
DYNAMIC BEHAVIORS OF MAY TYPE
COOPERATIVE SYSTEM WITH

MICHAELIS-MENTEN TYPE HARVESTING∗†

Xiangqin Yu, Fengde Chen‡, Liyun Lai
(College of Math. and Computer Science, Fuzhou University,

350108 Fuzhou, Fujian, PR China)

Ann. of Appl. Math.
35:4(2019), 374-391

Abstract

Traditional May type cooperative model incorporating Michaelis-Menten
type harvesting is proposed and studied in this paper. Sufficient conditions
which ensure the extinction of the first species and the existence of a unique
globally attractive positive equilibrium are obtained, respectively. Numeric
simulations are carried out to show the feasibility of the main results.
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1 Introduction

The aim of this paper is to investigate the dynamic behaviors of the following

May type cooperative model incorporating Michaelis-Menten type harvesting

ẋ = x
(
r1 − b1x− a1x

y + k1

)
− Eqx

m1E +m2x
,

ẏ = y
(
r2 − b2y −

a2y

x+ k2

)
,

(1.1)

where x and y denote the densities of two populations at time t. The parameters

r1, r2, a1, a2, b1, b2, k1, k2, E, q,m1,m2 are all positive constants.

During the last decade, many scholars [1-30] investigated the dynamic behaviors

of the cooperative system. Yang, Miao, Chen et al [4], Yang and Li [9], Chen, Chen,

Li [10], Chen and Xie [11], Han, Xie and Chen [12], Chen and Xie [13], Han, Chen,

Xie et al [14], Chen, Yang, Chen et al [15] studied the influence of feedback controls
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on the cooperative system; May [1], Xie, Chen and Xue [2], Chen, Wu and Xie [3],

Xie, Chen, Yang et al [6], Yang, Xie and Chen [7], Chen, Xie and Chen [8], Chen,

Xue, Lin et al [16], Wu and Lin [20], Li, Chen, Chen et al [23], Lin [25], Deng

and Huang [26], Lei [27, 28], Chen [29, 30] studied the stability property of the

equilibria of cooperative or commensalism model; Chen, Chen and Li [10], Chen and

Xie [11], Han, Xie and Chen [12], Chen and Xie [13], Chen, Yang, Chen et al [15],

Yang, Xie, Chen et al [19] investigated the persistent property of the cooperative

system; Lin [24], Chen [30], Wu [21] investigated the influence of Allee effect on

the cooperative system or commensalism system; Xue, Xie and Chen [5], Yang, Xie

and Chen [18], Muhammadhaji and Teng [22] investigated the periodic solution or

almost periodic solution of the cooperative system.

However, only recently has it attracted the attention of scholars([2,3,25–27,29])

to investigate the influence of harvesting on the cooperative or commensalism model.

Xie, Chen and Xue [2] studied the following cooperative system incorporating linear

harvesting to the first species

ẋ = x
(
r1 − b1x− a1x

y + k1

)
− Eqx,

ẏ = y
(
r2 − b2y −

a2y

x+ k2

)
,

(1.2)

where x and y denote the densities of two populations at time t. The parameters

r1, r2, a1, a2, b1, b2, k1, k2, E, q are all positive constants. They showed that if r1 > Eq

holds, then the unique positive equilibrium E∗(x∗, y∗) of system (1.2) is globally

attractive.

Lei [27] studied the dynamic behaviors of the following non-selective harvesting

May cooperative system incorporating partial closure for the populations

ẋ = x
(
r1 − b1x− a1x

y + k1

)
− Eq1mx,

ẏ = y
(
r2 − b2y −

a2y

x+ k2

)
− Eq2my,

(1.3)

where x and y denote the densities of two populations at time t. The parameters

r1, r2, a1, a2, b1, b2, k1, k2, E, q1 and q2 are all positive constants, E is the combined

fishing effort used to harvest and m (0 < m < 1) is the fraction of the stock available

for harvesting. His study showed that the intrinsic growth rate and the fraction of the

stocks for the harvesting plays crucial role on the dynamic behaviors of the system,

all of the four equilibria maybe globally attractive under some suitable assumption.

It brings to our attention that in system (1.2) and (1.3), the authors chose the

linear harvesting. Suck kind of harvesting embodies several unrealistic features and
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limitations. For example, in system (2.1), the authors took h(E, x) = qEx as the

fishing term, where E denotes effort. One could see that h tends to infinity as the

effort E tends to infinity if the population x is finite and fixed, or as the population

x tends to infinity if the effort E is finite and fixed. To overcome this drawback,

recently, many scholars [30–33] argued that the nonlinear harvesting, or named as

Michaelis-Menten type harvesting is more suitable, it is more appropriate to describe

the fishing process of human being. Chen [30] incorporated the Michaelis-Menten

type harvesting term to the first species of the commensalism model, and studied

the following model:

dx

dt
= r1x

(
1− x

K1
+ α

y

K1

)
− qEx

m1E +m2x
,

dy

dt
= r2y

(
1− y

K2

)
,

(1.4)

where r1, r2, K1, K2, α, q, E, m1, m2 are all positive constants, r1, r2, K1, K2,

α have the same meaning as those of system (1.1), E is the fishing effort used to

harvest and q is the catchablity coefficient, m1 and m2 are suitable constants. In

system (1.4), where the harvesting term is h(E, x) = qEx/(m1E +m2x), q is the

catchability coefficient, E is the external effort devoted to harvesting, one could

see that lim
E→+∞

h(E, x) = qx/m1 and lim
x→+∞

h(E, x) = qE/m2. Such an assumption

obviously overcome the drawback of the linear one.

It brings to our attention that to this day, still no scholars propose and

study the cooperative system withe Michaelis-Menten type harvesting.

This motivates us to propose system (1.1), that is, we incorporate the Michaelis-

Menten type harvesting to the traditional May cooperative system [1]. As far as

system (1.1) is concerned, the most important thing is to study the extinction and

persistent property of the system.

We will investigate the extinction property in the next section, and investigate

the stability property of the positive equilibrium in Section 3, finally we end this

paper by a briefly discussion.

2 Extinction of the First Species
As a direct corollary of Lemma 2.2 of Chen [17], we have:

Lemma 2.1 If a>0, b>0 and ẋ≥x(b−ax), when t≥0 and x(0)>0, we have

lim inf
t→+∞

x(t) ≥ b

a
.

If a > 0, b > 0 and ẋ ≤ x(b− ax), when t ≥ 0 and x(0) > 0, we have

lim sup
t→+∞

x(t) ≤ b

a
.
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Concerned with the extinction of the first species, we have the following result.

Theorem 2.1 Assume that

r1 <
qE

m1E +m2F
, (2.1)

where

F =
r1

b1 +
a1

r2
b2

+ k1

.

Then the first species will be driven to extinction, that is,

lim
t→+∞

x(t) = 0.

Proof Condition (2.1) implies that for enough small positive constant ε > 0,

r1 <
qE

m1E +m2F (ε)
(2.2)

holds, where

F (ε) =
r1

b1 +
a1

r2
b2

+ ε+ k1

+ ε.

Now from the second equation of system (1.1), we have

ẏ ≤ y
(
r2 − b2y

)
. (2.3)

Applying Lemma 2.1 to (2.3) leads to

lim sup
t→+∞

y(t) ≤ r2
b2
. (2.4)

Therefore, for ε > 0 small enough which satisfies (2.2), there exists a T1 > 0 such

that

y(t) ≤ r2
b2

+ ε for all t ≥ T1. (2.5)

For t > T1, from (2.5) and the first equation of system (1.1), we have

ẋ ≤ x

(
r1 − b1x− a1x

r2
b2

+ ε+ k1

)
− Eqx

m1E +m2x

≤ x

(
r1 − b1x− a1x

r2
b2

+ ε+ k1

)
. (2.6)

Applying Lemma 2.1 to (2.6) leads to
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lim
t→+∞

x(t) ≤ r1
F11

, (2.7)

where

F11 = b1 +
a1

r2
b2

+ ε+ k1
.

Hence, there exists a T2 > T1 such that

x(t) <
r1
F11

+ ε
def
= F (ε) for all t > T2. (2.8)

For t > T2, again, from the first equation of system (1.1), we have

ẋ ≤ x
(
r1 − b1x− a1x

y + k1

)
− Eqx

m1E +m2x

≤ x
(
r1 −

Eq

m1E +m2x

)
≤ x

(
r1 −

Eq

m1E +m2F (ε)

)
. (2.9)

Hence,

x(t) ≤ x(T2) exp
{(

r1 −
Eq

m1E +m2F (ε)

)
(t− T2)

}
. (2.10)

It then immediately follows from (2.2) that

lim
t→+∞

x(t) = 0.

This ends the proof of Theorem 2.1.

Remark 2.1 Condition (2.1) seems a little complicated, since we here try to

incorporate the influence of the second species, however, from the proof of Theorem

2.1, in (2.6), from the first equation of system (1.1), we could also have

ẋ ≤ x
(
r1 − b1x

)
. (2.11)

Applying Lemma 2.1 to (2.11), one has

lim sup
t→+∞

x(t) ≤ r1
b1
. (2.12)

From (2.12), with some minor revise of (2.8)-(2.10), we could establish the following

more stronger but seems concise result.

Corollary 2.1 Assume that

r1 <
qE

mE +m1
r1
b1

. (2.13)

Then the first species will be driven to extinction, that is,

lim
t→+∞

x(t) = 0.
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Remark 2.2 For the system without fishing, that is, q = 0 in system (1.1), May

[1] showed that the system admits a unique globally attractive positive equilibrium.

That is, two species could be coexist in a stable state. Theorem 2.1 and Corollary

2.1 show the over harvesting of the first species (that is, q in system (1.1) is too

large), then despite the cooperation between the species, the first species will still

be driven to extinction.

Concerned with the stability of the rest species y, we have the following result.

Theorem 2.2 Assume that (2.1) or (2.13) holds, then

lim
t→+∞

y(t) =
r2

b2 +
a2
k2

. (2.14)

Proof It follows from the second equation of system (1.1) that

ẏ ≥ y
(
r2 − b2y −

a2y

k2

)
. (2.15)

Applying Lemma 2.1 to (2.15) leads to

lim inf
t→+∞

y(t) ≥ r2

b2 +
a2
k2

. (2.16)

On the other hand, under assumption (2.1) or (2.13), from Theorem 2.1 and Corol-

lary 2.1, we know that the first species in system (1.1) will be driven to extinction.

That is, for any enough small positive constant ε > 0, there exists an enough large

T such that

x(t) < ε for all t ≥ T. (2.17)

From (2.17) and the second equation of system (1.1), we have

ẏ ≤ y
(
r2 − b2y −

a2y

ε+ k2

)
. (2.18)

Hence, from Lemma 2.1, we have

lim sup
t→+∞

y(t) ≤ r2

b2 +
a2

ε+ k2

. (2.19)

Since ε is an enough small positive constant, setting ε → 0 in (2.19) leads to

lim sup
t→+∞

y(t) ≤ r2

b2 +
a2
k2

. (2.20)

Combining (2.16) with (2.20), we have

lim
t→+∞

y(t) =
r2

b2 +
a2
k2

. (2.21)

This ends the proof of Theorem 2.2.
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3 Stability of the Positive Equilibrium

First, let’s investigate the existence of the positive equilibrium of system (1.1).

Theorem 3.1 Assume that

b1k2 > r1 >
q

m1
(3.1)

holds, then system (1.1) admits a unique positive equilibrium.

Proof The positive equilibrium of system (1.1) satisfies the equations

r1 − b1x− a1x

y + k1
− Eq

m1E +m2x
= 0,

r2 − b2y −
a2y

x+ k2
= 0. (3.2)

From the second equation, we have

y =
r2 (x+ k2)

b2 k2 + b2 x+ a2
. (3.3)

Substituting (3.3) into the first equation of system (3.2) and by simplifying, we

finally obtain

A1x
2 +A2x+A3 = 0, (3.4)

where

A1 = Eb1b2k1m1 + Ea1b2m1 + Eb1m1r2 + a1b2k2m2 + a2b1k1m2

+a1a2m2 +m2 (b2k1 + r2) (b1k2 − r1)

A2 = Eb1b2k1k2m1 + Ea1b2k2m1 + Ea2b1k1m1 + Eb1k2m1r2

−Eb2k1m1r1 − b2k1k2m2r1 + Ea1a2m1 + Eb2k1q

−Em1r1r2 − a2k1m2r1 − k2m2r1r2 + Eqr2,

A3 = −E (m1r1 − q) (b2k1k2 + a2k1 + r2k2) . (3.5)

Under the assumption of Theorem 3.1, A1 > 0 and A3 < 0, hence, (3.4) admits a

unique positive solution

x∗ =
−A2 +

√
A2

2 − 4A1A3

2A1
. (3.6)

Consequently, system (1.1) admits a unique positive equilibrium E(x∗, y∗), where

x∗ is defined by (3.6) and

y∗ =
r2 (x

∗ + k2)

b2k2 + b2x∗ + a2
. (3.7)

This ends the proof of Theorem 3.1.
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Remark 3.1 Condition b1k2 > r1 could be replaced by some restrictions but

more complex condition

A1 > 0,

where A1 is defined by (3.5).

Now we are in the position of stating the stability property of the positive equi-

librium.

Theorem 3.2 Assume that (3.1) holds, then system (1.1) admits a unique

positive equilibrium E(x∗, y∗), which is globally attractive.

Proof By the first equation of system (1.1), we have

ẋ(t) ≤ x(t)(r1 − b1x(t)).

From Lemma 2.1, it follows that

lim sup
t→+∞

x(t) ≤ r1
b1
.

Hence, for enough small ε > 0, without loss of generality, we may assume that

ε <
1

2
min

{
r2

b2 +
a2
k2

,
r1 −

q

m1

b1 +
a1
k1

}
. (3.8)

It follows from (3.8) that there exists a T ′
1 > 0 such that

x(t) <
r1
b1

+ ε
def
= M

(1)
1 for all t > T ′

1. (3.9)

Similarly, for above ε > 0, it follows from the second equation of system (1.1) that

there exists a T1 > T ′
1 such that

y(t) <
r2
b2

+ ε
def
= M

(1)
2 for all t > T1. (3.10)

(3.9) and (3.10) together with the first equation of system (1.1) lead to

ẋ = x
(
r1 − b1x− a1x

y + k1

)
− Eqx

m1E +m2x

≤ x
(
r1 −

Eq

m1E +m2M
(1)
1

− b1x− a1x

M
(1)
2 + k1

)
for all t > T1. (3.11)

Therefore, by Lemma 2.1, we have

lim sup
t→+∞

x(t) ≤
r1 −

Eq

m1E +m2M
(1)
1

b1 +
a1

M
(1)
2 + k1

. (3.12)
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That is, for ε > 0 which satisfies (3.8), there exists a T ′
2 > T1 such that

x(t) <

r1 −
Eq

m1E +m2M
(1)
1

b1 +
a1

M
(1)
2 + k1

+
ε

2

def
= M

(2)
1 > 0 for all t > T ′

2. (3.13)

It follows from (3.9) and the second equation of system (1.1) that

ẏ ≤ y
(
r2 − b2y −

a2y

M
(1)
1 + k2

)
. (3.14)

Applying Lemma 2.1 to (3.14) leads to

lim sup
t→+∞

y(t) ≤ r2

b2 +
a2

M
(1)
1 + k2

.

Hence, for ε > 0 which satisfies (3.8), there exists a T2 > T ′
2 such that

y(t) <
r2

b2 +
a2

M
(1)
1 + k2

+
ε

2

def
= M

(2)
2 > 0 for all t > T2. (3.15)

Noting that

r1 −
Eq

m1E +m2M
(1)
1

< r1,
a1

M
(1)
2 + k1

> 0,
a2

M
(1)
1 + k2

> 0,

it immediately follows that

M
(2)
1 =

r1 −
Eq

m1E +m2M
(1)
1

b1 +
a1

M
(1)
2 + k1

+
ε

2
<

r1
b1

+ ε = M
(1)
1 ;

M
(2)
2 =

r2

b2 +
a2

M
(1)
1 + k2

+
ε

2
<

r2
b2

+ ε = M
(1)
2 . (3.16)

From the first equation of system (1.1) we have

ẋ = x
(
r1 − b1x− a1x

y + k1

)
− Eqx

m1E +m2x

≥ x
(
r1 −

q

m1
− b1x− a1x

k1

)
for all t > T2. (3.17)

Applying Lemma 2.1 to (3.17) leads to

lim inf
t→+∞

x(t) ≥
r1 −

q

m1

b1 +
a1
k1

. (3.18)
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Hence, for ε > 0 which satisfies (3.8), there exists a T ′
3 > T2 such that

x(t) >
r1 −

q

m1

b1 +
a1
k1

− ε
def
= m

(1)
1 , for all t > T ′

3. (3.19)

From the second equation of system (1.1), we have

ẏ ≥ y
(
r2 − b2y −

a2y

k2

)
. (3.20)

Applying Lemma 2.1 to (3.20) leads to

lim inf
t→+∞

y(t) ≥ r2

b2 +
a2
k2

. (3.21)

Hence, for ε > 0 which satisfies (3.8), there exists a T3 > T ′
3 such that

y(t) >
r2

b2 +
a2
k2

− ε
def
= m

(1)
2 for all t > T3. (3.22)

(3.19) and (3.22) together with the first equation of system (1.1) imply that

ẋ = x
(
r1 − b1x− a1x

y + k1

)
− Eqx

m1E +m2x

≥ x
(
r1 −

Eq

m1E +m2m
(1)
1

− b1x− a1x

m
(1)
2 + k1

)
for all t > T3. (3.23)

Applying Lemma 2.1 to (3.23) leads to

lim inf
t→+∞

x(t) ≥
r1 −

Eq

m1E +m2m
(1)
1

b1 +
a1

m
(1)
2 + k1

. (3.24)

That is, for ε > 0 which satisfies (3.8), there exists a T ′
4 > T3 such that

x(t) >

r1 −
Eq

m1E +m2m
(1)
1

b1 +
a1

m
(1)
2 + k1

− ε

2

def
= m

(2)
1 > 0, for all t > T ′

4. (3.25)

From the second equation of system (1.1), we have

ẏ ≥ y
(
r2 − b2y −

a2y

m
(1)
1 + k2

)
. (3.26)
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Applying Lemma 2.1 to (3.20) leads to

lim inf
t→+∞

y(t) ≥ r2

b2 +
a2

k2 +m
(1)
1

. (3.27)

Hence, for ε > 0 which satisfies (3.8), there exists a T4 > T ′
4 such that

y(t) >
r2

b2 +
a2

m
(1)
1 + k2

− ε

2

def
= m

(2)
2 for all t > T4. (3.28)

Also, since m
(1)
1 > 0, m

(1)
2 > 0, it follows that

Eq

m1E +m2m
(1)
1

<
q

m1
,

a1

m
(1)
2 + k1

<
a1
k1

,
a2

m
(1)
1 + k2

<
a2
k2

,

and so

m
(2)
1 =

r1 −
Eq

m1E +m2m
(1)
1

b1 +
a1

m
(1)
2 + k1

− ε

2
>

r1 −
q

m1

b1 +
a1
k1

− ε = m
(1)
1 ;

m
(2)
2 =

r2

b2 +
a2

m
(1)
1 + k2

− ε

2
>

r2

b2 +
a2
k2

− ε = m
(1)
2 . (3.29)

Repeating the above procedure, we get four sequences M
(n)
i ,m

(n)
i , i = 1, 2, n =

1, 2, · · · , such that for n ≥ 2

M
(n)
1 =

r1 −
Eq

m1E +m2M
(n−1)
1

b1 +
a1

M
(n−1)
2 + k1

+
ε

n
, M

(n)
2 =

r2

b2 +
a2

M
(n−1)
1 + k2

+
ε

n
,

m
(n)
1 =

r1 −
Eq

m1E +m2m
(n−1)
1

b1 +
a1

m
(n−1)
2 + k1

− ε

n
, m

(n)
2 =

r2

b2 +
a2

m
(n−1)
1 + k2

− ε

n
. (3.30)

Obviously,

m
(n)
i < xi(t) < M

(n)
i for all t ≥ T2n, i = 1, 2.

We claim that the sequences M
(n)
i , i = 1, 2 are strictly decreasing, and the sequences

m
(n)
i , i = 1, 2 are strictly increasing. To proof this claim, we will carry out by

induction. Firstly, from (3.16) and (3.29) we have

M
(2)
i < M

(1)
i , m

(2)
i > m

(1)
i , i = 1, 2.
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Let us assume now that our claim is true for n, that is,

M
(n)
i < M

(n−1)
i , m

(n)
i > m

(n−1)
i , i = 1, 2. (3.31)

Then
Eq

m1E +m2M
(n)
1

>
Eq

m1E +m2M
(n−1)
1

,

b1 +
a1

M
(n)
2 + k1

> b1 +
a1

M
(n−1)
2 + k1

,

b2 +
a2

M
(n)
1 + k2

> b2 +
a2

M
(n−1)
1 + k2

. (3.32)

From (3.32) and the expression of M
(n)
i , it immediately follows that

M
(n+1)
1 =

r1 −
Eq

m1E +m2M
(n)
1

b1 +
a1

M
(n)
2 + k1

+
ε

n+ 1

<

r1 −
Eq

m1E +m2M
(n−1)
1

b1 +
a1

M
(n−1)
2 + k1

+
ε

n
= M

(n)
1 ;

M
(n+1)
2 =

r2

b2 +
a2

M
(n)
1 + k2

+
ε

n+ 1

<
r2

b2 +
a2

M
(n−1)
1 + k2

+
ε

n
= M

(n)
2 . (3.33)

Also, it follows that m
(n)
i > m

(n−1)
i , i = 1, 2, then

Eq

m1E +m2m
(n)
1

<
Eq

m1E +m2m
(n−1)
1

,

b1 +
a1

m
(n)
2 + k1

< b1 +
a1

m
(n−1)
2 + k1

,

b2 +
a2

m
(n)
1 + k2

< b2 +
a2

m
(n−1)
1 + k2

. (3.34)

From (3.34) and the expression of m
(n)
i , it immediately follows that

m
(n+1)
1 =

r1 −
Eq

m1E +m2m
(n)
1

b1 +
a1

m
(n)
2 + k1

− ε

n+ 1
>

r1 −
Eq

m1E +m2m
(n−1)
1

b1 +
a1

m
(n−1)
2 + k1

− ε

n
= m

(n)
1 ,
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m
(n+1)
2 =

r2

b2 +
a2

m
(n)
1 + k2

− ε

n+ 1
>

r2

b2 +
a2

m
(n−1)
1 + k2

− ε

n
= m

(n)
2 . (3.35)

The above analysis shows that M
(n)
i , i = 1, 2 are strictly decreasing, and the se-

quences m
(n)
i , i = 1, 2 are strictly increasing. Therefore,

lim
t→+∞

M
(n)
1 = x, lim

t→+∞
M

(n)
2 = y, lim

t→+∞
m

(n)
1 = x, lim

t→+∞
m

(n)
2 = y.

Letting n → +∞ in (3.30), we obtain

b1x+
a1x

y + k1
= r1 −

Eq

m1E +m2x
,

b2y +
a2y

x+ k2
= r2;

b1x+
a1x

y + k1
= r1 −

Eq

m1E +m2x
,

b2y +
a2y

x+ k2
= r2. (3.36)

(3.36) shows that (x, y) and (x, y) are positive solutions of the equations

b1x+
a1x

y + k1
= r1 −

Eq

m1E +m2x
,

b2y +
a2y

x+ k2
= r2. (3.37)

Already, Theorem 3.1 shows that under assumption (3.1), (3.37) has a unique posi-

tive solution E∗(x∗, y∗). Hence, we conclude that

x = x = x∗, y = y = y∗,

that is

lim
t→+∞

x(t) = x∗, lim
t→+∞

y(t) = y∗.

Thus, the unique interior equilibrium E∗(x∗, y∗) is globally attractive. This com-

pletes the proof of Theorem 3.2.

As a direct corollary of Theorem 3.2, we have:

Theorem 3.3 Assume that A1 > 0, where A1 is defined by (3.5), assume further

that r1 > q/m1, then system (1.1) admits a unique positive equilibrium E∗(x∗, y∗),

which is globally attractive.

Proof Noting that under the assumption A1 > 0 and r1 > q/m1, system (3.37)

admits a unique positive solution E∗(x∗, y∗). The rest of the proof is the same as

that of Theorem 3.2, and we omit the detail here.
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4 Numeric Simulations

Example 4.1 Consider the following system

ẋ = x
(
1− x− 2x

y + 1

)
− 2x

0.5 + 0.5x
,

ẏ = y
(
1− y − y

x+ 1

)
. (4.1)

Here, corresponding to system (1.1), we take r1 = b1 = E = r2 = b2 = a2 = k1 =

k2 = 1, m1 = m2 = 0.5, q = 2, a1 = 2. In this case, by simple computation, one

could easily see that

1 = r1 <
qE

m1E +m2
r1
b1

= 2 (4.2)

holds, that is, condition (2.13) in Corollary 2.1 holds, and so, it follows from Corol-

lary 2.1 that the boundary equilibrium (0, 0.5) of the system is globally stable.

Numeric simulation (Figure 1) supports this assertion.

Figure 1: Dynamic behaviors of system (4.1), the initial
condition (x(0), y(0)) = (3, 0.5), (2, 2), (0.5, 2)
and (3, 0.2), respectively.

Example 4.2 Consider the following system

ẋ = x
(
1− x− x

y + 1

)
− x

4 + 0.5x
,

ẏ = y
(
1− y − y

x+ 4

)
. (4.3)
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Here, corresponding to system (1.1), we take r1 = b1 = a1 = q = E = r2 = b2 =

a2 = k1 = 1, k2 = 4, m1 = 4, m2 = 0.5. In this case, by simple computation, one

could easily see that

b1k2 = 4 > 1 = r1 >
q

m1
= 0.25 (4.4)

holds, that is, condition (3.1) in Theorem 3.2 holds, and so, it follows from Theo-

rem 3.2 that the unique positive equilibrium (0.493 215 759 3, 0.817 957 268 8) of the

system is globally stable. Numeric simulation (Figure 2) supports this assertion.

Figure 2: Dynamic behaviors of system (4.3), the initial
condition (x(0), y(0)) = (3, 0.5), (2, 2), (0.5, 2)
and (3, 0.2), respectively.

5 Discussion

Though there are many works on cooperative system ([1-30]), only recently did

scholars ([2,3,25–27,29]) began to study the cooperative or commensal system incor-

porating harvesting, however, as was shown in the introduction section, both Xie,

Chen and Xue [2] and Lei [27] were consider the linear harvesting, and still no schol-

ars investigate the cooperative system with nonlinear harvesting, this motivated us

to propose system (1.1).

We first show that overfishing may lead to the extinction of the species. Such

kind of property is reflect by the catchablity coefficient q and constant m1, if q is

too large, while m1 is limited, then inequality (2.1) always holds, consequently, the

first species will be driven to extinction.
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Our next result is concerned with the global attractivity of the positive equilib-

rium. Condition (3.1) shows that if b1k2 larger then the intrinsic birth rate of the

first species, also, if the harvesting is limited, such that r1 > q/m1 holds, then the

two species could be coexist in a stable state. Generally speaking, to overcome the

influence of harvesting, increasing the intrinsic rate is a necessary countermeasure.

However, our study shows that it also need to restrict the intrinsic rate to satisfy

the inequality r1 < b1k2. What would happen if the inequality r1 < b1k2 does not

satisfied, at present we have no answer to this problem, we will leave this for future

study.
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