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Abstract

In this paper, a two dimensional (2D) fractional Black-Scholes (FBS) model
on two assets following independent geometric Lévy processes is solved numer-
ically. A high order convergent implicit difference scheme is constructed and
detailed numerical analysis is established. The fractional derivative is a quasi-
differential operator, whose nonlocal nature yields a dense lower Hessenberg
block coefficient matrix. In order to speed up calculation and save storage
space, a fast bi-conjugate gradient stabilized (FBi-CGSTAB) method is pro-
posed to solve the resultant linear system. Finally, one example with a known
exact solution is provided to assess the effectiveness and efficiency of the pre-
sented fast numerical technique. The pricing of a European Call-on-Min option
is showed in the other example, in which the influence of fractional derivative
order and volatility on the 2D FBS model is revealed by comparing with the
classical 2D B-S model.

Keywords 2D fractional Black-Scholes model; Lévy process; fractional
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modelling financial markets and pricing financial derivatives. The pioneering work

was presented in the 1970s by Black, Scholes [4] and Merton [23], who set up the

key principles of no arbitrage option pricing and derived a well known differential

equation model, that is the B-S model. However, the model was proposed under

many strict assumptions on the real financial market. More general models by

relaxing some restrictions were constructed in ongoing researches [12,13,24].

It is frequently found that the option price presents the features of heavy tails

and volatility skew or smile in real markets. Gaussian models fail to describe these

phenomena while Lévy (or α-stable) distributions can do. Lévy processes allow ex-

treme but realistic events, such as sudden jumps of market prices [7,19,20]. There-

fore, more and more different Lévy processes have been introduced into the financial

field to model price of financial derivatives. A modified Lévy-α-stable process was

proposed by Koponen [17] and Boyarchenko and Levendorskǐi [5] to model the dy-

namics of securities. This modification yields a damping effect in the tails of the

Lévy stable distribution, which was known as the KoBoL process. Carr, Geman,

Madan and Yor [6] raised a Lévy process (that is the CGMY process), which allowed

for jump components displaying both finite and infinite activity and variation. A

finite moment log stable (FMLS) process with the tail index α ∈ (0, 2], which can

capture the highly skewed feature of the implied density for log returns, was applied

to model S&P 500 option prices by Carr and Wu [7]. Schoutens [27, 28] summed

up the application of Lévy process in finance. Of all the Lévy processes, the most

interesting include the CGMY, KoBoL and FMLS processes.

Fractional derivatives are quasi-differential operators, which provide useful tools

for a description of memory and hereditary properties and are closely related to Lévy

processes. When the price log-returns are driven by a Lévy fractional stable distribu-

tion, after some suitable transformations, the price of an option on underlying assets

can be modeled by a fractional partial differential equation (FPDE) [1,8–10,14,34].

In this paper we focus on a 2D FBS model governing European Call-on-Min option.

Assuming the two underlying assets S1 and S2 follow two independent geometric

Lévy processes with maximal negative asymmetry (or skewness) [7] (that is the

FMLS process), the option price V on these two assets is determined by a 2D FBS

equation [11] as below
∂V

∂t
+ (r − vα)

∂V

∂x
+ (r − vβ)

∂V

∂y
+ vα ·−∞ Dα

xV + vβ ·−∞ Dβ
yV = rV, (1)

where x = lnS1, y = lnS2, vα = −1
2σ

α sec απ
2 , vβ = −1

2σ
β sec βπ

2 , and the pa-

rameters r and σ(≥ 0) are the risk-free rate and the volatility of the returns from

the holding stock price, respectively. The fractional operators −∞D
α
x and −∞D

β
y

(1<α, β≤2) are the left Riemann-Liouville fractional derivatives defined on infinite
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intervals [25]. Obviously, the FBS model (1) becomes the classical B-S model when

α = β = 2.

It is well known that it is difficult to derive an analysis solution for FPDE.

So numerical simulation of the fractional pricing model has attracted considerable

attentions [3, 8, 10, 15, 21, 32, 33]. These financial literatures are all concerned with

one-dimensional situations on one asset. As far as the author knows, the exploration

of high dimensional fractional pricing model on multi assets is still sparse. Chen [11]

used a finite different scheme to solve model (1) and price the Call-on-Min and

Basket options approximately. Karipova and Magdziarz [16] derived a subdiffusive

B-S model for the fair price of basket options by the optimal martingale measure

and used the approximate methods to compare the classical with subdiffusive prices.

The non-locality of the fractional derivative operator leads to the denseness of

coefficient matrices, which makes the solution of the discrete system more difficult.

Moreover, the financial markets are becoming more and more complex, with trading

of numerous types of financial derivatives. The market requires updated information

about the values of these derivatives every second of the day. These yield a huge

demand for feasible, fast and high accuracy numerical simulations. In this paper, a

new implicit numerical scheme with second-order accuracy is constructed to approx-

imate the above 2D FBS model in finite intervals. Due to the non-local nature of

the fractional derivative, the numerical discretization of the 2D FBS model results

in a linear system with a dense lower Hessenberg block coefficient matrix, which

needs high storage space and computational requirement. This is disadvantageous

in the face of huge financial data and ever-changing financial market. In order to

speed up calculation and save storage space, the FBi-CGSTAB method is presented

to evaluate the linear system. It would be a contribution to a real world problem

whose solution would otherwise have been hampered by the fact that the solution

of the partial differential equation is required in a short period of time.

The rest of the paper is structured as follows: Section 2 derives a fully implicit

difference scheme (FIDS) with second order accuracy in both temporal and spatial

directions when the price of two underlying assets is limited to finite intervals. The

detailed numerical analysis is established in Section 3. In Section 4, a fast algorithm

combining the bi-conjugate gradient stabilized method with the fast fourier trans-

form is utilised to solve the discrete system in order to reduce the storage memory

and computational cost. A numerical experiment with an exact solution is proposed

in Section 5 to value the effectiveness and efficiency of the proposed fast numeri-

cal technique. Compared with the classical B-S model, the influence of fractional

derivative order and volatility on the 2D FBS model is revealed in another example.

The last section is dedicated to conclusions.
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2 The Fully Implicit Difference Discretization

In the section, a FIDS for the 2D FBS model is constructed. In computation,

we truncate the infinite solution domain into finite domain Ω = (xmin, xmax) ×
(ymin, ymax). Moreover, in order to facilitate the verification of the accuracy of the

numerical scheme, we consider a more general form

∂V

∂t
+ (r − vα)

∂V

∂x
+ (r − vβ)

∂V

∂y
+ vα ·xmin D

α
xV + vβ ·ymin D

β
yV = rV + f,

(x, y) ∈ Ω = (xmin, xmax)× (ymin, ymax), t ∈ [0, T ) (2)

with the following initial and boundary conditions:

V (x, y, T ) = φ(x, y), (x, y) ∈ Ω,

V (xmin, y, t) = V (x, ymin, t) = 0, (3)

V (xmax, y, t) = ψ(xmax, y, t), V (x, ymax, t) = ϕ(x, ymax, t), 0 < t < T.

The fractional operators xminD
α
x and yminD

β
y (1 < α, β ≤ 2) in equation (2) is the

Riemann-Liouville fractional derivative [25] on a finite interval. The existence and

uniqueness of the solution of this model were proved in [11]. In this paper, we focus

on its numerical simulation.

Lemma 1[29] Let u ∈ L1(R), −∞D
γ+2
x u and its Fourier transform belongs to

L1(R), then we have

−∞D
γ
xu(x) =

γ − 2q

2(p− q)
Aγ

h,pu(x) +
2p− γ

2(p− q)
Aγ

h,qu(x) +O(h2), (4)

uniformly for x ∈ R, where p, q (p ̸= q) are integers and Aγ
h,pu(x) is the shifted

Grünwald-Letnikov difference operator [22] given by

Aγ
h,pu(x) =

1

hγ

∞∑
k=0

g
(γ)
k u(x− (k − p)h)

with
g
(γ)
0 = 1, g

(γ)
1 = −γ < 0, g

(γ)
k =

(
1− γ + 1

k

)
g
(γ)
k−1, k = 1, 2, · · · ;

1 ≥ g
(γ)
2 ≥ g

(γ)
3 ≥ · · · ≥ 0;

∞∑
k=0

g
(γ)
k = 0,

m∑
k=0

g
(γ)
k < 0, m ≥ 1.

Remark 1 Considering a well defined function u(x) on the bounded interval

[a, b]. If u(a) = 0, the function u(x) can be zero extended for x < a. Taking

(p, q) = (1, 0) in (4), the γ (1 < γ ≤ 2) order left Riemann-Liouville fractional

derivative of u(x) at each point xi can be approximated by the following operator

with second order truncation error
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aD
γ
xu(xi) :=aD̃

γ
xu(xi) +O(h2) =

1

hγ

i+1∑
k=0

ω
(γ)
k u(xi−k+1) +O(h2), (5)

with

ω
(γ)
0 =

γ

2
g
(γ)
0 , ω

(γ)
k =

γ

2
g
(γ)
k +

2− γ

2
g
(γ)
k−1, k ≥ 1,

which satisfies [29]:

ω
(γ)
0 =

γ

2
, ω

(γ)
1 =

2− γ − γ2

2
< 0, ω

(γ)
2 =

γ(γ2 + γ − 4)

4
;

1 ≥ ω
(γ)
0 ≥ ω

(γ)
3 ≥ ω

(γ)
4 ≥ · · · ≥ 0;

∞∑
k=0

ω
(γ)
k = 0,

m∑
k=0

ω
(γ)
k < 0, m ≥ 2.

In the following we will construct a fully discrete scheme to approximate the

equation (2). Let tn = (N − n)τ (n = 0, 1, 2, · · · ,N ) and xi = xmin + ihx, yj =

ymin + jhy (i = 0, 1, 2, · · · ,Mx; j = 0, 1, 2, · · · ,My), where τ = T/N is a temporal

step size, hx = (xmax − xmin)/Mx and hy = (ymax − ymin)/My are spatial step sizes.

We discretize the first-order spatial derivative by the central difference quotient and

the R-L derivatives xminD
α
x and yminD

β
y by xminD̃

α
x and yminD̃

β
y , respectively. As

for the time derivative, the Crank-Nicolson scheme is employed. For simplicity, we

define the following finite difference operators:

δxV
n
i,j = (r − vα)

V n
i+1,j − V n

i−1,j

2hx
, δyV

n
i,j = (r − vβ)

V n
i,j+1 − V n

i,j−1

2hy
,

δαxV
n
i,j =

vα
hαx

i+1∑
k=0

ω
(α)
k V n

i−k+1,j , δβyV
n
i,j =

vβ

hβy

j+1∑
k=0

ω
(β)
k V n

i,j−k+1,

then equation (2) can be discretized as follows:

V n+1
i,j −V n

i,j

−τ
+
1

2
(δx+δy+δ

α
x+δ

β
y−r)V n+1

i,j +
1

2
(δx+δy+δ

α
x+δ

β
y−r)V n

i,j=f
n+ 1

2
i,j +εni,j , (6)

where V n
i,j = V (xi, yj , tn), f

n
i,j = f(xi, yj , tn), f

n+ 1
2

i,j = 1
2(f

n+1
i,j + fni,j) and εni,j =

O(h2x + h2y + τ2) (i = 1, 2, · · · ,Mx − 1; j = 1, 2, · · · ,My − 1;n = 0, 1, · · · ,N − 1) is

the truncation error.

Let Ṽ n
i,j be the numerical solution of V n

i,j . Multiplying −τ on both sides of

equation (6) and omitting the truncation errors, we derive the following FIDS to

approximate model (2):
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[
1− τ

2
(δx+δy+δ

α
x+δ

β
y−r)

]
Ṽ n+1
i,j =

[
1+

τ

2
(δx+δy+δ

α
x+δ

β
y−r)

]
Ṽ n
i,j−τf

n+ 1
2

i,j , (7)

whose initial and boundary conditions is
Ṽ N
i,j = φi,j , i = 1, 2, · · · ,Mx − 1; j = 1, 2, · · · ,My − 1,

Ṽ n
0,j = Ṽ n

i,0 = 0, n = 1, 2, · · · ,N ,

Ṽ n
Mx,j

= ψn
Mx,j

, Ṽ n
i,My

= ϕni,My
, n = 1, 2, · · · ,N .

(8)

Let Ṽ n = (Ṽ n
1 , Ṽ

n
2 , · · · , Ṽ n

My−1)
T be a block vector and each block Ṽ n

j = (Ṽ n
1,j , Ṽ

n
2,j ,

· · · , Ṽ n
Mx−1,j). Similarly, Fn = (f

n+ 1
2

1 , f
n+ 1

2
2 , · · · , fn+

1
2

My−1)
T with f

n+ 1
2

j = (f
n+ 1

2
1,j ,

f
n+ 1

2
2,j , · · · , fn+

1
2

Mx−1,j) (j = 1, 2, · · · ,My−1). Denote ζα = vατ
2hα

x
, ζβ =

vβτ

2hβ
y
, ξα = τ(r−vα)

4hx
,

ξβ =
τ(r−vβ)

4hy
and η = τr

2 , then the formula (7) can be expressed in the following

matrix form:

(I +M)Ṽ n+1 = (I −M)Ṽ n + Cn − τFn, (9)

where I is a unit matrix of order (Mx−1)×(My−1), M is a block matrix which has

(My −1)× (My −1) blocks and the size of each block matrix is (Mx−1)× (Mx−1),

which is

M =



A+B0 B1 0 · · · · · · · · · 0

B2 A+B0 B1
. . . 0

B3 B2 A+B0 B1
. . .

...
...

. . .
. . .

. . .
. . .

. . .
...

BMy−3
. . . B2 A+B0 B1 0

BMy−2 B3 B2 A+B0 B1

BMy−1 · · · · · · · · · B3 B2 A+B0


, (10)

where the matrix A = (ai,j)(Mx−1)×(Mx−1) has entries

aij =



η − ζαω
(α)
1 , i = j, j = 1, · · · ,Mx − 1,

ξα − ζαω
(α)
2 , i = j + 1, j = 1, · · · ,Mx − 2,

−ξα − ζαω
(α)
0 , i = j − 1, j = 2, · · · ,Mx − 1,

−ζαω(α)
i−j+1, i− j ≥ 2, j = 1, · · · ,Mx − 3,

0, otherwise,

(11)

Bj =



−ζβω
(β)
1 IMx−1, j = 0,

(−ξβ − ζβω
(β)
0 )IMx−1, j = 1,

(ξβ − ζβω
(β)
2 )IMx−1, j = 2,

−ζβω
(β)
j IMx−1, j = 3, 4, · · · ,My − 1,

(12)
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and

Cn = (Cn+ 1
2

1 , Cn+ 1
2

2 , · · · , Cn+ 1
2

My−1)
T,

with each block

Cn+ 1
2

j =
(
0, · · · , 0, (ξα + ζαω

(α)
0 )(Ṽ n+1

Mx,j
+ Ṽ n

Mx,j)
)
, j = 1, 2, · · · ,My − 2,

Cn+ 1
2

My−1 =
(
(ξβ+ζβω

(β)
0 )(Ṽ n+1

1,My
+ Ṽ n

1,My
), · · · , (ξβ+ζβω

(β)
0 )(Ṽ n+1

Mx−2,My
+ Ṽ n

Mx−2,My
),

(ξα+ζαω
(α)
0 )(Ṽ n+1

Mx,My−1+ Ṽ
n
Mx,My−1)+(ξβ + ζβω

(β)
0 )(Ṽ n+1

Mx−1,My
+ Ṽ n

Mx−1,My
)
)
.

Of course each (Mx − 1) × (Mx − 1) bloch Mi,j of the (My − 1) × (My − 1) block

matrix M can also be expressed by

(Mj,j)p,p = η − ζαω
(α)
1 − ζβω

(β)
1 ,

(Mj,j)p,p−1 = ξα − ζαω
(α)
2 ,

(Mj,j)p,p+1 = −ξα − ζαω
(α)
0 ,

(Mj,j)p,q = −ζαω(α)
p−q+1, p− q ≥ 2, q = 1, 2, · · · ,Mx − 3,

(Mj,j)p,q = 0, q − p ≥ 2, q = 3, · · · ,Mx − 1,

(Mj,j−1)p,q = δp,q(ξβ − ζβω
(β)
2 ),

(Mj,j+1)p,q = δp,q(−ξβ − ζβω
(β)
0 ),

(Mi,j)p,q = δp,q(−ζβω
(β)
i−j+1), i− j ≥ 2, j = 1, · · · ,My − 3,

(Mi,j)p,q = 0, j − i ≥ 2, j = 3, · · · ,My − 1,

(13)

where δp,q is the Kronecker delta.

3 Stability and Convergence of the FIDS

Using the Taylor expansion, we have

τ2

4

(
δx + δαx − r

2

)(
δy + δβy − r

2

)
(V n+1

i,j − V n
i,j)

=
τ3

4

[(
(r − να)

∂

∂x
+ να ·xmin D

α
x − r

2

)(
(r − νβ)

∂

∂y
+ νβ ·ymin D

β
y − r

2

)
Vt

]n+ 1
2

i,j

+O(τ5 + τ3(h2x + h2y)),

then the discrete scheme (6) can be transformed into[
1− τ

2

(
δx + δαx − r

2

)][
1− τ

2

(
δy + δβy − r

2

)]
V n+1
i,j

=
[
1 +

τ

2

(
δx + δαx − r

2

)][
1 +

τ

2

(
δy + δβy − r

2

)]
V n
i,j − τf

n+ 1
2

i,j + τεni,j . (14)

Similarly, the FIDS (7) can be transformed into
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[
1− τ

2

(
δx + δαx − r

2

)][
1− τ

2

(
δy + δβy − r

2

)]
Ṽ n+1
i,j

=
[
1 +

τ

2

(
δx + δαx − r

2

)][
1 +

τ

2

(
δy + δβy − r

2

)]
Ṽ n
i,j − τf

n+ 1
2

i,j . (15)

Let

Gα
x = ξαIMy−1 ⊗DMx−1 − ζαIMy−1 ⊗W

(α)
Mx−1,

Gβ
y = ξβDMy−1 ⊗ IMx−1 − ζβW

(β)
My−1 ⊗ IMx−1, (16)

where ⊗ is the Kronecker product, IN is the identity matrix of order N , W
(γ)
N

(γ = α or β) and DN are Toeplitz matrices of order N with the forms

W
(γ)
N =


ω
(γ)
1 ω

(γ)
0 · · · 0

ω
(γ)
2 ω

(γ)
1

. . .
...

...
. . .

. . . ω
(γ)
0

ω
(γ)
N ω

(γ)
N−1 · · · ω

(γ)
1

 , DN =


0 −1 · · · 0

1 0
. . .

...
...

. . .
. . . −1

0 · · · 1 0

 . (17)

Then the matrix form of the discrete scheme (15) is[
I +

(
Gα

x +
η

2
I
)][

I +
(
Gβ

y +
η

2
I
)]
Ṽ n+1

=
[
I −

(
Gα

x +
η

2
I
)][

I −
(
Gβ

y +
η

2
I
)]
Ṽ n + Cn − τFn. (18)

Lemma 2[18] Let A ∈ Rm×n, B ∈ Rr×s, C ∈ Rn×p, D ∈ Rs×t, then

(A⊗B)(C ⊗D) = AC ⊗BD (∈ Rmr×pt).

Moreover, if A,B ∈ Rn×n, I is a unit matrix of order n, then matrixes I ⊗ A and

B ⊗ I commute.

Lemma 3[18] For all matrices A and B, (A⊗B)T = AT ⊗BT.

Lemma 4[29] When 1 < γ ≤ 2, the eigenvalue λ of the matrix W
(γ)
N defined in

(13) satisfies Re(λ) < 0. Moreover, matrix W
(γ)
N is negative definite, and the real

parts of the eigenvalues of the matrix c1W
(γ)
N + c2(W

(γ)
N )T are less than 0, where

c1, c2 ≥ 0, c21 + c22 ̸= 0.

Lemma 5[18] Let A ∈ Rn×n have eigenvalues {λi}ni=1, and B ∈ Rm×m have

eigenvalues {µj}mj=1. Then the mn eigenvalues of A⊗ B, which represents the kro-

necker product of matrix A and B, are

λ1µ1, · · · , λ1µm, λ2µ1, · · · , λ2µm, · · · , λnµ1, · · · , λnµm.

Lemma 6[26] For A ∈ Cn×n, let H = A+A∗

2 be the hermitian part of A and A∗

be the conjugate transpose of A, then for any eigenvalue λ of A, it has

λmin(H) ≤ Re(λ) ≤ λmax(H),
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where Re(λ) represents the real part of λ, λmin(H) and λmax(H) are respectively the

minimum and maximum of the eigenvalues of H.

Theorem 1 The FIDS (15) is unconditionally stable.

Proof According to Lemma 2, it has

Gα
xG

β
y = Gβ

yG
α
x = ξαξβDMy−1 ⊗DMx−1 − ξαζβW

(β)
My−1 ⊗DMx−1

−ζαξβDMy−1 ⊗W
(α)
Mx−1 + ζαζβW

(β)
My−1 ⊗W

(α)
Mx−1,

then (
Gα

x +
η

2
I
)(
Gβ

y +
η

2
I
)
=
(
Gβ

y +
η

2
I
)(
Gα

x +
η

2
I
)
,

which yields that any two of the matrices(
I−
(
Gα

x+
η

2
I
))
,
(
I−
(
Gβ

y +
η

2
I
))
,
(
I+
(
Gα

x+
η

2
I
))−1

and
(
I+
(
Gβ

y +
η

2
I
))−1

can be commuted.

Here we suppose V̂ n is the approximate solution of the implicit difference scheme

(15) and denote ϵn = Ṽ n − V̂ n, n = 0, 1, · · · ,N , then ϵn satisfies:[
I +

(
Gα

x +
η

2
I
)][

I +
(
Gβ

y +
η

2
I
)]
ϵn+1 =

[
I −

(
Gα

x +
η

2
I
)][

I −
(
Gβ

y +
η

2
I
)]
ϵn.

Therefore,

ϵn =
[
I+
(
Gβ

y+
η

2
I
)]−1[

I+
(
Gα

x+
η

2
I
)]−1[

I−
(
Gα

x+
η

2
I
)][

I−
(
Gβ

y+
η

2
I
)]
ϵn−1

= · · · · · ·
=
{[
I+
(
Gβ

y+
η

2
I
)]−1[

I−
(
Gβ

y+
η

2
I
)]}n

·
{[
I+
(
Gα

x+
η

2
I
)]−1[

I−
(
Gα

x+
η

2
I
)]}n

ϵ0.

Calculate the symmetric form of Gα
x by Lemma 3 as:

Gα
x + (Gα

x)
T

2
=

1

2
[ξαIMy−1 ⊗ (DMx−1 +DT

Mx−1)− ζαIMy−1 ⊗ (W
(α)
Mx−1 + (W

(α)
Mx−1)

T)]

= −1

2
ζαIMy−1 ⊗ (W

(α)
Mx−1 + (W

(α)
Mx−1)

T).

Similarly,

Gβ
y + (Gβ

y )T

2
= −1

2
ζβ(W

(β)
My−1 + (W

(β)
My−1)

T)⊗ IMx−1.

According to Lemma 4, the real parts of the eigenvalues of [W
(α)
Mx−1 + (W

(α)
Mx−1)

T]/2

and [W
(β)
My−1+(W

(β)
My−1)

T]/2 are all negative for 1 < α, β ≤ 2. Furthermore, from the

consequences of Lemma 5 it has the real part of the eigenvalues of [Gα
x + (Gα

x)
T]/2
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and [Gβ
y +(Gβ

y )T]/2 are all positive for ζα, ζβ > 0. Let λα and λβ be the eigenvalues

of matrices Gα
x and Gβ

y , respectively, then the real parts of λα and λβ are both great

than zero by Lemma 6. Since(
1 +

η

2
+ λβ

)−1(
1− η

2
− λβ

)
and

(
1 +

η

2
+ λα

)−1(
1− η

2
− λα

)
are the eigenvalues of matrices[
I +

(
Gβ

y +
η

2
I
)]−1[

I −
(
Gβ

y +
η

2
I
)]

and
[
I +

(
Gα

x +
η

2
I
)]−1[

I −
(
Gα

x +
η

2
I
)]
,

respectively, the spectral radius of these two matrices are both less than 1 for η > 0,

which yields that{[
I+
(
Gβ

y+
η

2
I
)]−1[

I−
(
Gβ

y+
η

2
I
)]}n

and
{[
I+
(
Gα

x+
η

2
I
)]−1[

I−
(
Gα

x+
η

2
I
)]}n

converge to zero matrix when n approximates to infinity. Therefore the FIDS (15)

is unconditionally stable.

Proposition 1 Gα
x and Gβ

y defined in (16) satisfy∥∥∥[I + (Gα
x +

η

2
I
)]−1[

I +
(
Gβ

y +
η

2
I
)]−1∥∥∥

2
≤ 1,∥∥∥[I + (Gα

x +
η

2
I
)]−1[

I −
(
Gα

x +
η

2
I
)]∥∥∥

2
≤ 1,∥∥∥[I + (Gβ

y +
η

2
I
)]−1[

I −
(
Gβ

y +
η

2
I
)]∥∥∥

2
≤ 1,

where ∥ · ∥2 is the 2-norm.

Proof From the proof of Theorem 1, we know the real parts of the eigenvalues

of Gα
x + (Gα

x)
T and Gβ

y + (Gβ
y )T are all greater than 0. Furthermore, Gα

x + (Gα
x)

T

and Gβ
y + (Gβ

y )T are both real symmetric matrices, which yields Gα
x + (Gα

x)
T and

Gβ
y + (Gβ

y )T are positive definite.

For any real vector v = (v1, v2, · · · , vMy−1)
T with vj = (v1,j , v2,j , · · · , vMx−1,j)

(j = 1, 2, · · · ,My − 1) and η > 0, we have

vT
[
I +

(
Gα

x +
η

2
I
)]T[

I +
(
Gα

x +
η

2
I
)]
v

=
(
1 +

η

2

)2
vTv +

(
1 +

η

2

)
vT(Gα

x + (Gα
x)

T)v + ∥Gα
xv∥22 ≥ vTv.

Substituting v and vT by (I + (Gα
x + η

2I))
−1v and vT((I + (Gα

x + η
2I))

T)−1 in the

above formula, respectively, it obtains

vT
{[
I +

(
Gα

x +
η

2
I
)]T}−1[

I +
(
Gα

x +
η

2
I
)]−1

v ≤ vTv,
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which leads to

∥∥∥[I + (Gα
x +

η

2
I
)]−1∥∥∥

2
= sup

v ̸=0

√
vT((I + (Gα

x + η
2I))

T)−1(I + (Gα
x + η

2I))
−1v

√
vTv

≤ 1.

Similarly, it can be obtained that ∥(I + (Gβ
y + η

2I))
−1∥2 ≤ 1. Therefore,∥∥∥[I + (Gα

x +
η

2
I
)]−1[

I +
(
Gβ

y +
η

2
I
)]−1∥∥∥

2

≤
∥∥∥[I + (Gα

x +
η

2
I
)]−1∥∥∥

2
·
∥∥∥[I + (Gβ

y +
η

2
I
)]−1∥∥∥

2
≤ 1.

Moreover, according to the positive definiteness of matrices Gα
x + (Gα

x)
T and

Gβ
y + (Gβ

y )T, for any real vector v, it gets

vT
[
I −

(
Gα

x +
η

2
I
)]T[

I −
(
Gα

x +
η

2
I
)]
v

=
(
1− η

2

)2
vTv −

(
1− η

2

)
vT(Gα

x + (Gα
x)

T)v + ∥Gα
xv∥22

≤
(
1 +

η

2

)2
vTv +

(
1 +

η

2

)
vT(Gα

x + (Gα
x)

T)v + ∥Gα
xv∥22

= vT
[
I +

(
Gα

x +
η

2
I
)]T[

I +
(
Gα

x +
η

2
I
)]
v.

Then

vT
{[
I+
(
Gα

x+
η

2
I
)]T}−1[

I−
(
Gα

x+
η

2
I
)]T[

I−
(
Gα

x+
η

2
I
)][

I+
(
Gα

x+
η

2
I
)]−1

v ≤ vTv,

which means ∥∥∥[I − (Gα
x +

η

2
I
)][

I +
(
Gα

x +
η

2
I
)]−1∥∥∥

2
≤ 1.

Consequently, ∥∥∥[I + (Gα
x +

η

2
I
)]−1[

I −
(
Gα

x +
η

2
I
)]∥∥∥

2
≤ 1

holds because of the commutativity of the matrices (I+(Gα
x +

η
2I))

−1 and I− (Gα
x +

η
2I).

Similarly, ∥∥∥[I + (Gβ
y +

η

2
I
)]−1[

I −
(
Gβ

y +
η

2
I
)]∥∥∥

2
≤ 1

is valid. The proof is completed.

Theorem 2 Let V n
i,j be the exact solution of model (2) and Ṽ n

i,j be the solution

of the discrete equation (15). Then for 1 < α, β ≤ 2, it obtains

∥V n − Ṽ n∥2 ≤ C(h2x + h2y + τ2), n = 1, 2, · · · ,N ,

where C is a positive constant.
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Proof Let eni,j = V n
i,j − Ṽ n

i,j . Subtracting (14) from (15) leads to[
I+
(
Gα

x +
η

2
I
)][

I+
(
Gβ

y +
η

2
I
)]
en+1 =

[
I−
(
Gα

x +
η

2
I
)][

I−
(
Gβ

y +
η

2
I
)]
en+τεn,

where

en=(en1,1, e
n
2,1, · · ·, enMx−1,1, e

n
1,2, e

n
2,2, · · ·, enMx−1,2, · · ·, e

n
1,My−1, e

n
2,My−1, · · ·, e

n
Mx−1,My−1)

T,

εn=(εn1,1, ε
n
2,1, · · ·, εnMx−1,1, ε

n
1,2, ε

n
2,2, · · ·, εnMx−1,2, · · ·, ε

n
1,My−1, ε

n
2,My−1, · · ·, ε

n
Mx−1,My−1)

T.

Then

en = Qen−1 + τ
[
I +

(
Gβ

y +
η

2
I
)]−1[

I +
(
Gα

x +
η

2
I
)]−1

εn−1

= · · · · · ·

= Qne0 + τ
[
I +

(
Gβ

y +
η

2
I
)]−1[

I +
(
Gα

x +
η

2
I
)]−1

n−1∑
k=0

Qkεn−k−1,

where

Q =
[
I +

(
Gβ

y +
η

2
I
)]−1[

I −
(
Gβ

y +
η

2
I
)][

I +
(
Gα

x +
η

2
I
)]−1[

I −
(
Gα

x +
η

2
I
)]
.

Since e0 = 0 and ∥Qk∥2 ≤ ∥Q∥k2, according to Proposition 1 it gets

∥en∥2 ≤ τ
∥∥∥[I + (Gβ

y +
η

2
I
)]−1[

I +
(
Gα

x +
η

2
I
)]−1∥∥∥

2

n−1∑
k=0

∥Qk∥2∥εn−k−1∥2

≤ τ

n−1∑
k=0

∥εn−k−1∥2 ≤ C(h2x + h2y + τ2).

The proof is completed.

4 Fast Bi-conjugate Gradient Stabilized (FBi-CGSTAB)
Method for Solving the FIDS

The implicit difference discretization of equation (2) results in a linear system

with a dense lower Hessenberg block coefficient matrix. Solving the linear system

(9) directly, such as by Gaussian elimination method, requires a computational cost

of O(M3
xM

3
y ) per time step and storage memory of O(M2

xM
2
y ), which represents

a high computational expense. Moreover, the ever-changing market information

and enormous financial data lead to the complexity of the market. These urgently

require fast computing. In the section, we present an efficient iterative method to

solve (9) by combing the bi-conjugate gradient stabilized (Bi-CGSTAB) method [30]

and fast Fourier transform (FFT), which significantly reduces the computational cost

to O(MxMy log(MxMy)) per time iteration and the storage space to O(MxMy).
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By a simple calculation, M in formula (9) can be decomposed as

M = ηIMx−1 ⊗ IMy−1 +Gα
x +Gβ

y . (19)

According to the formulae (16) and (17), it only needs to store ω(α) = (ω
(α)
0 , ω

(α)
1 ,

· · · , ω(α)
Mx

)T and ω(β) = (ω
(β)
0 , ω

(β)
1 , · · · , ω(β)

My
)T instead of the full matrix M . More-

over, the elements of the vector Cn+ 1
2 and Fn+ 1

2 also need to be stored. Then the

total memory requirement has been significantly reduced Mx + My + 2 + (Mx −
1)(My − 1) = O(MxMy).

In the following, we consider the computational cost.

Since using the conjugate gradient squared method to solve the nonsymmetric

linear system (9) may arise the irregular convergence patterns, in order to avoid the

problem, the Bi-CGSTAB method is applied to (9) ([2, 30]).

Algorithm 1: The Bi-CGSTAB Method for (9)

Step1: In each time level tk, let V(0) = Vk−1, b = [I −M ]Vk−1 + Ck−1 − τF k−1

Step2: Compute r(0) = b− (I +M)V(0) ;
Choose an arbitrary vector R such that (R, r(0)) ̸= 0 , e.g., R = r(0)

Step3: ρ0 = a0 = w0 = 1,v(0) = p(0) = 0
Step4: for i = 1, 2, · · ·

ρi = (R, r(i−1))
if ρi = 0, invalid
else continue
βi = (ρi/ρi−1)(ai−1/wi−1)
p(i) = r(i−1) + βi(p

(i−1) − wi−1v
(i−1))

v(i) = (I +M)p(i)

ai = ρi/(R,v
(i))

s = r(i−1) − aiv
(i)

Check the norm of s, if (∥s∥ < tol), then V(i) = V(i−1) + aip
(i), stop

t = (I +M)s
wi = (t, s)/(t, t)

V(i) = V(i−1) + aip
(i) + wis

r(i) = s− wit

Check accuracy; If V(i) is accurate enough then quit, else continue
end for

Step5: Output V(k) = V(i), error=∥s∥/∥b∥.

In Algorithm 1, in addition to the operation of matrix-vector multiplication, the

computational costs of other operations are only O(MxMy), so we have to compute

the matrix-vector multiplication in an efficient way (that is FFT) to reduce the

computational complexity. Since the matrices DMx−1, DMy−1, W
(α)
Mx−1 and W

(β)
My−1

are all Toeplitz matrices, and noting the decomposition in (16) and (19), we only
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need to consider the computational cost of (LMy−1⊗IMx−1)v for the Toeplitz matrix

LMy−1 (L(i, j) = lj−i) and v ∈ R(Mx−1)(My−1).

First we embed LMy−1 into a 2(Mx − 1)(My − 1) × 2(Mx − 1)(My − 1) block-

circulant-circulant-block matrix C2(Mx−1)(My−1) of the form

C2(Mx−1)(My−1) =

(
LMy−1 ⊗ IMx−1 DMy−1 ⊗ IMx−1

DMy−1 ⊗ IMx−1 LMy−1 ⊗ IMx−1

)
,

where

DMy−1 =



0 l2−My · · · l−2 l−1

lMy−2 0 l2−My

. . . l−2
... lMy−2 0

. . .
...

l2
. . .

. . .
. . . l2−My

l1 l2 · · · lMy−2 0


.

Then the matrix-vector multiplication can be calculated as follows:

C2(Mx−1)(My−1)

(
v
0

)
=

(
LMy−1 ⊗ IMx−1 DMy−1 ⊗ IMx−1

DMy−1 ⊗ IMx−1 LMy−1 ⊗ IMx−1

)(
v
0

)
=

(
(LMy−1 ⊗ IMx−1)v
(DMy−1 ⊗ IMx−1)v

)
.

It is well known that the circulant matrix C2(Mx−1)(My−1) can be decomposed as

C2(Mx−1)(My−1) = (F2(My−1) ⊗ F2(Mx−1))
−1diag(c)(F2(My−1) ⊗ F2(Mx−1)),

where c is the corresponding two dimensional FFT of the first column vector of

C2(Mx−1)(My−1), and F2(M−1) is the 2(M − 1)× 2(M − 1) discrete Fourier transform

matrix given by

F2(M−1)(j, k) =
1√

2(M − 1)
exp

( πijk

M − 1

)
, i ≡

√
−1,

for 1 ≤ j, k ≤ 2(M − 1) − 2. For any vector v, the matrix-vector multiplication

(LMy−1 ⊗ IMx−1)v can be carried out in O((Mx − 1)(My − 1) log(Mx − 1)(My −
1)) operations via the FFT (see [31]). Therefore, by FBi-CGSTAB method, the

computational cost of solve linear system (9) has been significantly reduced to

O(MxMy log(MxMy)) per time iteration.

5 Numerical Experiments

Example 1 Consider the following fractional diffusion-convection-reaction equa-

tion with a source term
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∂V

∂t
+ (r − vα)

∂V

∂x
+ (r − vβ)

∂V

∂y
+ vα · 0D

α
xV + vβ ·0 Dβ

yV = rV + f,

(x, y) ∈ Ω = (0, 1)× (0, 1), t ∈ [0, T ),
V (x, y, T ) = x3y4, (x, y) ∈ Ω,
V (0, y, t) = V (x, 0, t) = 0,
V (1, y, t) = y4eT−t, V (x, 1, t) = x3eT−t, 0 < t ≤ T,

(20)

where the source term

f(x, t) = eT−t
[
− (1 + r)x3y4 + 3(r − vα)x

2y4 + 4(r − vβ)x
3y3

+vα
Γ(4)

Γ(4− α)
x3−αy4 + vβ

Γ(5)

Γ(5− β)
x3y4−β

]
.

The exact solution of this equation is V (x, t) = x3y4eT−t.

In Example 1, we always take the values of parameters as α = 1.7, β = 1.8, r =

0.05, σ = 0.25 and T = 1.0.

Tables 1 and 2 list the errors in the maximum-norm and its corresponding con-

vergence order of equation (20). From these tables, it can be seen that the numerical

solution obtained by the FIDS (7) is very close to the exact solution. Furthermore,

the convergence order of FIDS is in good agreement with the conclusion of Theorem

2. Here the convergence orders of the FIDS are computed by log h1
h2

error1
error2

for the spa-

tial step size h = hx = hy = 1
M and log∆τ1

∆τ2

error1
error2

for the temporal step size ∆τ = 1
N ,

respectively. The notation errori corresponds to the error when h = hi or ∆τ = ∆τi.

Table 1: Numerical errors and orders of
convergence for Example 1 when
N = 1000, Mx =My :=M .

M Max-error order
23 3.4836×10−4

24 9.3998×10−5 1.89
25 2.4365×10−5 1.95
26 6.2067×10−6 1.97
27 1.5781×10−6 1.98

Table 2: Numerical errors and orders of
convergence for Example 1 when
N =Mx =My.

N Max-error order
24 4.1772×10−4

25 1.1199×10−4 1.90
26 2.8894×10−5 1.95
27 7.3267×10−6 1.98
28 1.8445×10−6 1.99

The consumed CPU times to run the Gaussian left division method, the Bi-
CGSTAB method and the FBi-CGSTAB method for fixed temporal step τ = 1/300
are respectively displayed in Table 3. Especially, for the Gaussian left division
method and the Bi-CGSTAB method, the computer does not work properly because
there is no sufficient storage space when Mx = My = 28. From which it can be
seen that the FBi-CGSTAB method has significantly reduced the computational
requirement and the storage space. We carried out all numerical computations by
using MATLAB on Lenovo L430 laptop with configuration: Intel(R) Core(TM) i5-
7500, 3.40GHz and 8.0G RAM.
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Table 3: Comparison of the consumed CPU time of FBi-CGSTAB versus Gauss
left division and Bi-CGSTAB under the same accuracy in Example 1.

Mx =My CPU time
Gaussian left division 25 20.4063s

26 779.7031s ≈ 13min
27 3.6428e+04s ≈ 10h7min8s
28 ***

Bi-CGSTAB 25 1.5469s
26 37.6563s
27 0.1034e+04s≈ 17min14s
28 ***

FBi-CGSTAB 25 0.5313s
26 5.6250s
27 32.0625s
28 287.7696s≈ 4min48s

Example 2 We now consider the following FBS model on two assets for a
European Call-on-Min option

∂V

∂t
+ (r − vα)

∂V

∂x
+ (r − vβ)

∂V

∂y
+ vα · 0D

α
xV + vβ ·0 Dβ

yV = rV,

(x, y) ∈ Ω = (ln 0.1, ln 100)× (ln 0.1, ln 100), t ∈ [0, T ),
V (x, y, T ) = max{min(ex, ey)−K, 0}, (x, y) ∈ Ω,

V (x, y, t) = max{min(ex, ey)−K · e−r(T−t), 0}, (x, y) ∈ ∂Ω, t ∈ (0, T ],

(21)

where K is the strike price and T is the expiry time.
We use the FIDS (7) to solve this model approximately. Here taking the param-

eter K = 50, T = 1, r = 0.05. The numerical results of the European Call-on-Min
option are plotted in Figure 1 against the stock prices S1 = ex and S2 = ey with
α = β = 1.5 and σ = 0.25, which shows a fat tail characteristics.

Figure 1: Computed Prices of a European Call-on-Min Option
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To illustrate the influence of α and β on the option price, we calculate the price
of European Call-on-Min option numerically for different α and β, and plot the
difference curves between the numerical solutions of the FBS model (21) and the
classical B-S model in Figure 2 at t = 0.

Figure 2: VFBS − VBS for different α and β when σ = 0.25

From Figure 2, one can see that the call option price obtained by FBS model
increases as α and β decrease when the stock prices S1 and S2 are greater than a
critical value ( but close to the strike price), which likely implies that the option
price exhibits a jump (or convective) nature when α and β are close to 1, the jump
nature of the FMLS process delivers much higher prices. While α and β are close to
2, the corresponding option price mainly presents a diffusive nature. Furthermore,
in order to observe the effect of volatility rate σ on the option price, the difference
curves for different σ are presented in Figure 3 when α = β = 1.5. Figure 3 shows
that the difference value increases as the volatility rate σ increases when S1 and S2
are greater than a critical value, which suggests that the FBS model is more sensitive
to volatility change compared with the classical B-S model. It would be indicated
that the FBS model can better capture the dynamic process of option price changes.

Figure 3: VFBS − VBS for different σ

6 Conclusion
The complexity of the financial markets and non-locality of the fractional deriva-

tive operator yield a huge demand for feasible, fast and high accuracy numerical
simulations to FBS models. In the paper, a FIDS is constructed for a 2D FBS
model, which is unconditional stable and second-order convergent. Then, in order
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to solve the resultant linear system quickly and effectively, a FBi-CGSTAB is pre-
sented which significantly reduces the computational cost to O(MxMy log(MxMy))
per iteration and the storage space to O(MxMy). One numerical example with ex-
act solution is chosen to confirm our theoretical analysis. The comparison of CPU
time spent on running the Gaussian left division method, the Bi-CGSTAB mehtod
and the FBi-CGSTAB method highlights the remarkable effectiveness of the FBi-
CGSTAB in rapid computation. It is worth mentioning that this fast and high
accuracy numerical technique can be applied to similar models.

A European Call-on-Min option is priced by the FBS model and the proposed
numerical technique, which can also be used to price other more complex options,
such as barrier options. For different α, β and σ, the difference curves of option
prices between the FBS model and the classical B-S model are plotted. From these
graphical features, we may think that the FBS model based on the Lévy process
not only presents the feature of fat tail, but also can capture some extreme but
realistic events, such as sudden jumps of prices, and thus more correctly simulate
the dynamics of option prices in markets with jumps than the classical B-S model.
We believe that these findings provide useful information for further applications of
the fractional calculus in financial market.
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