3.3.1 DUCstream

Gao et al*3 have proposed an incremental single
pass clustering algorithm for data streams using dense
unit, which is referred to as DUCstream. DUCstream
assumes the arrival of data in chunks, which contain
some points. The density of each unit is its number of
points and if it is higher than a density threshold, it is
considered as a dense units. The algorithm introduces
the local dense unit in order to keep only the units,
which are most probably converted to dense unit. In
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DUCstream, the clusters are identified as a connected
component of a graph in which the vertices show the
dense units and edges show their relation. Therefore,
when a dense unit is added, if there is no related clus-
ter, a new cluster is created; otherwise, the new dense
unit is absorbed to the existing clusters.

Furthermore, DUCstream keeps the clustering re-
sults in bits, which are called clustering bits, to retain
little amount of memory. The clustering bit is a bit
string, which keeps the number of dense units. In fact,
the clustering result is created in an incremental man-
ner. The time complexity and the memory space of
DUCstream are claimed to be low due to utilizing the
bitwise clustering.

Merits and Limitations. DUCstream checks the den-
sity of each unit. If the unit does not receive enough
data points over time, its density is decreased so it is not
considered for clustering. Since DUCstream processes
the data in chunks, it relies on the user to determine
the size of the chunks of data.

3.3.2 D-Stream I

Chen and Tul¥ proposed a density-based clustering
framework for clustering data streams in the real time
which is termed as D-Stream I. D-Stream I has online
and offline phases.

The online phase reads a new data point, maps it
into the grid, and updates the characteristic vector of
the grid.

The offline phase adjusts the clusters in each time
interval gap. The time interval gap is defined based on
the minimum conversion time between different kinds
of grids. In the first time interval, each dense grid is
assigned to a distinct cluster. After that, in each time
interval, clusters are adjusted by determining dense and
sparse grids. A threshold is considered for the grid den-
sity. If the grid density is higher than the special thresh-
old, it is a dense grid otherwise it is considered as a
sparse grid. If the grid is dense, it is merged with neigh-
boring grids with higher density and they form a clus-
ter. Otherwise, if it is sparse, the grid is removed from
the cluster. In fact, D-Stream I firstly updates the den-
sity of the grids and then performs the clustering based
on a standard method of density-based clustering.

An important motivation behind this framework is
handling the outliers by considering them as sporadic
grids. Sporadic grid is a kind of sparse grid, which
has very few data and does not have any chance to be
converted to a dense grid. D-Stream I defines a lower
limit for density threshold based on density threshold
function. If a sparse grid density is less than the lower
limit of density threshold, it is considered as a sporadic
grid. It has also a pruning phase, which happens in

each time interval gap. In this phase, the clusters are
adjusted and the sporadic grids are removed from the
grid list. D-Stream I uses a hash table for keeping the
grid list.

Merits and Limitations. D-Stream I clusters data
streams in real time based on the grid and the density.
It also proposes a density decaying to adjust the clus-
ters in real time and captures the evolving behavior of
data streams and has techniques for handling the out-
liers. However, for determining the time interval gap,
the algorithm considers the minimum time for a dense
grid to be converted to sparse and vice versa. There-
fore, the gap depends on many parameters. In fact,
it could be better that the algorithm would define the
time gap based on only the conversion of dense grids
to sparse ones, since the conversion of sparse grid to
dense one has already been considered in the weight
of the grid. Furthermore, it cannot handle the high-
dimensional data because it assumes that the majority
of the grids are empty in the high-dimensional situa-
tion.

3.3.3 DD-Stream

DD-Stream algorithm® is an extension of D-
Stream I, which improves the cluster quality by detect-
ing the border points in the grids. The boundary points
are extracted before performing any adjustment on the
grids. The online phase performs merely like D-Stream
I. The offline component runs in each time interval gap
(defined like D-Stream I) and extracts boundary points,
detects dense and sparse grids, and clusters the dense
grids using density-based methods. DD-Stream assigns
the points on the borders based on their distances from
the center of the neighboring grids. If the distances are
equal, the neighboring grid with higher density is cho-
sen. The information about the center of the grids is
kept in the characteristic vector of the grid.

Merits and Limitations. DD-Stream extracts the
boundary points from the grids to improve the qua-
lity of the clustering. However, the border points are
extracted whenever the data is mapped to the grids,
which is a time consuming process. It is better to de-
tect the border point in each time interval gap before
merging the grids rather than at the arrival time of the
data points. Furthermore, the algorithm recognizes the
sparse and dense grids based on their density, but it
does not have any clear strategy for removing the spo-
radic grids.

3.3.4 D-Stream II

Tu and Chenl®? proposed an algorithm for cluster-
ing data streams based on grid density and attraction.
The algorithm is based on the observation that many
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density-based clustering algorithms do not consider the
positional information of data in the grid. The idea
is based on using grid attraction for the grids. Grid
attraction®? shows that to what extent the data in
one neighbor is closer to that of another neighbor.

In fact, the algorithm is an extension of D-Stream
I, and we refer to it as D-Stream II. The clustering
procedure of D-Stream II is similar to D-Stream I; how-
ever, in D-Stream II, two dense grids are merged in case
that they are strongly correlated. Two girds are called
strongly correlated if their grid attractions are higher
than a pre-defined threshold. D-Stream II has prun-
ing techniques, like D-Stream I, to adjust the clusters
in each time interval gap and to remove the sporadic
grids mapped by the outliers.

Merits and Limitations. D-Stream II improves the
quality of clustering to some extent by considering the
position of the data in the grids for clustering. How-
ever, the algorithm still has the problems that are al-
ready mentioned in D-Stream I. Nevertheless, it keeps
the grid list in a tree rather than a table that makes
the processing of the grid list faster and it reduces the
memory space.

3.3.5 MR-Stream

Wan et all33 developed an algorithm for density-
based clustering of data streams at multiple resolutions,
termed as MR-Stream. The algorithm improves the
performance of density-based data stream clustering al-
gorithm by running the offline component at constant
times. The algorithm determines the right time for the
users to generate the clusters.

MR-Stream partitions the data space in cells and a
tree-like data structure, which keeps the space parti-
tioning. Each time a dimension is divided in two, and
a cell can be further divided in 2¢ parts where d is the
dataset dimensionality. The tree data structure keeps
the data clustering in different resolutions. Each node
has the summary information about its parent and chil-
dren.

MR-Stream has online and offline phases. In the
online phase, when a new data point is arrived, it is
mapped to its related grid cell. In the tree structure,
if there is not any sub-node, a new sub-node is cre-
ated for the new data point, and the weight of the new
sub-node’s parent is updated. The update of weight
continues up to the root of the tree. In each time in-
terval gap, the tree is pruned in two ways: from the
root to the maximum height and vice versa. In prun-
ing from leaf to root, the sparse grids are detected and
the densities of dense grids are added to their parents.
In the pruning from root to the maximum height, the
dense grids are detected and sparse grids are merged
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to form noise clusters. The sporadic grid cell is also
removed by comparing its density with lower limit of
density threshold function.

The offline phase generates clusters at a user-defined
height. It determines all the reachable dense cells at a
special distance and marks them as one cluster. The
noise clusters are removed by checking their size and
density with size and density thresholds respectively.

The authors of MR-Stream proposed a memory sam-
pling method to recognize the right time to trigger the
offline component. In this method, the algorithm makes
a relation between nodes in the tree and evolution of
clusters.

Merits and Limitations. MR-Stream introduces a
memory sampling method in order to define the right
time for running the offline component, which im-
proves the performance of the clustering. However,
MR-Stream keeps the sparse grids and merges them for
consideration as a noise cluster. It is better not to let
the noise cluster to be formed by checking the density
of the sparse grids. Furthermore, the algorithm cannot
work properly in high-dimensional data.

3.3.6 PKS-Stream

Ren et alB proposed an algorithm for cluster-
ing data streams based on the grid density for high-
dimensional data streams referred to as PKS-Stream.
The algorithm is based on the observation that in grid-
based clustering, there are a lot of empty cells specially
for the high-dimensional data. The idea is based on us-
ing PKS-tree for recording non-empty grids and their
relations as well. For keeping the non-empty cells, PKS-
Stream introduces the k-cover grid cell concept. A grid
is a k-cover, if it has the minimum density threshold
and it is not covered by any other grid. In fact, k-cover
shows the non-empty grids in the neighboring of the
leaf node grids.

PKS-Stream has online and offline phases. The on-
line phase maps the data records to the related grid
cells in the PKS-tree, if there is a grid cell for the data
record. Otherwise, a new grid cell is created. The of-
fline phase forms the clusters based on the dense neigh-
boring grids. In each time interval gap, the PKS-tree
is adjusted and the sparse grids are removed from the
tree.

Merits and Limitations. PKS-Stream is a den-
sity grid-based clustering, which handles the high-
dimensional data stream. However, it does not have
any pruning on the tree after adding a new data point
to any of the cells of the tree. PKS-Stream depends on
k, which affects the clustering result. It also affects the
k-cover, which defines the resolution of the cluster.
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3.3.7 DCUStream

DCUStream[®? is a density-based clustering algo-
rithm over uncertain data stream. For each data point
in the stream a tuple which includes data point, exis-
tence probability of the data point and its arrival time
are considered. Each data point is mapped into a grid.
The algorithm considers an uncertain tense weight for
each data point which is calculated based on the tem-
poral feature of data stream and its existence proba-
bility. By aggregation of uncertain tense weight, the
algorithm defines the uncertain data density. DCUS-
tream introduces the core dense grid, which is a dense
grid with sparse neighbors. By considering the thresh-
old for uncertain data density, dense and sparse grids
are defined. For clustering, DCUStream examines all
the grids to find core dense grid. It uses depth first
search algorithm to find neighbor grids. The process
continues for all unlabeled dense grids. All sparse grids
are considered as noise.

Merits and Limitations. DCUStream algorithm im-
proves density-based clustering algorithm for uncer-
tain data stream environment. However, searching the
core dense grids and finding their neighbors are time-
consuming processes.

3.3.8 DENGRIS-Stream

DENGRIS-Stream!®3] is a density grid-based cluster-
ing for stream data over sliding window. The algorithm
maps each input data into a grid, computes the den-
sity of each grid, and clusters the grids using density
concepts within time window units. DENGRIS-Stream
can capture the distribution of recent records precisely
using sliding window model, which is more preferable
in data stream applications. It introduces the expired
grid concept for detecting and removing the grids whose
time stamps are not in the sliding window. Further-
more, DENGRIS-Stream removes the expired grids be-
fore any processing on the grid list that leads to save
time and memory.

Merits and Limitations. DENGRIS-Stream is the
first density grid-based clustering algorithm for evolv-
ing data streams over sliding window model. However,
there is no evaluation to show its effectiveness compared
with other state-of-the-art algorithms.

3.3.9 ExCC

ExCC (Exclusive and Complete Clustering)®¥ is an
exclusive and complete clustering algorithm for hetero-
geneous data stream. It is an online-offline algorithm.
Online phase keeps synopsis in the grids and offline
phase forms the final clusters on demand. The algo-
rithm maps the numerical attributes to the grid and

the categorical attributes are assigned granularities ac-
cording to distinct values in respective domain sets.
ExCC is a complete algorithm since it uses pruning
based on the speed of data stream rather than a win-
dow model such as fading one. ExCC introduces fast
or slow stream based on the average arrival time of the
data points in the data stream. Furthermore, it is an
exclusive clustering algorithm since it uses grid for the
distribution of data. The algorithm detects noise in the
offline phase using wait and watch policy. For detecting
real outliers, it keeps the data points in the hold queue,
which is kept separately for each dimension. ExCC uses
a user specified threshold for detecting dense and sparse
grids. ExCC can filter out noise using cell density and
cluster density threshold which is specified by the user.
However, the algorithm estimates the threshold based
on the granularity of the grid, the data dimension, and
the average number of points in each grid. In order to
generate the clusters, it considers a pool for dense and
recent grids. The dense neighboring grids are chosen
from this pool by considering neighboring of each grid.
For categorical data the equality of the attributes are
considered.

Merits and Limitations. ExCC can cover data
stream with mixed attributes (numeric and cate-
gorical). Furthermore, the algorithm compares the re-
sults with micro-clustering methods. However, since it
is a grid-based algorithm the results have to be com-
pared with grid-based algorithms to be fair. The hold
queue strategy needs more memory and processing time
since it is defined for each dimension. Moreover, using
pool for keeping dense grids requires more memory to
keep and more time to process.

We summarize the main characteristics of the den-
sity grid-based clustering algorithms in Table 3.

4 Discussion

Fig.10 depicts the distribution of the reviewed pa-
pers for density-based data stream clustering algo-
rithms over years. There are two peaks in 2009 and
2012 for both categories. However, it can be observed
that micro-clustering methods are more popular than
grid methods.
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Fig.10. Distribution of the reviewed papers.
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Table 3. Main Characteristics of Density Grid-Based Clustering Algorithms
Name Year Type of Data Input Parameters Results Objective
DUCstream#3] 2005 Undefined Chunks of data streams Clusters as the connected One-scan clustering algo-
components of the graph rithm
D-Stream 1[4 2007 Continuous Data stream, decay factor, dense Arbitrary shape clusters Real-time clustering
grid threshold, sparse grid thres-
hold
DD-Stream!(80] 2008 Continuous Data stream, decay factor, dense Arbitrary shape clusters Improving quality
grid threshold, sparse grid thres-
hold
D-Stream 11321 2009  Continuous Data stream, decay factor, dense Arbitrary shape clusters Improving quality
grid threshold, sparse grid thres-
hold
MR-Stream[33] 2009  Continuous Data stream, decay factor, dense Clusters in multiple Improving performance
cell threshold, sparse cell threshold resolutions
PKS-Stream[81] 2011  Continuous PKS-tree, density threshold Arbitrary shape clusters  Clustering high-dimen-
sional data
DCUStream[®2] 2012  Continuous Data stream dimension, density Arbitrary shape clusters Clustering uncertain data
threshold
DENGRIS- 2012 Continuous Data stream, sliding window size Arbitrary shape clusters  Clustering over sliding
Stream!(83] window
ExCC[84] 2013  Continuous, Grid granularity Arbitrary shape clusters  Clustering heterogeneous
categorical data streams

In Fig.11 (motivated from [90]), we show the chrono-
logical order of the reviewed algorithms as well as how
the algorithms relate to each other. It can be observed
from the figure that the most remarkable algorithms
are DenStream and D-Stream I in micro-clustering and
the grid group respectively. Other algorithms in each of
the categories try to improve the two mentioned algo-
rithms in different aspects such as improving efficiency
or quality or handling different kinds of data by adding
some features which are listed in Table 4.

4.1 Algorithms and Challenging Issues

In this subsection, we briefly describe how the algo-
rithms overcome the challenges.

e Handling Noisy Data. In micro-clustering algo-
rithms outlier micro-cluster is introduced. The out-
lier and the real data are retained in different forms of
micro-clusters, which help to distinguish the seeds of
the new clusters from those of the outliers. In the grid
methods, sporadic grid is introduced which has a lim-
ited number of data points mapped by outliers.

e Handling FEwvolving Data. Both density-based
micro-clustering and grid-based clustering algorithms
have the ability to handle evolving data streams using
different kinds of window models such as fading and
sliding window models. DUCstream does not handle
evolving data because it considers the behavior of data
streams as the data points arriving in chunks.

o Limited Time. D-Stream II has the lowest time
complexity, which enables the processing of data stream
in limited time. Other algorithms’ time complexity

grows linearly as data streams are generated. However,
the algorithms such as rDenStream and C-DenStream
need more time for processing historical buffer and con-
straints respectively. SOStream has the highest time
complexity compared with other algorithms.

o Limited Memory. The aforementioned algorithms
use micro-clusters or grid to keep summary about the
data stream to process data points. However, the al-
gorithms such as rDenStream, C-DenStream, Flock-
Stream and ExCC need more memory.

e Handling High-Dimensional Data. If the algo-
rithms are used for the high dimensional data the time
complexity would be high which is not acceptable in
data stream clustering. In the grid methods, in this
situation the number of grids becomes large. PKS-
Stream, HDDStream, and PreDeConStream are the al-
gorithms with the ability to handle high-dimensional
data streams.

Table 5 summarizes how the algorithms address the
mentioned challenging issues.

4.2 Algorithms Evaluation

We compare the algorithms based on the evalua-
tion metrics. The algorithms with same metrics are
compared together, for example, algorithms using pu-
rity (DenStream, rDenstream, SDStream, PKS-Stream,
MR-Stream, FlockStream, HDenStream, SOStream,
PreDeConStream) (Fig.12(a)) and algorithms using
SSQ (D-Stream I, D-Stream II) (Fig.12(b)). However,
C-DenStream is the only algorithm which uses rand in-
dex and it is compared with DenStream (Fig.12(c)).
FlockStream also uses NMI (normalized mutual infor-
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Table 4. Algorithms’ Relations
Name Added Feature Objective
DenStream![3] Main algorithm Density micro data stream clustering
StreamOptics!73] DenStream + visualization Graphically representing the cluster structure of the data

C-DenStream![™]
rDenStream!75]
SDStream[*1]
HDenstream!(76]
SOStream!"”]

HDDStream!78]

PreDeConStream!7!

FlockStream[67]

DUCstream43]
D-Stream 1[4
DD-Stream![80]
D-Stream I1132]

MR-Stream[33]
PKS-Stream![81]
DCUStream!(82]

DENGRIS-
Stream!(83]
ExCC[84

DenStream + constraint
DenStream + retrospect phase
DenStream + sliding window
DenStream + categorical data
Automating DenStream parameters

DenStream + high-dimensional data

DenStream + high-dimensional data

DenStream + bio-inspired model

Clustering data stream in chunks

Main algorithm

D-Stream I + considering boundary points

D-Stream I + grid attraction

D-Stream I + removing offline phase
D-Stream II + high-dimensional data

D-Stream I + uncertain data

D-Stream I + sliding window

D-Stream I + categorical data

stream

Guiding clustering process using domain information
Using discarded micro-cluster to improve accuracy
Clustering more recent data

Achieving higher cluster purity

Removing difficulties in choosing unsuitable parameters

Density-based projected clustering over high-dimensional data
streams

Improving efficiency of offline phase in density-based projected
clustering over high-dimensional data streams

Avoiding  the offline  cluster

computation

computing demanding

Density grid-based single pass clustering
Density grid-based data stream clustering
Improving quality

Considering positional information of the data in that grid to
improve quality

Improving quality
Clustering high-dimensional data streams

Improving density-based clustering algorithm for uncertain
data stream environment

Clustering more recent data streams

Exclusive and complete clustering for mixed attributes data
streams

Table 5. Density-Based Clustering Algorithms and Challenging Issues

Density-Based

Clustering Algorithms

Handling
Noisy Data

Handling
Evolving Data

Limited Limited Handling High-
Time Memory Dimensional Data

DenStream
StreamOptics
C-DenStream
rDenStream
SDStream
HDenStream
SOStream
HDDStream
PreDeConStream
FlockStream
DUCstream
D-Stream I
DD-Stream
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PKS-Stream
DCUStream

DENGRIS-Stream
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Fig.12. Algorithm evaluation. (a) Quality comparison — purity. (b) Quality comparison — SSQ. (c) Quality comparison — RI. (d)
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stream > 50 K.

mation)[® and is compared with DenStream to mea-
sure quality (Fig.12(d)). NMI is measured based on
different time units, which is chosen by FlockStream.
All the comparisons are based on the real dataset KDD
CUP99. Purity is measured based on various time units
in which at least an attack exists.

The high quality of DenStream and MR-Stream
benefits from their similar effective pruning strategies,
which promptly get rid of the outliers while keep the po-
tential clusters to form final clusters. In terms of high-
dimensional data, PreDeConStream has better quality
than PKS-Stream since it has a method to improve the
offline phase of the algorithm. SDStream has accept-
able quality in the initial time unit; however, the qua-
lity reduces specifically in time 375, when more attacks
should be detected. The quality of rDenStream grad-
ually improves since it makes classifier from clustering

result. C-DenStream has a quality better than Den-
Stream which shows that using the background know-
ledge for guiding the clustering improves the clustering
quality. Even though FlockStream uses approximate
nearest neighbor, it has higher quality compared with
DenStream in terms of purity and normalized mutual
information. D-Stream II has better quality compared
with D-Stream I, since it considers the positional infor-
mation about the data points inside grid. HDenStream
has quality poorer than DenStream, which shows that it
cannot improve DenStream to be used for data streams
with categorical attributes.

We compare the algorithms’ performance as well.
Execution time is measured based on the number of
data points (length of the stream) with respect to the
time in seconds. We divide algorithms comparison
based on the length of the stream: less than 50000
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(< 50K) data points and more than 50000 (> 50K)
(shown in Figs.12(e) and 12(f)) respectively to make
fairly comparison. The comparison is based on the
real dataset, KDD Cup99 Network Intrusion Detection.
The algorithms, which are not in Fig.12 use another
dataset or they are measured only on synthetic datasets
or do not have any evaluation on their execution time.

It can be observed that SOStream has the longest
execution time since finding the winner micro-cluster
is time consuming. MR-Stream also has a long execu-
tion time even in smaller length of streams since the
pruning method is time consuming. D-Stream I, DD-
Stream, and D-Stream II have almost the same exe-
cution time; however D-Stream II has a better time
performance than the others. D-Stream II uses tree
structure for keeping the grid list that makes the algo-
rithm faster. DenStream’s execution time is similar to
that of PKS-stream. It shows that PKS-Stream clus-
ters high-dimensional data with acceptable execution
time.

J. Comput. Sci. & Technol., Jan. 2014, Vol.29, No.1

Table 6 compares the quality metrics, memory us-
age, time complexity, and application domain of the
reviewed algorithms which will be discussed in the fol-
lowing subsection.

4.3 Density-Based Data Stream Clustering
Algorithms’ Applications

The literature on density-based clustering for data
streams is usually centered around concrete methods
rather than application contexts. Nevertheless, in this
subsection, we would like to bring examples of several
possible scenarios where density-based clustering can
be used.

The density-based method has been used for earth
environments for a long timel®!l. Recently it has been
utilized for medical purposes such as a pre-processing
phase for prediction of Alzheimer’s diseasel®?! and for
skin cancer3!,

Real world applications may have any shape clusters
and generate noisy data in some situations. Further-

Table 6. Evaluation on Density-Based Data Stream Clustering Algorithms

Name Quality Metric Memory Time Complexity Application Domain
Usage
DenStream![3] Purity m O(m) Network intrusion detection system
StreamOptics! 73] m O(m x log(m)) Environment monitoring
C-DenStream!74] Rand Index m 4+ me O(m + me) Environment monitoring
rDenStream!75] Purity m + Shp o(m) + Ty, Network intrusion detection system
SDStream[41] Purity Nsw N/A Network intrusion detection system
HDenstream(76] Purity m O(m) Network intrusion detection system
SOStream!77] Purity m O(n?logn) Network intrusion detection system
HDDStream!78] Purity m O(m) + O(myp) Environment monitoring, network intru-
sion detection system
PreDeConStream!™!  Purity m O(m) + O(myp) + O(mgp) Network intrusion detection system
FlockStream!67] Purity, NMI m + nagent  O(m) + O(nagent) Network intrusion detection system
DUC-Stream[43] SSQ ng O(cp) Network intrusion detection system
D-Stream I[4] SSQ g O(1) + O(g) Network intrusion detection system
DD-Stream!(8Y] N/A g 0(g?) Network intrusion detection system
D-Stream I132] SSQ log1 g O(log log 1 g) Network intrusion detection system
A
MR-Stream![33] Purity gx H O(g x H) + O(29 x H) + Network intrusion detection system
O(g x log(N))
PKS-Stream!(81] Purity log] O(logk), O(k) Network intrusion detection system
DCUStream!(82] Average qua- g O(g) Environment monitoring
lity of clusters
DENGRIS- N/A g 0(g) N/A
Stream![83]
ExCC[84] Purity 9+ Spool  O(g*™*) Network intrusion detection system
+SHq

Note: n: number of data points, m: number of micro-clusters in main memory, m.: number of micro-cluster constraints, Spp: size of
historical buffer, T},: time for processing historical buffer, ngy : sliding window length, nagent: number of agents, O(my): number
of potential micro-clusters, m;,: number of inserted potential micro-clusters, mq,: number of deleted potential micro-cluster, ng:
number of dense units, ¢p: clustering bits, g: number of grids in the grid list, A: decay factor, H: level of clustering, k: PKS-tree
degree, Spool: size of pool for dense grids, Sgq: size of hold queue for noise, xk: number of discovered clusters.
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more, they do not require the number of clusters in ad-
vance. Since density-based clusterings have some abil-
ities in their nature, they are applicable in different
applications, such as:

e Network intrusion detection system: in this sys-
tem, sensors capture all network traffic and the system
analyzes the content of individual packets for malicious
trafficl?.

e Environment observations: for example, in ap-
plications that are used to monitor flood, hurricane,
tsunami, earthquake and forest fire detection!™!.

e Medical systems: clustering medical data streams
such as anatomical and physiological sensors, incidence
records, health information systems, and patient moni-
toring system!92-93]

e Stock trade analysis: for example, clustering
one million transaction records throughout the trading
hours of a day!94.

e Social network analysis: clustering micro-blogging
text streams (e.g., Twitter), in order to obtain tempo-
ral and geo-spatial features of real world events[®%.

e Moving object applications: such as animal migra-
tion analysis, and vehicle traffic management!%%!.

Applications for patient monitoring and sensor net-
works in seismic studies, for example, work in bounded
data space. Therefore, it is more preferable to use den-
sity grid-based methods. In these applications, a data
point is either a member of a cluster or an outlier. Grid-
based methods quantize the object space into a finite
number of cells that form a grid structure. All the clus-
tering operations are performed on the grid structure,
i.e., on the quantized space. The main advantage of this
approach is its fast processing time, which is typically
independent of the number of data objects and depen-
dent only on the number of cells in each dimension in
the quantized space. As for these methods, if quality
is the most important factor and time and memory are
second and third factors respectively, MR-Stream is the
best choice. In the case of the importance of execution
time such as environmental observations, for example,
the best choice is D-Stream II for Tsunami detection
since it has the lowest execution time. However, the
quality of grid-based methods is highly dependent on
the granularity of the grid and further, defining the
grid granularity to get the proper result is challenging.

Another important class of density-based algorithms
over data streams is the density micro-clustering group.
The quality of these algorithms is better than the grid-
based methods. In the grid-based method, if we want to
get more accurate results we have to fine the grids that
lead to high time complexity. Density-based micro-
clustering has better quality with reasonable time com-
plexity. The micro-clustering method has limited mem-

ory usage, which depends on the number of micro-
clusters. In the micro-clustering method, when the data
points arrive they are assigned to the related micro-
clusters and at the same time the outlier micro-clusters
are removed based on the density threshold. Therefore,
at any time the method can generate the clustering re-
sult by performing a clustering method. However, it
has some limitations; finding the proper micro-cluster
is time consuming. In some cases, because of the limi-
tations in the memory usage, some real data is removed
due to the appearance of an outlier.

However, choosing a proper density micro-clustering
algorithm depends on the type of application. For
example, in clustering GIS applications the best choice
is C-DenStream because it considers the real world con-
straints such as the city, rivers, and highway networks.
If the application needs limited processing time with
good quality, FlockStream is a better choice rather
than DenStream since it decreases the number of micro-
clustering comparisons. If quality is the first prio-
rity rDenStream is the best choice; however, it needs
more memory usage and execution time compared with
the other algorithms. If there is any application with
threshold settings (like similarity threshold or grid size)
that are difficult to be manually done, SOStream is the
best choice because it automatically adapts the thres-
holds. For detecting clusters in the recent data, such
as identifying malicious attacks (clusters) in the cur-
rent network traffic or recent stock trades on the stock
exchange, SDStream and DENGRIS-Stream are more
applicable since they cluster within the most recent por-
tion of the stream.

Another aspect of choosing an algorithm is the type
of data generated by the application, such as uncer-
tain, high-dimensional or heterogeneous. Most of the
algorithms in micro-cluster and grid groups only cover
the continuous data. Therefore, if we have for exam-
ple biomedical data with the categorical attributes, we
have only ExCC in the grid group and HDenStream in
the micro-cluster group. Furthermore, in some sensor-
based applications the output of sensor networks is un-
certain because of the noise in the sensor inputs or er-
rors in wireless transmission. In this case, the algo-
rithm has to cover the uncertain data as well. In this
situation, the best choice is DCUStream. Moreover,
if the data is high dimensional in its nature, we can
choose between HDDStream and PreDeConStream in
the micro-clustering group and PKS-Stream in the grid-
based algorithms.

In summary, the task of choosing a proper density-
based clustering algorithm depends on the kind of data
produced as well as the application requirements such
as limited time, high quality, high accuracy, handling
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high noisy data and many other requirements, which
are defined based on the application’s objectives.

5 Conclusions and Open Issues

The density-based clustering method has attracted
researchers due to its special characteristics, which has
the ability to detect arbitrary shape clusters and to
handle noise. Therefore, an extensive number of clus-
tering algorithms on data stream adopt density method.
In this paper, we surveyed a number of representative
state-of-the-art algorithms on the density-based clus-
tering algorithms over data streams. The main ad-
vantage of this paper is that it gives a comprehensive
overview of the density-based data stream clustering
algorithms and the evaluation metrics; further, the al-
gorithms were divided into two basic categorizations,
micro-cluster and grid algorithms that makes the in-
vestigation of the density-based clustering algorithms
easier.

From the above detailed discussions of different
types of density-based clustering algorithms, it can be
easily claimed that the field of clustering data streams
is wide open for researchers. Some of the possible re-
search directions in this area are listed as follows.

e The performance of the algorithms are evaluated
on the datasets by simulating the data streams. In the
further research, the algorithm should be evaluated on
real life datasets.

e As discussed earlier, evaluating the clustering qua-
lity and the algorithm’s performance is an important
issue, therefore developing a specific metric for evalu-
ating evolving data streams on clustering algorithm is
needed.

o We observed that, the clustering algorithms can-
not deal with high-dimensional data well. The num-
ber of grids will be increased as the space dimensiona-
lity grows. They have low performance on very high-
dimensional data. The biggest dimensionality is 40 in
DenStream. Therefore, further research may involve
handling the high-dimensional data in density-based
data stream clustering and at the same time handling
the other challenges.

e We noted that all the algorithms use DBSCAN in
their offline phases, which in turn needs to set various
parameters. As a result, using another type of density-
based method for clustering data stream is a further
research topic.

e The micro-clustering and grid-based clustering
have their own advantages. Hence, developing algo-
rithms using a hybrid method of micro-clustering and
grid is an area of further research.

e These algorithms have been developed to handle
stream data containing clusters of different shapes, sizes
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and densities. Nevertheless, only a small number of
them can handle difficult clustering tasks (explained in
[16]) without supervision.

e Only a limited number of algorithms can handle
other kinds of data streams such as categorical or un-
certain data. Extending the density-based clustering
algorithms to handle all kinds of data is another point
of research.

e We observed that most of the algorithms need a lot
of parameters to be set. For instance, MR-Stream needs
seven parameters, which is a difficult task to be done
and it requires some experiences. Therefore, developing
an algorithm with a fewer number of parameters to be
set is another issue of research.

e With the emergence of big data, which is evolv-
ing and changing, data stream is a specific approach
to deal with it. Therefore, proposing algorithms for
evolving data streams becomes more important.

e Recently, the data stream clusterings prefer to
use bio-inspired models. Therefore, proposing a hy-
brid clustering algorithm using a bio-inspired model
and a density-based method, could be another issue of
research.
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