
LONG-TERM DYNAMIC ANALYSIS OF
ENDANGERED SPECIES WITH

STAGE-STRUCTURE AND MIGRATIONS
IN POLLUTED ENVIRONMENTS∗†

Fangfang Liu1, Kexin Wang1, Fengying Wei1,2‡

(1. College of Mathematics and Computer Science, Fuzhou University, Fuzhou 350116,

Fujian, PR China;

2. Key Laboratory of Operations Research and Control of Universities in Fujian,

Fuzhou University, Fuzhou 350116, Fujian, PR China)

Ann. of Appl. Math.
36:1(2020), 48-72

Abstract

We propose a stochastic stage-structured single-species model with migra-
tions and hunting within a polluted environment, where the species is separated
into two groups: the immature and the mature, which migrates from one patch
to another with different migration rates. By constructing a Lyapunov func-
tion, together with stochastic analysis approach, the stochastic single-species
model admits a unique global positive solution. We then utilize the compar-
ison theorem of stochastic differential equations to investigate the extinction
and persistence of solution to stochastic single-species model. The main results
indicate that the species densities all depend on the intensities of random per-
turbations within both patches. As a consequence, we further provide several
strategies for protecting endangered species within protected and unprotected
patches.

Keywords protection zones; stage-structure; random perturbations; mi-
gration; extinction and persistence

2000 Mathematics Subject Classification 60H10

1 Introduction
The establishment of the protection zones within some countries or areas around

the world has been widely accepted and recognized as an efficient strategy to avoid

the endangered species from extinction when faced the excessive activities of human

beings. The researchers proposed and formulated the population models between

unprotected and protected patches to investigate how the dynamic mechanics of the
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species undertook in the long run. For instance, Zou and Wang [2] studied the

dynamic behaviors of a deterministic single-species model with diffusion between

two patches 
ẋ(t) = rx(t)

(
1− x(t)

K

)
− d

H
(x(t)− y(t))− Ex(t),

ẏ(t) = ry(t)
(
1− y(t)

K

)
+

d

h
(x(t)− y(t)),

(1)

where x(t) and y(t) respectively represent population densities of the species in

unprotected and protected patches at time t, r means the intrinsic growth rate,

K refers to the carrying capacity of environments, d is the diffusion coefficient, E

denotes the hunting rate in unprotected patch. By assuming that the size of the

unprotected patches isH and the size of the protected patches is h; the diffusion term

is proportional to the differences of densities between two patches, by considering a

size-dependent single-species model with migration and hunting, they derived that

reducing the diffusion coefficient and increasing the size of the protection zone are

both propitious for the enhancement of population levels within protected patch.

Other latest results regarding the protection zones could be found in the literatures

[4,13,21,31-34].

Pollution of environments often seriously threatens spaces for survival for most

species on the globe. The fact is that, some species become extinction, and more

species are endangered when they simultaneously face environmental and human

pollution. Nowadays, it therefore is of especial importance to study the persistence

and extinction for endangered species within polluted environments. Recently, many

scholars have conducted extensive researches on endangered species regarding pol-

luted environment and toxins distribution, and have obtained some good related

results. For example, Srinivsu [26] studied a single-population model in which the

input toxin is a constant, and obtained sufficient conditions for the consistence,

persistence and extinction. Later, Yan et al. [27] found the criteria for survival

and extinction by comparison theorem of ordinary differential equations to study

the dynamic behaviors of a single-population model, when the population growth

rate in the polluted environment is nonlinearly related to the toxin concentration in

species. Almost at the same year, Yang et al. [28] investigated the persistence of

a single-population model in polluted environment by Dulac function method, and

obtained sufficient conditions for the global stability of positive equilibrium state to

the model, and further explained its corresponding biological meaning.

We in this paper propose a single-species model in which the species moves

between patches: unprotected patch and protected patch. We denote the density of

individuals for endangered species in unprotected patch at time t by x(t), and the
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density of individuals in protected patch by y(t). Thereinto, the matures within

unprotected and protected patches are respectively denoted by xm(t) and ym(t), and

the immatures within unprotected and protected patches are respectively denoted

by xi(t) and yi(t).

WWF China made fourth investigation upon outdoor survival of wild giant pan-

das in China from 2011 to 2014, which shows that, the number of wild giant pandas

within mainland of China has reached 1864, and the number of giant pandas in pro-

tected patches has accounted for 66.8% within total number in mainland of China

(see [36]). Another case in National Forestry and Grassland Administration and

National Park Administration claimed that the number of South China tiger (also

called Panthera tigris Amoyensiss in references) in protected patch has accounted for

55% of the total number within mainland of China (see [37]). For Tibetan antelope

(referred also as Pantholops hodgsoniis), the number in protected patches has ac-

counted for 70% of the national quantity (see [37]). Combined with the above cases,

we here assume that the amount of individuals of endangered species in protected

patch is larger than that in unprotected patch in this paper:

xi(t) ≤ y(t) ≤ K1xi(t), xm(t) ≤ y(t) ≤ K2xm(t), (2)

where K1 > 1 and K2 > 1, and there is a certain proportional relationship between

the immature and the mature in protected patch as follows:

K3ym(t) ≤ yi(t) ≤ K4ym(t), (3)

with 0 < K3 < 1, K4 > 1. We further assume that migration process for the ma-

ture is a double-direction activity due to the spread of toxicant, that is, the mature

in unprotected patch would migrate from and to protected patch due to shortage

of food-resource and concentration of toxicant. Then we reach the following de-

layed ordinary differential equations, which describe the single-species in a polluted

unprotected patch with stage-structure and migration:

ẋi(t) = α1

(
T1(t)

)
xm(t)− β1

(
T1(t)

)
xi(t)

−α1

(
T1(t− τ)

)
xm(t− τ) exp

(
−

∫ t

t−τ
β1(T1(s))ds

)
,

ẋm(t) = α1

(
T1(t− τ)

)
xm(t− τ) exp

(
−

∫ t

t−τ
β1(T1(s))ds

)
−γ1

(
T1(t)

)
x2m(t)−m1

(
T1(t)

)
xm(t) +m2

(
T2(t)

)
ym(t)

−Exm(t)− β2
(
T1(t)

)
xm(t), (4)

where α1(T1) denotes the birth rate of the immature in unprotected patch; β1(T1)

and β2(T1) denote the death rates of the immature and the mature in unprotected
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patch respectively; γ1(T1) denotes the competition rate of the mature in unprotect-

ed patch; m1(T1) means the toxicant-dependent migration rate from unprotected

to protected patch; m2(T2) stands for toxicant-dependent migration rate from pro-

tected to unprotected patch; E is the hunting rate by human beings and here T1(t)

and T2(t) respectively mean toxicant concentrations in the environment at time t in

unprotected and protected patches respectively.

For the mature in protected patch, the individuals would migrate from and to

unprotected patch due to shortage of finding mate or survival resource or other

possible reasons. Then we get the following delayed ordinary differential equations:

ẏi(t) = α2

(
T2(t)

)
ym(t)− β3

(
T2(t)

)
yi(t)

−α2

(
T2(t− τ)

)
ym(t− τ) exp

(
−

∫ t

t−τ
β3(T2(s))ds

)
,

ẏm(t) = α2

(
T2(t− τ)

)
ym(t− τ) exp

(
−

∫ t

t−τ
β3(T2(s))ds

)
−γ2

(
T2(t)

)
y2m(t) +m1

(
T1(t)

)
xm(t)−m2

(
T2(t)

)
ym(t)

−pm1

(
T1(t)

)
xm(t)ym(t)− β4

(
T2(t)

)
ym(t), (5)

where α2(T2) denotes the birth rate of the immature in protected patch; β3(T2) and

β4(T2) denote the death rates of the immature and the mature in protected patch

respectively; γ2(T2) denotes the competition rate of the mature in protected patch;

pm1(T1)xmym stands for the individuals poisoned with probability p through direct

contacts by the mature individuals who carry toxicant migrating from unprotected

patch.

Meanwhile, toxicant concentrations within unprotected and protected patches

obey the following ordinary differential equations:

Ṫ1(t) = Q1(t)−
(
δ1 + δ3xi(t) + δ5xm(t)

)
T1(t),

Ṫ2(t) = Q2(t)−
(
δ2 + δ4yi(t) + δ6ym(t)

)
T2(t), (6)

where Qi(t) (i = 1, 2) are the emission rates of the toxicant into the environ-

ment, which are always assumed to be bounded non-negative functions of t, and

Q1(t) ≫ Q2(t); δ1 and δ2 represent the natural washout rates of the toxicant in the

environment; δ3, δ4, δ5 and δ6 are the depletion rates of the toxicant concentration in

the environment due to the uptake by the immature and mature individuals in un-

protected and protected patches, respectively. Equation (6) gives the boundedness

of toxicant concentration by means of comparison theorem of ordinary differential

equations

lim sup
t→∞

T1(t) ≤
Q1m

δ1
:= Q1δ, lim sup

t→∞
T2(t) ≤

Q2m

δ2
:= Q2δ, (7)
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here Q1m = max
t≥0

Q1(t) and Q2m = max
t≥0

Q2(t). Moreover, we always assume that

αi(Ti) (i = 1, 2) are non-increasing functions of toxicant concentrations, β1(T1),

β2(T1), β3(T2), β4(T2), γi(Ti) (i = 1, 2) and mi(Ti) (i = 1, 2) are nondecreasing

functions of toxicant concentrations:

αi(0) > 0, α′
i(Ti(t)) ≤ 0, for Ti(t) > 0,

γi(0) > 0, γ′i(Ti(t)) ≥ 0, for Ti(t) > 0,

mi(0) > 0, m′
i(Ti(t)) ≤ 0, for Ti(t) > 0. (8)

Throughout this paper, we denote notations as follows:

αi∗ = inf
t∈[0,∞)

αi(Ti(t)), α∗
i = sup

t∈[0,∞)
αi(Ti(t)),

γi∗ = inf
t∈[0,∞)

γi(Ti(t)), γ∗i = sup
t∈[0,∞)

γi(Ti(t)),

mi∗ = inf
t∈[0,∞)

mi(Ti(t)), m∗
i = sup

t∈[0,∞)
mi(Ti(t)),

βj∗ = inf
t∈[0,∞)

βj(Ti(t)), β∗
j = sup

t∈[0,∞)
βj(Ti(t)), (9)

for i = 1, 2, j = 1, 2, 3, 4.

Thus we come to deterministic model within two patches as follows:

ẋi(t) = α1

(
T1(t)

)
xm(t)− β1

(
T1(t)

)
xi(t)

−α1

(
T1(t− τ)

)
xm(t− τ) exp

(
−

∫ t

t−τ
β1(T1(s))ds

)
,

ẋm(t) = α1

(
T1(t−τ)

)
xm(t−τ) exp

(
−
∫ t

t−τ
β1(T1(s))ds

)
−γ1

(
T1(t)

)
x2m(t)

−m1

(
T1(t)

)
xm(t) +m2

(
T2(t)

)
ym(t)− Exm(t)− β2

(
T1(t)

)
xm(t),

ẏi(t) = α2

(
T2(t)

)
ym(t)− β3

(
T2(t)

)
yi(t)

−α2

(
T2(t− τ)

)
ym(t− τ) exp

(
−

∫ t

t−τ
β3(T2(s))ds

)
,

ẏm(t) = α2

(
T2(t−τ)

)
ym(t−τ) exp

(
−
∫ t

t−τ
β3(T2(s))ds

)
−γ2

(
T2(t)

)
y2m(t)

+m1

(
T1(t)

)
xm(t)−m2

(
T2(t)

)
ym(t)− pm1

(
T1(t)

)
xm(t)ym(t)

−β4
(
T2(t)

)
ym(t).

(10)

As all we know, the growth of any species in the real world is inevitably subject

to random interference from external environments. Random interference could be

roughly divided into two categories. One is the sum of many tiny and independent

random disturbances, mathematically it is called white noise, such as small changes
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in temperature, humidity, wind and sunlight. The other is a small number of random

disturbances with a large intensity. Then the growth rate of the objects will change

greatly when this type of random disturbance occurs, which is usually called colored

noise (not a pure white noise any more), such as cold wave, major earthquake, tsuna-

mi and volcanic eruption. In this paper, we mainly study the interference caused

by white noise to a single-species (10). For simplicity, external interferences are put

into model (10), and now, we start to focus on the stochastic single-species model

with stage-structure and migrations within polluted environments, which takes the

following form:

dxi(t) =

[
α1

(
T1(t)

)
xm(t)− β1

(
T1(t)

)
xi(t)

−α1

(
T1(t− τ)

)
xm(t− τ) exp

(
−

∫ t

t−τ
β1(T1(s))ds

)]
dt+ σ1xi(t)dB1(t),

dxm(t) =

[
α1

(
T1(t− τ)

)
xm(t− τ) exp

(
−

∫ t

t−τ
β1(T1(s))ds

)
− γ1

(
T1(t)

)
x2m(t)

−m1

(
T1(t)

)
xm(t) +m2

(
T2(t)

)
ym(t)− Exm(t)− β2

(
T1(t)

)
xm(t)

]
dt

+σ2xm(t)dB2(t),

dyi(t) =

[
α2

(
T2(t)

)
ym(t)− β3

(
T2(t)

)
yi(t)

−α2

(
T2(t− τ)

)
ym(t− τ) exp

(
−

∫ t

t−τ
β3(T2(s))ds

)]
dt+ σ3yi(t)dB3(t),

dym(t) =

[
α2

(
T2(t− τ)

)
ym(t− τ) exp

(
−

∫ t

t−τ
β3(T2(s))ds

)
− γ2

(
T2(t)

)
y2m(t)

+m1

(
T1(t)

)
xm(t)−m2

(
T2(t)

)
ym(t)− pm1

(
T1(t)

)
xm(t)ym(t)

−β4
(
T2(t)

)
ym(t)

]
dt+ σ4ym(t)dB4(t),

(11)

where Bi(t) (i = 1, 2, 3, 4) are mutually independent one-dimensional standard Brow-

nian motions defined on the complete probability space (Ω,F , {Ft}t≥0,P) with its

filtration {Ft}t≥0 satisfying the usual conditions, and σi > 0 (i = 1, 2, 3, 4) are the

intensities of white noises in [15]. And, effects of toxicant on stochastic biological

models were paid much attention by scholars around the world. For instance, in

2009, Liu and Wang [24] studied a stochastic single-population model in a polluted

environment, using stochastic analysis methods to obtain sufficient conditions for

random persistence, random mean weak persistence and local extinction, and ran-

dom mean weak persistence as well. In 2010, Liu and Wang [25] studied a stochastic

single-population model with Markov transformation in a polluted environment, and
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proved the average strong persistence, random persistence, random average weak

persistence, extinction and other related results.

The initial conditions of model (11) are given as follows:

xm(ξ) = φ1(ξ) > 0, T1(ξ) = φ2(ξ) > 0, ξ ∈ [−τ, 0],

xi(0) =

∫ 0

−τ
α1(φ2(ξ))φ1(ξ) exp

(
−

∫ 0

ξ
β1(φ2(p))dp

)
dξ > 0,

ym(ξ) = φ3(ξ) > 0, T2(ξ) = φ4(ξ) > 0, ξ ∈ [−τ, 0],

yi(0) =

∫ 0

−τ
α2(φ4(ξ))φ3(ξ) exp

(
−

∫ 0

ξ
β3(φ4(p))dp

)
dξ > 0, (12)

where φi(ξ) (i = 1, 2, 3, 4) are the continuous functions mapping from the interval

[−τ, 0] into [0,∞), and model (11) will work on the region R4
+ = {(xi, xm, yi, ym) :

xi > 0, xm > 0, yi > 0, ym > 0}.
We attempt to organize this paper by several parts: We will prove that model

(11) admits a unique global positive solution in the next section. The sufficient con-

ditions guarantee the extinction and the persistence of the single-species within two

patches which will be established respectively in Sections 3 and 4. As a consequence,

we derive the conclusion of this paper and demonstrate several examples and their

numerical simulations.

2 Existence and Uniqueness of Positive Solution

Theorem 2.1 For any given initial data (12), there exists a unique solution

(xi(t), xm(t), yi(t), ym(t)) to model (11) on t ≥ 0 and the solution will remain in R4
+

with probability one. That is, (xi(t), xm(t), yi(t), ym(t)) ∈ R4
+ holds almost surely for

all t ≥ 0.

Proof By the approach mentioned in Mao et al. [15], we easily obtain that the

coefficients of model (11) obey the local Lipschitz condition, hence model (11) has

a unique local solution (xi(t), xm(t), yi(t), ym(t)) on [0, τe), where τe is the explosion

time. In order to show that the solution is global, it is sufficient to show τe = ∞
a.s.. Let k0 ≥ 1 be large enough such that for ξ ∈ [−τ, 0], xm(ξ), ym(ξ), xi(0), yi(0)

lie within the interval [1/k0, k0]. For each integer k > k0, we define the stopping

time

τk = inf
{
t ∈ [−τ, τe) : min{xi(t), xm(t), yi(t), ym(t)} <

1

k
or

max{xi(t), xm(t), yi(t), ym(t)} > k
}
. (13)

Obviously, τk is an increasing function as k → ∞. We denote τ∞ = lim
k→∞

τk, accord-

ing to the definition of the stopping time and the fact that τe is the explosion time,

we derive that τ∞ ≤ τe. In order to prove the assertion τe = ∞ holds almost surely,
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we need to check that τ∞ = ∞ will be valid almost surely. Otherwise, there is a

constant ε ∈ (0, 1) such that P{τ∞ < ∞} > ε. Then, there exist an integer k1 ≥ k0
and a constant T0 > 0 satisfying P{τk ≤ T0} ≥ ε, for all k ≥ k1. We define a

C2-function V : R4
+ → R as follows:

V (xi, xm, yi, ym) = xi−a−a lnxi+xm−1−lnxm+yi−b−b ln yi+ym−1−ln ym, (14)

where a and b will be determined below. The Itô’s formula then gives that

dV (xi, xm, yi, ym) = LV (xi, xm)dt+LV (yi, ym)dt+σ1(xi−a)dB1(t)

+σ2(xm−1)dB2(t)+σ3(yi−b)dB3(t)+σ4(ym−1)dB4(t). (15)

Here

LV (yi, ym)

=
(
1− b

yi

)[
α2

(
T2

)
ym−β3

(
T2

)
yi−α2

(
T2(t−τ)

)
ym(t−τ) exp

(
−
∫ t

t−τ
β3(T2(s))ds

)]
+
(
1− 1

ym

)[
α2

(
T2(t− τ)

)
ym(t− τ) exp

(
−

∫ t

t−τ
β3(T2(s))ds

)
− γ2

(
T2

)
y2m

+m1

(
T1

)
xm −m2

(
T2

)
ym − pm1

(
T1

)
xmym − β4

(
T2

)
ym

]
+

1

2
bσ2

3 +
1

2
σ2
4

< α2

(
T2

)
ym − β3

(
T2

)
yi + bβ3

(
T2)− γ2

(
T2

)
y2m +m1

(
T1

)
xm −m2

(
T2

)
ym

−pm1

(
T1

)
xmym − β4

(
T2

)
ym + pm1

(
T1

)
xm + γ2

(
T2

)
ym +m2

(
T2

)
+ β4

(
T2

)
+
1

2
bσ2

3 +
1

2
σ2
4 + α2

(
T2(t− τ)

)
ym(t− τ) exp

(
−

∫ t

t−τ
β3(T2(s))ds

)
(by−1

i − y−1
m )

≤ α∗
2ym −K3β3∗ym + bβ∗

3 − γ2∗y
2
m + (K4 + 1)m∗

1ym −m2∗ym

−pm1∗(K3 + 1)

K2
y2m − β4∗ym + p(K4 + 1)m∗

1ym + γ∗2ym +m∗
2 + β∗

4

+
1

2
bσ2

3 +
1

2
σ2
4 + α∗

2ym(t− τ) exp
(
−

∫ t

t−τ
β3(T2(s))ds

)( b

K3
− 1

)
y−1
m , (16)

due to (2) and (3), and the fact that the last term of (16) vanishes when we choose

b = K3. So, we have

LV (yi, ym) ≤ −
(
γ2∗+

pm1∗(K3+1)

K2

)
y2m−

(
K3β3∗−α∗

2−(K4+1)m∗
1+m2∗

+β4∗−γ∗2−p(K4+1)m∗
1

)
ym+K3β

∗
3+m∗

2+β∗
4+

1

2
K3σ

2
3+

1

2
σ2
4. (17)

By similar discussion, we choose aK1 = 1 and derive that

LV (xi, xm) =
(
1− a

xi

)[
α1

(
T1

)
xm − β1

(
T1

)
xi

−α1

(
T1(t− τ)

)
xm(t− τ) exp

(
−

∫ t

t−τ
β1(T1(s))ds

)]
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+
(
1− 1

xm

)[
α1

(
T1(t− τ)

)
xm(t− τ) exp

(
−

∫ t

t−τ
β1(T1(s))ds

)
−γ1

(
T1

)
x2m−m1

(
T1

)
xm+m2

(
T2

)
ym−Exm−β2

(
T1

)
xm

]
+
a

2
σ2
1+

1

2
σ2
2

≤ −γ1∗x
2
m −

(
m1∗ −

m∗
2K2

K3 + 1
+ E + β2∗ − γ∗1 − α∗

1 +
β1∗
K1

)
xm

+m∗
1 + E + β∗

2 +
β∗
1

K1
+

1

2K1
σ2
1 +

1

2
σ2
2. (18)

Combining (17) with (18) gives that

LV (xi, xm, yi, ym) ≤ −γ1∗x
2
m −

(
m1∗ −

m∗
2K2

K3 + 1
+ E + β2∗ − γ∗1 − α∗

1 +
β1∗
K1

)
xm

+m∗
1+E+β∗

2+
β∗
1

K1
+

1

2K1
σ2
1+

1

2
σ2
2−

(pm1∗(K3+1)

K2
+γ2∗

)
y2m

−
(
K3β3∗−α∗

2−(K4+1)m∗
1+m2∗+β4∗−γ∗2−p(K4+1)m∗

1

)
ym

+K3β
∗
3 +m∗

2 + β∗
4 +

1

2
K3σ

2
3 +

1

2
σ2
4, (19)

which is a polynomial with respect to xi, xm, yi, ym. Note that the coefficient of the

first term is negative, then there exists a constant M such that LV (xi, xm, yi, ym) ≤
M . We therefore obtain that

dV (xi, xm, yi, ym) ≤ Mdt+ σ1(xi − a)dB1(t) + σ2(xm − 1)dB2(t)

+σ3(yi − b)dB3(t) + σ4(ym − 1)dB4(t). (20)

Integrating both sides of (20) from 0 to τk ∧ T0, taking the expectation, one can get

that

EV (xi(τk ∧ T0), xm(τk ∧ T0), yi(τk ∧ T0), ym(τk ∧ T0))

≤ V (xi(0), xm(0), yi(0), ym(0)) +MT0. (21)

We set Ωk = {τk ≤ T0} for k ≥ k1, then the probability given above turns into

P{Ωk} ≥ ε. Note that for ω ∈ Ωk, each component of (xi(τk, ω), xm(τk, ω), yi(τk, ω),

ym(τk, ω)) equals either k or 1/k, and hence

V (xi(τk, ω), xm(τk, ω), yi(τk, ω), ym(τk, ω)) ≥ min
{
k−1−ln k,

1

k
−1+ln k

}
. (22)

Therefore,

∞ > V (xi(0), xm(0), yi(0), ym(0))+MT0 ≥ εmin
{
k−1− ln k,

1

k
−1+ln k

}
≥ ∞,

(23)

where a contradiction is derived when letting k → ∞. The proof is complete.
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3 Extinction of Single-species within Patches

For a stochastic ecological system, we are always interested in its long-term

behavior. In this section, we will analyze the extinction of the solution to model

(11). The following definition of the extinction and two important lemmas will be

widely used throughout our discussions.

Definition 3.1[16] A species is said to be extinct, if the population density x(t)

satisfies lim
t→∞

x(t) = 0 a.s..

Lemma 3.1[17] Suppose that a(t), b(t) and α(t) are bounded continuous func-

tions defined on [0,∞), and a(t) > 0, b(t) > 0. For any initial value x(0) = x0 > 0,

there exists a unique continuous solution x(t) to an equation

dx(t) = x(t)
(
a(t)− b(t)x(t)

)
dt+ α(t)x(t)dB(t), t ≥ 0, (24)

such that x(t) is global and represented by

x(t) =

exp

{∫ t

0

(
a(s)− α2(s)

2

)
ds+ α(s)dB(s)

}
1

x0
+

∫ t

0
b(s) exp

{∫ s

0

(
a(τ)− α2(τ)

2

)
dτ + α(τ)dB(τ)

}
ds

, t ≥ 0.

(25)

Lemma 3.2[18] Consider a one-dimensional stochastic differential equation

dx(t) = x(t)(a− bx(t))dt+ σx(t)dB(t). (26)

Suppose that 2a > σ2, and x(t) is a solution to (26) with any initial value x0 > 0,

then the following results hold almost surely

lim
t→∞

log x(t)

t
= 0, lim

t→∞

1

t

∫ t

0
x(s)ds =

2a− σ2

2b
. (27)

Theorem 3.1 If the parameters of model (11) satisfy

lim
t→∞

1

t

∫ t

0

(
α2

(
T2(s)

)
e−β3∗τ +(K4+1)m1

(
T1(s)

)
−m2

(
T2(s)

)
−β4

(
T2(s)

))
ds <

σ2
4

2
,

(28)

then the mature in protected patch tends to extinct, that is lim
t→∞

ym(t) = 0 a.s..

Proof Integrating both sides of the fourth equation in model (11), we thus

derive

ym(t) = ym(0) +

∫ t

0
α2

(
T2(s− τ)

)
ym(s− τ) exp

(
−

∫ s

s−τ
β3(T2(η))dη

)
ds

−
∫ t

0

(
γ2
(
T2(s)

)
y2m(s)−m1

(
T1(s)

)
xm(s) +m2

(
T2(s)

)
ym(s)

+pm1

(
T1(s)

)
xm(s)ym(s) + β4

(
T2(s)

)
ym(s)

)
ds+ σ4

∫ t

0
ym(s)dB4(s). (29)
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In order to eliminate terms with delay, we substitute (29) into right hand side of the

following expression

ym(t) ≤ ym(t) +

∫ t

t−τ
α2

(
T2(s)

)
ym(s) exp

(
−

∫ s

s−τ
β3(T2(η))dη

)
ds, (30)

which then gives that

ym(t) ≤ ym(0) +

∫ t

t−τ
α2

(
T2(s)

)
ym(s)e−β3∗τds+

∫ t−τ

−τ
α2

(
T2(s)

)
ym(s)e−β3∗τds

−
∫ t

0

(
γ2
(
T2(s)

)
y2m(s)− (K4 + 1)m1

(
T1(s)

)
ym(s) +m2

(
T2(s)

)
ym(s)

+
p(K3 + 1)

K2
m1

(
T1(s)

)
y2m(s) + β4

(
T2(s)

)
ym(s)

)
ds+ σ4

∫ t

0
ym(s)dB4(s),

(31)

due to (2) and (3). We simplify (31) into the following form

ym(t) ≤ C1 −
∫ t

0

(
γ2
(
T2(s)

)
y2m(s)− (K4 + 1)m1

(
T1(s)

)
ym(s) +m2

(
T2(s)

)
ym(s)

+
p(K3 + 1)

K2
m1

(
T1(s)

)
y2m(s) + β4

(
T2(s)

)
ym(s)

)
ds

+

∫ t

0
α2

(
T2(s)

)
e−β3∗τym(s)ds+ σ4

∫ t

0
ym(s)dB4(s), (32)

where

C1= ym(0)+

∫ 0

−τ
α2

(
T2(ξ)

)
ym(ξ)e−β3∗τdξ=φ3(0)+

∫ 0

−τ
α2

(
φ4(ξ)

)
φ3(ξ)e

−β3∗τdξ.

(33)

Let Ψ1(t) be a solution to the following SDE

dΨ1(t) = Ψ1(t) (a1(t)− b1(t)Ψ1(t)) dt+ σ4Ψ1(t)dB4(t), (34)

with the initial value Ψ1(0) = C1, Lemma 3.1 implies that (34) admits a unique

solution

Ψ1(t) =

C1 exp

{∫ t

0

(
a1(s)−

1

2
σ2
4

)
ds+ σ4dB4(s)

}
1 + C1

∫ t

0
b1(s) exp

{∫ s

0

(
a1(ξ)−

1

2
σ2
4

)
dξ + σ4dB4(ξ)

}
ds

, (35)

where

a1(t) = α2

(
T2(t)

)
e−β3∗τ + (K4 + 1)m1

(
T1(t)

)
−m2

(
T2(t)

)
− β4

(
T2(t)

)
,

b1(t) =
p(K3 + 1)

K2
m1

(
T1(t)

)
+ γ2

(
T2(t)

)
. (36)
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Then the comparison theorem of stochastic differential equation yields

ym(t) ≤ Ψ1(t)

≤ C1 exp

{
− t

[
1

t

∫ t

0

(
− α2

(
T2(s)

)
e−β3∗τ − (K4 + 1)m1

(
T1(s)

)
+m2

(
T2(s)

)
+ β4

(
T2(s)

)
+

1

2
σ2
4

)
ds− M1(t)

t

]}
, (37)

where M1(t) =
∫ t
0 σ4dB4(s) is a local martingale, then the strong law of large num-

bers ensures that lim
t→∞

M1(t)
t = 0 a.s.. Therefore, under condition (28), letting t → ∞,

we obtain lim
t→∞

ym(t) = 0 a.s., which means the mature individuals in the protected

patch will be extinct. The proof is complete.

Theorem 3.2 If the parameters of (11) satisfy

lim
t→∞

1

t

∫ t

0

( 1

K3
α2(T2(s))− β3(T2(s))

)
ds <

σ2
3

2
, (38)

then the immature in protected patch tends to extinct, which means that lim
t→∞

yi(t) =

0 a.s..

Proof By assumption (3), the third equation of model (11) gives that

dyi(t) ≤
(
α2(T2(t))ym(t)− β3(T2(t))yi(t)

)
dt+ σ3yi(t)dB3(t)

≤
(

1

K3
α2(T2(t))yi(t)− β3(T2(t))yi(t)

)
dt+ σ3yi(t)dB3(t). (39)

Let Ψ2(t) be a solution to the following linear SDE

dΨ2(t) = Ψ2(t)

(
1

K3
α2(T2(t))− β3(T2(t))

)
dt+ σ3Ψ2(t)dB3(t), (40)

with its initial value Ψ2(0) = yi(0), and the expression of whose solution is given by

(see [17]):

Ψ2(t) = yi(0) exp

{
−t

[
1

t

∫ t

0

(
− 1

K3
α2(T2(s))+β3(T2(s))+

1

2
σ2
3

)
ds−1

t

∫ t

0
σ3dB3(s)

]}
.

(41)

The comparison theorem of stochastic differential equation yields that

yi(t) ≤ Ψ2(t), t ≥ 0 a.s.. (42)

Since M2(t) =
∫ t
0 σ3dB3(s) is a local martingale, the strong law of large numbers

implies lim
t→∞

M2(t)
t = 0 a.s.. Therefore, if condition (38) is satisfied, we will get

lim sup
t→∞

yi(t) ≤ 0 a.s., which implies lim
t→∞

yi(t) = 0 a.s.. The proof is now complete.

By the similar discussion, we can obtain Theorems 3.3 and 3.4, in which sufficient

conditions for the extinction of immature and mature individuals in unprotected

patch are guaranteed.
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Theorem 3.3 If the parameters of model (11) satisfy

lim
t→∞

1

t

∫ t

0

(
α1(T1(s))e

−β1∗τ +
K2m2(T2(s))

K3 + 1
−m1(T1(s))− β2(T1(s))

)
ds <

σ2
2

2
+ E,

(43)

then the mature in unprotected patch is extinct, that is lim
t→∞

xm(t) = 0 a.s..

Theorem 3.4 If the parameters of model (11) satisfy

lim
t→∞

1

t

∫ t

0

(
K1α1(T1(s))− β1(T1(s))

)
ds <

σ2
1

2
, (44)

then the immature in unprotected patch is extinct, that is lim
t→∞

xi(t) = 0 a.s..

Remark 3.1 What we concern in this paper is what conditions will lead to the

extinction of single-species within two patches. To avoid the extinction of single-

species, we state our main results from the following aspects: the migration rates,

the hunting rates and the birth/death rates as well.

First of all, the migration rates of single-species between two patches are the

important indicators. Indeed, we could see how the migration rates work for the

extinction of single-species when other parameters are fixed. Here, the sufficient

condition of Theorem 3.1 demonstrates that the increasing of lim
t→∞

1
t

∫ t
0 m2(T2(s))ds

or the decreasing of lim
t→∞

1
t

∫ t
0 m1(T1(s))ds will lead to the extinction of the mature

individuals in the protected patch, when the perturbation of the mature in pro-

tected patch σ4 is fixed. On the contrary, Theorem 3.3 implies that the decreasing

of lim
t→∞

1
t

∫ t
0 m2(T2(s))ds and the increasing of lim

t→∞
1
t

∫ t
0 m1(T1(s))ds can make the

mature individuals in unprotected patch extinct, when other parameters are fixed.

Further, the hunting rate in Theorem 3.3 also makes sense in order to avoid the

extinction for the mature individuals in the unprotected patch. Here say, the larger

the hunting rate E is, the more easily the mature individuals tend to extinction.

That is, the decreasing of hunting rate effectively avoids the extinction of single-

species.

As we mentioned above, the birth/death rates play vital roles when the extinc-

tion of the mature individuals and immature individuals is investigated. Theorems

3.1 and 3.2 demonstrate that the decreasing of lim
t→∞

1
t

∫ t
0 α2(T2(s))ds, and the in-

creasing of lim
t→∞

1
t

∫ t
0 β4(T2(s))ds together with lim

t→∞
1
t

∫ t
0 β3(T2(s))ds will tend to the

extinction of single-species in protected patch.

4 Persistence of Species within Patches

In this section, some results about the persistence of the species in protected and

unprotected patches are achieved.
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Definition 4.1[29] A species is said to be strongly persistent in the mean, if the

population density x(t) satisfies

lim inf
t→∞

1

t

∫ t

0
x(s)ds > 0 a.s.. (45)

Definition 4.2[31] A species is said to be strongly persistent, if the population

density x(t) satisfies

lim inf
t→∞

x(t) > 0 a.s.. (46)

Next, we will discuss the sufficient conditions for the persistence of the mature

and immature individuals in protected patch, respectively. In order to analyze the

persistence of the mature in protected patch, we need to show a property in advance

as presented in Lemma 4.1.

Lemma 4.1 Let (xi(t), xm(t), yi(t), ym(t)) be a solution of model (11) with any

initial condition (12), we then derive that

lim
t→∞

ln ym(t)

t
≤ 0, lim

t→∞

lnxm(t)

t
≤ 0. (47)

Proof Applying Itô’s formula to the fourth equation of (11), we can obtain

d(et ln ym(t)) = et ln ym(t)dt+
et

ym(t)
dym(t)− et

2y2m(t)
[dym(t)]2

= et
[
ln ym(t) + α2

(
T2(t− τ)

)ym(t− τ)

ym(t)
exp

(
−

∫ t

t−τ
β3(T2(s))ds

)
−γ2

(
T2(t)

)
ym(t)+m1

(
T1(t)

)xm(t)

ym(t)
−m2

(
T2(t)

)
−pm1

(
T1(t)

)
xm(t)

−β4
(
T2(t)

)
− 1

2
σ2
4

)
dt+ σ4e

tdB4(t). (48)

Integrating both sides of (48) from 0 to t yields that

et ln ym(t)− ln ym(0)

=

∫ t

0
es
[
ln ym(s) + α2

(
T2(s− τ)

)ym(s− τ)

ym(s)
exp

(
−

∫ t

s−τ
β3(T2(ξ))dξ

)
−γ2

(
T2(s)

)
ym(s) +m1

(
T1(s)

)xm(s)

ym(s)
−m2

(
T2(s)

)
−pm1

(
T1(s)

)
xm(s)− β4

(
T2(s)

)
− 1

2
σ2
4

]
ds+N(t), (49)

whereN(t) =
∫ t
0 e

sσ4dB4(s) is a local martingale with a second variation ⟨N(t), N(t)⟩
=

∫ t
0 e

2sσ2
4ds. By an exponential martingale inequality (see p.122 of [15]), we can

obtain



62 ANN. OF APPL. MATH. Vol.36

P

{
sup

0≤t≤γk

[
N(t)− 1

2
e−γk⟨N(t), N(t)⟩

]
> θeγk ln k

}
≤ k−θ,

where θ > 1, γ > 1. For almost all ω ∈ Ω, there exists a k0(ω), by Borel-Cantelli

Lemma, for all k ≥ k0(ω), such that

N(t) ≤ 1

2
e−γk⟨N(t), N(t)⟩+ θeγk ln k, 0 ≤ t ≤ γk. (50)

Recall the fact that, in the real world, the amount of mature individuals in

protected patch will not increase rapidly within a time interval, say here [t − τ, t],

and will not and to zero soon. We therefore assume that mature individuals in

protected patch admits certain proportional relationship as follows:

K5ym(t) ≤ ym(t− τ) ≤ K6ym(t), (51)

where 0 < K5 < 1 and K6 > 1. Substituting (50) into (49), together with (2), (3),

(9) and (51), we can get

et ln ym(t)− ln ym(0)

≤
∫ t

0
es
[
ln ym(s) + α2

(
T2(s− τ)

)
K6 exp

(
−

∫ t

s−τ
β3(T2(ξ))dξ

)
− γ2

(
T2(s)

)
ym(s)

+(K4 + 1)m1

(
T1(s)

)
−m2

(
T2(s)

)
− p(K3 + 1)

K2
m1

(
T1(s)

)
ym(s)

−β4
(
T2(s)

)
− 1

2
σ2
4

]
ds+

1

2
e−γk

∫ t

0
e2sσ2

4ds+ θeγk ln k

≤
∫ t

0
es
[
ln ym(s) +K6α

∗
2e

−β3∗τ − γ2∗ym(s) + (K4 + 1)m∗
1 −m2∗

−p(K3 + 1)

K2
m1∗ym(s)− β4∗ −

1

2
σ2
4(1− es−γk)

]
ds+ θeγk ln k. (52)

Let

f(ym) = ln ym −D2ym +D1, for ym > 0, (53)

where

D1 = K6α
∗
2e

−β3∗τ + (K4 + 1)m∗
1 −m2∗ − β4∗,

D2 = γ2∗ +
p(K3 + 1)

K2
m1∗. (54)

Obviously, the function f(ym) is monotonically increasing in (0, 1/D2), monotonical-

ly decreasing in (1/D2,∞), so f(ym) takes its maximum at 1/D2. For all 0 ≤ s ≤ γk

and ym > 0, there exists a C independent of k such that

et ln ym(t)− ln ym(0) ≤ C(et − 1) + θeγk ln k. (55)
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If γ(k − 1) ≤ t ≤ γk and k ≥ k0(ω), we have

ln ym(t)

t
≤ e−t ln ym(0)

t
+

C(1− e−t)

t
+

θe−γ(k−1)eγk ln k

t
. (56)

Let k → +∞ (that is, t → +∞), we therefore have

lim
t→∞

ln ym(t)

t
≤ 0. (57)

By the similar argument, one derives that

lim
t→∞

lnxm(t)

t
≤ 0. (58)

The proof is now complete.

Theorem 4.1 If the parameters of (11) satisfy

α2∗e
−β∗

3τK5 +
m1∗(K3 + 1)

K2
− β∗

4 −m∗
2 −

σ2
4

2
> 0, (59)

then the mature in protected patch is strongly persistent in the mean, and satisfies

the following property

lim inf
t→∞

1

t

∫ t

0
ym(s)ds

>
1

γ∗2 + pm∗
1(K4 + 1)

(
α2∗e

−β∗
3τK5 +

m1∗(K3 + 1)

K2
− β∗

4 −m∗
2 −

σ2
4

2

)
. (60)

Proof Applying Itô’s formula to the fourth equation of (11), we derive that

d ln ym(t) =

[
α2(T2(t− τ))

ym(t− τ)

ym(t)
exp

(
−

∫ t

t−τ
β3(T2(s))ds

)
−γ2(T2(t))ym(t) +m1(T1(t))

xm(t)

ym(t)
−m2(T2(t))

−pm1(T1(t))xm(t)− β4(T2(t))−
σ2
4

2

]
dt+ σ4dB4(t). (61)

Integrating both sides of (61), and together with (2), (3), (51) as well as (9), we

have

γ∗2 + pm∗
1(K4 + 1)

t

∫ t

0
ym(s)ds ≥ ln ym(0)

t
− ln ym(t)

t
+ α2∗e

−β∗
3τK5 −m∗

2

+m1∗
K3 + 1

K2
− β∗

4 −
σ2
4

2
+

1

t

∫ t

0
σ4dB4(s). (62)

The strong law of large numbers for martingales yields lim
t→∞

1
t

∫ t
0 σ4dB4(s) = 0 a.s..

Together with Lemma 4.1, under condition (59), we finally achieve that
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lim inf
t→∞

1

t

∫ t

0
ym(s)ds>

1

γ∗2+pm∗
1(K4+1)

(
α2∗e

−β∗
3τK5+

m1∗(K3+1)

K2
−β∗

4−m∗
2−

σ2
4

2

)
>0.

The proof is complete.

Theorem 4.2 If the parameters of model (11) satisfy the following condition

α∗
2e

−β3∗τ

K3
+ β∗

3 −
α2∗
K4

+
1

2
σ2
3 > 0, (63)

then the immature in protected patch is strongly persistent.

Proof According to the similar approach given in Theorem 3.1, we derive the

following inequality

dyi(t) ≥
(
α2

(
T2(t)

)
ym(t)− β3

(
T2(t)

)
yi(t)− α2

(
T2(t− τ)

)
ym(t− τ)e−β3∗τ

)
dt

+σ3yi(t)dB3(t). (64)

Taking integration on both sides of (64), yields that

yi(t) ≥ yi(0) +

∫ t

0

(
α2

(
T2(s)

)
ym(s)− β3

(
T2(s)

)
yi(s)

)
ds

−
∫ t

0
α2

(
T2(s− τ)

)
ym(s− τ)e−β3∗τds+

∫ t

0
σ3yi(s)dB3(s). (65)

In order to eliminate terms with delay, we consider

yi(t) > yi(t)−
∫ t

t−τ
α2

(
T2(s)

)
ym(s)e−β3∗τds

≥ yi(0)−
∫ t

t−τ
α2

(
T2(s)

)
ym(s)e−β3∗τds−

∫ t−τ

−τ
α2

(
T2(s)

)
ym(s)e−β3∗τds

+

∫ t

0

(
α2

(
T2(s)

)
ym(s)− β3

(
T2(s)

)
yi(s)

)
ds+

∫ t

0
σ3yi(s)dB3(s)

> C3 −
∫ t

0
α2

(
T2(s)

)
ym(s)e−β3∗τds+

∫ t

0

(
α2

(
T2(s)

)
ym(s)

−β3
(
T2(s)

)
yi(s)

)
ds+

∫ t

0
σ3yi(s)dB3(s), (66)

where

C3 = yi(0)−
∫ 0

−τ
α2

(
T2(ξ)

)
ym(ξ)e−β3∗τdξ

= yi(0)−
∫ 0

−τ
α2

(
φ4(ξ)

)
φ3(ξ)e

−β3∗τdξ. (67)
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We therefore have the following inequality

yi(t) > C3 −
∫ t

0
α2

(
T2(s)

) 1

K3
e−β3∗τyi(s)ds

+

∫ t

0

(α2

(
T2(s)

)
K4

yi(s)− β3
(
T2(s)

)
yi(s)

)
ds+

∫ t

0
σ3yi(s)dB3(s)

≥ C3 +
(α2∗
K4

− β∗
3 −

α∗
2e

−β3∗τ

K3

)∫ t

0
yi(s)ds+

∫ t

0
σ3yi(s)dB3(s). (68)

Further, the comparison theorem of stochastic differential equation gives that

yi(t) > C3 exp

{
− t

(α∗
2e

−β3∗τ

K3
+ β∗

3 −
α2∗
K4

+
1

2
σ2
3 −

1

t

∫ t

0
σ3dB3(s)

)}
, (69)

and the strong law of large numbers for martingales also gives lim
t→∞

1
t

∫ t
0 σ3dB3(s) = 0.

Under condition (63), we can get lim inf
t→∞

yi(t) > 0 a.s.. The proof is complete.

According to the same approaches, we can obtain that solutions of the immature

and mature in unprotected patch respectively are strongly persistent and strongly

persistent in the mean. Then we can obtain the following theorems.

Theorem 4.3 If the parameters of (11) satisfy

K5(K3 + 1)

K2(K4 + 1)
α1∗e

−β∗
1τ +

m2∗
K4 + 1

− E −m∗
1 − β∗

2 −
1

2
σ2
2 > 0, (70)

then the mature in unprotected patch is strongly persistent in the mean and has the

property

lim inf
t→∞

1

t

∫ t

0
xm(s)ds >

1

γ∗1

(K5(K3 + 1)

K2(K4 + 1)
α1∗e

−β∗
1τ +

m2∗
K4 + 1

− E −m∗
1 − β∗

2 −
1

2
σ2
2

)
.

(71)

Theorem 4.4 If the parameters of model (11) satisfy the following condition

α∗
1K1e

−β1∗τ + β∗
1 −

α1∗
K2

+
1

2
σ2
1 > 0, (72)

then the immature in unprotected patch is strongly persistent, which means that

lim inf
t→∞

xi(t) > 0 a.s.. (73)

5 Examples and Simulations

Several examples and the corresponding numerical simulations will be presented

to support the main results by means of Milstein Method [23]. Now, consider the

linear case of model (11):
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α1(T1) = α11 − α12T1, β1(T1) = β11 + β12T1,

γ1(T1) = γ11 + γ12T1, m1(T1) = m11 −m12T1,

β2(T1) = β21 + β22T1, α2(T2) = α21 − α22T2,

β3(T2) = β31 + β32T2, m2(T2) = m21 −m22T2,

γ2(T2) = γ21 + γ22T2, β4(T2) = β41 + β42T2, (74)

and the nonlinear case of model (11):

α1(T1) = α12Q
−3
1δ (T1 −Q1δ)

4 + α11 − α12Q1δ,

β1(T1) = −β12Q
−3
1δ (T1 −Q1δ)

4 + β11 + β12Q1δ,

γ1(T1) = −γ12Q
−3
1δ (T1 −Q1δ)

4 + γ11 + γ12Q1δ,

m1(T1) = m11 −m12Q
−1
1δ T

2
1 ,

β2(T1) = −β22Q
−3
1δ (T1 −Q1δ)

4 + β21 + β22Q1δ,

α2(T2) = α22Q
−3
2δ (T2 −Q2δ)

4 + α21 − α22Q2δ,

β3(T2) = −β32Q
−3
2δ (T2 −Q2δ)

4 + β21 + β22Q2δ,

m2(T2) = m21 −m22Q
−1
2δ T

2
2 ,

γ2(T2) = −γ22Q
−3
2δ (T2 −Q2δ)

4 + γ21 + γ22Q2δ,

β4(T2) = −β42Q
−3
2δ (T2 −Q2δ)

4 + β41 + β42Q2δ, (75)

which are shown in Figure 1.

Now, hereafter, in model (11) we let K1 = K2 = 4, K3 = 0.8, K4 = 1.2,

K5 = 0.9, K6 = 1.1, τ = 1, p = 0.5 in this section. And, we come to two illustrative

examples as follows.
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Figure 1: α1(T1), β1(T1), γ1(T1), m1(T1), β2(T1), α2(T2), β3(T2), m2(T2), γ2(T2)
and β4(T2) are demonstrated from top to bottom respectively, where
green lines denote the linear case (74) and red lines denote the
nonlinear case (75).

Example 5.1 We assume that the initial value of model (11) is (xi(0), xm(0),

yi(0), ym(0), T1(0), T2(0)) = (0.5, 0.5, 0.8, 0.8, 0.01, 0.001), and take parameters re-

spectively are: α11 = 0.25, α12 = 0.1, β11 = 1, β12 = 0.5, γ11 = γ12 = 0.3,

m11 = 0.01, m12 = 0.1, β21 = β22 = 0.5, α21 = α22 = 0.1, β31 = 0.1, β32 = 0.05,

m21 = 0.008, m22 = 0.01, γ21 = 0.05, γ22 = 0.03, β41 = 0.1, β42 = 0.05, Q1 = 0.4,

Q2 = 0.004, δ1 = δ2 = 0.8, δ3 = 0.02, δ4 = 0.002, δ5 = 0.03, δ6 = 0.003, E = 0.5,

σ1 = σ2 = σ3 = σ4 = 0.3. It is easy to verify that conditions (28) of Theorem 3.1,

(38) of Theorem 3.2, (43) of Theorem 3.3 and (44) of Theorem 3.4 are all satisfied

respectively, then the extinction of model (11) is demonstrated in Figure 2.

Example 5.2 Let parameters of model (11) be α11 = 1.1, α12 = 0.3, β11 = 0.35,

β12 = 0.15, γ11 = γ12 = 0.35, m11 = m12 = 0.1, β21 = 0.045, β22 = 0.05, α21 = 1.05,

α22 = 0.1, β31 = 0.2, β32 = 0.1, m21 = 0.4, m22 = 0.15, γ21 = γ22 = 0.06,

β41 = 0.2, β42 = 0.1, Q1 = 0.3, Q2 = 0.004, δ1 = δ2 = 0.8, δ3 = δ4 = 0.02,

δ5 = δ6 = 0.03, E = 0.01, σ1 = 0.1, σ2 = σ3 = σ4 = 0.05. And, the initial

value is (xi(0), xm(0), yi(0), ym(0), T1(0), T2(0)) = (2, 2, 3, 3, 0.01, 0.000 6). It is easy

to verify that conditions (59) of Theorem 4.1, (63) of Theorem 4.2, (70) of Theorem

4.3 and (72) of Theorem 4.4 are all satisfied respectively, then ym(t) and xm(t) are
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strongly persistent in the mean, yi(t) and xi(t) are strongly persistent, which could

be illustrated in Figure 3.
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Figure 2: Extinction of xi(t), xm(t), yi(t) and ym(t) under linear case (top)
and nonlinear case (bottom).
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Figure 3: Strong persistence in the mean of ym(t) and xm(t), strong
persistence for yi(t) and xi(t) under linear case (top) and
nonlinear case (bottom).

6 Conclusion

In this paper, we propose a stochastic stage-structured single-species model with

migrations and hunting within a pollution environment. The single-species moves

between two patches: the unprotected and protected patch, and is separated into the

immature and the mature, where the immature takes time τ to become the mature.

We show that model (11) admits a unique and global solution for any given

initial value (12) by Lypapunov function method. We also obtain the main results

of this paper by using the comparison theorem of stochastic differential equations,

the strong law of large numbers and some inequalities.

Then the sufficient conditions guaranteeing the extinction of single-species are

derived, which demonstrate that the population density of single-species depends

on the birth/death rates. Meanwhile, the extinction of single-species also relies on

the migration rates between the mature individuals in two patches as presented in

Theorems 3.1 and 3.3. For the mature individuals in the unprotected patch, the

population density is controlled by the hunting rate in Theorem 3.3.

We also derive the sufficient conditions for the persistence of single-species when

the intensities of the white noises are bounded (see parameter-dependent conditions

(59), (63), (70) and (72)). We find that the population density for the persistence

with linear case is higher than that with nonlinear case as shown in Figure 3 (see

the red lines).

We therefore would like to propose some possible strategies for single-species

within two patches, for instance, setting obstacles on boundaries to maintain rational

migration rates and enhancing punishment to decrease hunting rates. In practice,
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there are two possible options for deducing the toxicant concentration for single-

species by use of some artificial methods: appropriately cutting down the pollutant

outflow through closuring of the polluters and improving the afforestation within

patches to single-species.
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