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Abstract. Phase change in ice-water systems in the geometry of horizontal cylin-
drical annulus with constant inner wall temperature and adiabatic outer wall is
modeled with an enthalpy-based mixture model. Solidification and melting phe-
nomena under different temperature conditions are analyzed through a sequence
of numerical calculations. In the case of freezing of water, the importance of con-
vection and conduction as well as the influence of cold pipe temperature on time
for the complete solidification are examined. As for the case of melting of ice, the
influence of the inner pipe wall temperature on the shape of the ice-water interface,
the flow and temperature fields in the liquid, the heat transfer coefficients and the
rate of melting are analyzed. The results of numerical calculations point to good
qualitative agreement with the available experimental and other numerical results.

AMS subject classifications: 80A22
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1 Introduction

Modeling of solid-liquid phase change phenomena has received a lot of attention since
it is a common occurrence in metallurgical processes, latent heat thermal energy stor-
ages, oceanography, food processing, nuclear reactor safety etc. The nature of solid-
liquid phase change can take different forms [1–3]. In the case of water and pure sub-
stances, the phase-change transition occurs at a constant temperature and a smooth
continuous front separates the solid and the liquid phase distinctively, whereby dif-
ferent physical properties characterize the phases. The solidification of metal alloys
and other multicomponent systems occurs at a finite temperature interval, and there-
fore a phase-change region (the ”mushy” zone) forms, containing the solid and the
liquid phase at the equilibrium temperature. The solid phase in the two-phase region

∗Corresponding author.
Email: esadt@ac.me (E. Tombarević), igorvus@ac.me (I. Vušanović)
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can be formed as a rigid dendrite structure with a complex shape, or in the form of free
floating particles which can be advected with the flow through or out of the mushy re-
gion. During the solidification of waxes, polymers and glasses, the liquid and the solid
phase are dispersed throughout the phase-change region without creating a distinct
solid-liquid interface.

The position of the solid-liquid front which propagates as the phase change pro-
ceeds, cannot be determined in advance, and it has to be determined as an unknown
variable, together with the temperature field in both phases and the fluid flow in the
liquid phase and the mushy region. The temperature fields in the solid and the liquid
phase can be obtained from the energy conservation equations for solid and liquid
phase respectively, while the fluid flow in the liquid is usually calculated from the
momentum and the mass balance equation in the liquid. The transition of the solid-
liquid interface is determined based on the interface energy balance equation which
includes latent heat (L) as the key parameter in the phase-change process. The fluid
flow is usually driven by buoyancy forces caused by the thermal gradients in the liq-
uid phase. Several alternative numerical methods have been proposed for the solution
of heat transfer with phase change that is usually referred to as the Stefan problem [4].
A survey of various numerical techniques can be found in Crank [5] and Voller [6].
One of the key challenges that have been the focus of research in the past is tracking
the transient phase change interface which is usually treated with moving or fixed
grid methods.

The moving grid methods (or variable grid, deforming grid, front tracking meth-
ods) [7, 8] assume the fixing of the solid-liquid interface in each time step and solving
the conservation equations separately for the solid and the liquid phase. The interface
position has to be calculated for each time step using the classical Stefan formulation.
As the solid-liquid interface propagates with time, the separate numerical grids for
the solid and the liquid phase need to be rearranged (deformed) in each time step,
to ensure that the node points are always on the phase-change front, which requires
special techniques for meshing the domain.

The fixed grid methods (or enthalpy methods) [9, 10] for phase change problems
are based on one set of equations for both phases. A review of fixed grid techniques for
phase-change problems can be found in Voller [9]. The phase change is taken into ac-
count with the appropriate source terms in the momentum and energy equations. The
fluid flow in the two-phase region is usually described by Darcy law [10].The phase-
change material is treated as a mixture, with unique physical properties depending
only on liquid fraction (gs) as a parameter. The main advantage of these methods is
that there is no need to explicitly track the solid-liquid interface.

In this paper, an enthalpy-based model is applied to simulate the solid-liquid
phase change in water, for the geometry of cylindrical horizontal annulus. This kind
of geometry is widely used for thermal energy storage applications. Thermal energy
storage based on solid-liquid phase change is a well-known and widely used solution
used in air conditioning facilities, known to be a cost-effective measure. A valuable
reference resource on thermal energy storage systems and applications is a book by
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Figure 1: Ice storage and its integration in the system with chiller and consumers.

Dinçer and Rosen [11]. Zalba et al. [12] provide a historical overview of thermal en-
ergy storages with solid-liquid phase change, with emphasis on used phase-change
materials, heat transfer and applications. A recent review of research on cold thermal
energy storage is given in a paper by Saito [13].

Low temperature energy is usually stored in solid form during the night, when the
freezing of phase-change material (water) occurs. Afterwards, in the daytime regime,
the accumulated low temperature energy is released by the melting of the same phase-
change material, and then used to cover the cooling load partially or completely.

One typical configuration of ice storage consists of a module with horizontal beams
in which primary fluid flows through the inner beam pipe and the phase-change ma-
terial (water or eutectic salts) in the annular space freezes in the charging and melts in
the discharging operation mode. This configuration of ice storage and its integration
in the system with a chiller and consumers is sketched in Fig. 1.

Appropriate dimensioning and the design of ice storage equipment requires pro-
found understanding of the phase-change phenomenon that occurs in the charging
and the discharging operation mode. The configuration of the horizontal annulus is
studied theoretically and experimentally and a comprehensive review is given in Yao
and Prusa [14]. Experimental results for this particular geometry can be found in a
paper by White et al. [15], while numerical results obtained by applying fixed grid
temperature based method are presented in Ho and Chen [16].

2 Physical and mathematical model

The physical model considered in this work is a unit length horizontal circular annulus
with the inner pipe radius ri and the outer pipe radius ro (Fig. 2). The temperature of
the inner pipe Tw is assumed to be constant and uniform along the pipe. In the case of
freezing, the water in the annular space is initially at temperature Ti and the freezing
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Figure 2: Physical model.

starts when the inner pipe temperature is suddenly reduced below the phase change
temperature. As for melting, the ice in the annular space is initially at temperature Ti
and the melting starts when the inner pipe temperature is suddenly increased above
the phase-change temperature.

Due to its simplicity, the fixed grid enthalpy-based method is applied for modeling
phase change in this study. The mixture conservation equations for mass, momentum
and energy, together with property equations of ice and water, represent a closed sys-
tem which solution is a time dependant flow and the temperature fields in the annu-
lus. The flow field is considered to be two dimensional, laminar and incompressible.
The physical properties of water and ice shown in Table 1 are temperature invariant,
except for the water density, whose nonlinear variation with temperature (Fig. 3) is
included in the buoyancy term in the momentum equation.

Nonlinear variation of water density with temperature can be represented using
the fourth order polynomial:

ρ =999.840281167 + 0.0673268037314T − 0.00894484552601T2

+ 8.78462866500 × 10−5T3 − 6.62139792627 × 10−7T4. (2.1)

The thermal expansion coefficient is obtained by differentiating the above given for-
mula, and in the same temperature range is given in Fig. 4. It can be also given as a
fourth order polynomial:

β =(−0.66443347028 + 0.17869952437T − 0.00264710551T2

+ 0.00002794300T3 − 0.00000001805443T4)× 10−4. (2.2)

For the derivation of mixture conservation equations of mass, momentum and en-
ergy, the averaging technique originally proposed by Bennon and Incropera [17] is

Table 1: The physical properties of ice and water.

Physical parameter Water Ice
ρ on 0 ◦C [kg/m3] 999.84 916.7
cp [J/kgK] 4202.0 2040.0
λ [W/mK] 0.56 2.26
µ [Pas] 0.001547 -
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Figure 3: The density of water as a function of temperature.
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Figure 4: Thermal expansion coefficient as a function of temperature.

applied for ice-water system. Equations are written for each phase separately, and
then summed in order to obtain equations of a single model. Based on the enthalpy
method, the governing equations in polar coordinates, given in a form suitable for
numerical integration with control volume method [18], are as follows:

Continuity equation
∂ρ

∂t
+∇ ·

(
ρ

→
V
)
= 0. (2.3)

Momentum equations

∂

∂t
(ρvr) +∇ ·

(
ρ

→
V vr

)
−

ρv2
φ

r

=− ∂p
∂r

+∇ · (µ∇vr)− µ
vr

r2 − 2µ

r2

∂vφ

∂φ
− ρgβ(T − Tre f ) sin φ + Sr, (2.4a)

∂

∂t
(ρvφ) +∇ ·

(
ρ

→
V vφ

)
+

ρvrvφ

r

=− 1
r

∂p
∂φ

+∇ · (µ∇vφ)− µ
vφ

r2 +
2µ

r2
∂vr

∂φ
+ ρgβ(T − Tre f ) cos φ + Sφ. (2.4b)
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Figure 5: The enthalpy of water as a function of temperature.

Energy equation
∂

∂t
(ρh) +∇ ·

(
ρ

→
V h

)
= ∇ · (λ∇T) + Sh. (2.5)

Enthalpy and temperature transition through the phase change is controlled with the
source term Sh on the right hand side of the Eq. (2.5) which is obtained by dividing
the total enthalpy H into its sensible h and the latent part ∆H, H = h + ∆H:

Sh = −
[ ∂

∂t
(ρ∆H) +∇ ·

(
ρ

→
V L

)]
. (2.6)

In reality, the phase change of water is isothermal and total enthalpy is a step function
of temperature and has a jump on 0◦C. This jump is equal to the value of the latent
heat L (332.4 kJ/kg). In order to overcome this numerical problem, the jump of total
enthalpy H at the constant phase-change temperature (Fig. 5(a)) is converted into a
linear function ∆H at the narrow temperature interval (Fig. 5(b)) so that that it mimics
the isothermal nature of the phase change.

The latent heat ∆H is expressed as a function of the volumetric fraction of liquid
(porosity) gl in the given control volume:

∆H = f (T) =


L, T > Tl ,
gl · L, Ts 6 T < Tl ,
0, T < Ts,

(2.7)

Tl is the temperature at which the freezing process starts and Ts is the temperature at
which it ends. In this work Tl = 0.01◦C and Ts = 0◦C. On the other hand, porosity can
be given as a simple linear function of temperature:

gl =


1, T > Tl ,
T − Ts

Tl − Ts
, Ts 6 T < Tl ,

0, T < Ts.

(2.8)
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With this definition of porosity, physical properties in the mushy region (Ts < T < Tl)
can be expressed as:

ρ = (1 − gl)ρs + glρl , (2.9a)
λ = (1 − gl)λs + glλl . (2.9b)

The energy equation (2.5) requires a special treatment because of the source term on
the right hand side, which includes the latent enthalpy content ∆H. To obtain the
new enthalpy value hk+1 for the iteration step (k + 1), one needs ∆Hk+1 which itself
depends on the unknown solution hk+1. The procedure for handling this problem and
the details of numerical integration of energy equation are presented in the appendix
of [10]. The final iterative scheme for the calculation of latent heat content ∆H for the
given control volume in the iteration step k + 1 is:

∆Hk+1 = ∆Hk + hk − cp f−1(∆Hk), (2.10)

where f−1 is the inverse of the latent heat function given in (2.7).
During the calculation of the velocity field, the velocity at the control volume lo-

cated in the solid phase should be nullified, while the velocities in the liquid phase
should remain unaffected. Therefore, Darcy-like source terms Sr and Sφ are used in
momentum equations (2.4a) and (2.4b) to provide the above mentioned conditions:

Sr = −C
(1 − gl)

2

g3
l + q

vr, (2.11a)

Sφ = −C
(1 − gl)

2

g3
l + q

vφ. (2.11b)

In the liquid phase gl = 1 and therefore source terms (2.11a) and (2.11b) are equal
to zero, and momentum equations (2.4a) and (2.4b) have the standard form as for
incompressible fluids. As liquid turns to solid (porosity gl approaches zero), source
terms become large enough so as to dominate in momentum equations, and suppress
velocities in the solid phase. In this work C is set at 1600000. The constant q which is
introduced to avoid division by zero as liquid turns to solid is set at 0.001.

Equations of mathematical model are discretized by control volume method [18].
A fully implicit scheme is used in time integration, and an upwind scheme for the ap-
proximation of convective fluxes on the control volume faces. The obtained algebraic
equations are solved by iterative Gauss-Siedel algorithm. The SIMPLER algorithm
and the staggered grid approach are used for pressure velocity coupling. Because
of the symmetry of the temperature and flow fields (vertical centerline is the axis of
symmetry), only one half of the domain is considered.

3 Results and discussions

A number of numerical calculations with different inner pipe wall temperatures are
performed for the annulus with ri = 12.7mm and ro = 50.8mm in order to analyse the
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phenomenon of freezing of water and melting of ice in this geometry. In both cases,
the primary goal was to estimate the relative importance of convection and conduc-
tion on the process. In order to obtain results that are grid independent, calculations
were carried out on grids of different densities (25 × 50, 50 × 100 and 100 × 200). Grid
sensitivity trials resulted in a final grid of 5000 CV (50 × 100). Also, calculations were
performed with different time step (1s, 5s and 10s), and the time step sensitivity anal-
ysis resulted in an optimum time step size of 5s.

3.1 Solidification

The temperature and the flow fields for the freezing of water at the initial temperature
Ti = 10◦C and inner wall temperature Tw = −15◦C are shown in Fig. 6.

Due to the temperature gradients, natural convection is induced in the liquid phase.
At the very beginning of the freezing process, only a counterclockwise cell appears in
the liquid. The clockwise cell appears in the upper part of the annulus where the wa-
ter maintains the highest temperature and thus the lowest density. As the freezing
proceeds and the remaining liquid is cooled, the inversion of the flow field (counter-
clockwise to clockwise) occurs due to the water density anomaly. In the lower part
of the annulus, next to the ice-water interface, another clockwise cell appears. On its
outer side is the old cell and the line between those two cells lies on the 4◦C isotherm.
The inner cell expands with time and occupies most of the liquid region. After 1900
seconds, a small counterclockwise cell is observed at the bottom of the annulus. After
4500s only one clockwise cell exists, since the temperature in the liquid phase is be-
low 4◦C, the temperature at which the density maximum occurs. Ice is formed on the

 +  clockwise 

 -  counterclockwise

+

+20 s 520 s50 s

-

- -

++ -

+

1900 s1200 s 4500 s

+

-

Figure 6: The temperature field (left) and the flow field (right) during the solidification at Tw = −15◦C
and Ti = 10◦C.
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Figure 7: Temperature distribution along radial direction at φ = 90◦.

cold inner pipe and the water circulates in the annular space between the ice-water
interface (dashed line) which is at a constant temperature of the phase change and the
outer adiabatic wall. Therefore, with no flux boundary condition at the outer wall,
the temperature of the remaining liquid decreases relatively fast towards the freezing
point and the natural convection is retarded with time. To clarify this statement, the
temperature distribution along radial direction at φ = 90◦ in several time instants are
plotted in Fig. 7. One can clearly note that the temperature of the bulk of the liquid
decreases with time. With different boundary condition, such as constant temperature
on the outer pipe wall, the temperature gradients in the liquid phase would be always
present and may induce the fluid motion strong enough to have a noticeable effect on
the shape of the surface of ice. This case was numerically investigated by using the
moving grid method and the results are reported by Saitoh and Hirose [19].

The time for the complete solidification of water in the annulus is 12,190 seconds.
Using the same model and neglecting the convection in the liquid phase (velocities are
set to zero and only the energy equation is solved), the time needed for the complete
solidification is 12,172 seconds. Therefore, because of much shorter computation time,
the convection in the liquid phase is neglected in the further analysis of freezing cases.

The radial temperature profiles in the domain for several time instants for Tw =
−15◦C and Ti = 10◦C are shown in Fig. 8. The temperature gradient in the solid
phase ∂Ts/∂r decreases with time as the thickness of the ice layer increases. On the
other hand, the temperature of water falls to the phase-change temperature and after
some time, the temperature gradient in the liquid phase ∂Tl/∂r is almost equal to zero.
At the same time, the rate of ice formation ∂rs/∂t (Fig. 9) decreases and the energy
balance on ice water interface (3.1) is always satisfied:

λs
∂Ts

∂r
− λl

∂Tl

∂r
= ρsL

∂rs

∂t
. (3.1)

After 12,171 seconds, all the water in the annulus is frozen and the ice is quickly cooled
down. The change of the thickness of ice layer with time for Tw = −5◦C, −10◦C and
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Figure 9: Change of the thickness of ice layer
with time for Tw = −15◦C and Ti = 10◦C.
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Figure 11: Heat conveyed over time for Tw =
−5◦C, −10◦C, −15◦C and Ti = 10◦C.

−15◦C is given in Fig. 10. The heat conveyed over the unit length of the inner pipe
wall to the primary fluid in each time step could be approximately calculated as:

Q̇(t) = (Tf − Tw)
( 1

2πλs
ln

rs(t)
ri

)−1
, (3.2)

and is given in Fig. 11.
The conveyed heat decreases with time as the thickness of ice layer and the resis-

tance to heat conduction increases. The area below those lines represents low temper-
ature heat stored in the annulus. The time needed for the complete solidification of the
water in the annulus strongly depends on the temperature Tw, as presented in Fig. 12
for the temperature range −40◦C−0◦C.

3.2 Melting

The initial temperature of ice in all numerical simulations of melting is the phase
change temperature 0◦C. The temperature and the flow fields in several time instances
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Figure 12: The time needed for the complete solidification as a function of Tw.

in the case of melting at Tw = 4◦C are illustrated in Fig. 13. At the beginning of melt-
ing, conduction is the dominant heat transfer mechanism and the solid-liquid phase
change interface has the shape of a circle with the center on the axis of annulus. As
melting continues, the convection in the liquid phase intensifies and causes the defor-
mation of isotherms. In this case, the water in the vicinity of the inner pipe has the
highest density and therefore flows downwards along the inner pipe, while the water
in the vicinity of ice surface flows upwards.

Local heat transfer coefficients referring to the heat transfer from the pipe surface
to the water as a function of the angle φ (φ = 0◦ at the bottom and φ = 180◦ at the
top of annulus) are presented in Fig. 14. It is evident that the heat transfer is more
intense on the top of the heat source since relatively cold water, previously cooled
down during the flow along the ice surface, comes into contact with a source of heat.
On the surface of ice, the opposite situation occurs-relatively warmer water comes
in contact with the ice surface below the heat source and the consequence is a pear-
shaped melted region facing downwards. φ

In all cases at Tw > 4◦C, the isotherm T = 4◦C, i.e., the water featuring maximum
density is located somewhere between the surface of the inner pipe and the surface of
ice, and two distinct types of flow cells appear in the melted region. The temperature
and the flow fields at several time points for Tw = 8◦C are given in Fig. 15. The

 +  clockwise 

 -  counterclockwise

214 min30 min 133 min

-

-

Figure 13: The temperature field (left) and the flow field (right) for Tw = 4◦C.
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Figure 14: Local heat transfer coefficients for Tw = 4◦C.

ice-water interface retains the circular shape over a relatively longer period of time.
As melting continues, the flow in the outer vortex, next to the ice-water interface,
intensifies and occupies most of the melted region and, as a result, the movement of
the interface is determined by the flow in the outer vortex and melting is more intense
under the heat source.

Local heat transfer coefficients referring to the heat transfer from the inner pipe
surface to the water for t = 67min (Fig. 16) have minimum values for φ ≈ 100◦, i.e., on
the contact of the inner and the outer vortex where temperature gradients measure a
minimum. For φ < 100◦, local heat transfer coefficients are relatively lower since there
is a clockwise circulation in the inner vortex down the isotherm T = 4◦C and then
along the surface of cylinder Tw = 8◦C. For φ > 100◦C, local heat transfer coefficients
are relatively higher since there is a counterclockwise circulation of water in the outer
vortex, along the surface of ice Tf = 0◦C and then down the warm surface of cylinder
Tw = 8◦C.

For Tw = 13.6◦C (Fig. 17), at the very beginning of process, the melted region be-
comes pear-shaped and is facing upwards. Melting is more intense above the heat
source, and retarded over quite a long period under the cylinder where the heat trans-
fer is conduction dominated.

 +  clockwise 

 -   counterclockwise

-16 min 67 min 157 min
+

-

+

Figure 15: The temperature field (left) and the flow field (right) for Tw = 8◦C.
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Figure 16: Local heat transfer coefficients for Tw = 8◦C.

The average values of heat transfer coefficients referring to the heat transfer from
the inner pipe surface to the water for Tw = 4, 8 and 12◦C are presented in Fig. 18.
Initial high values are characteristic for transient conduction dominated heat transfer.
After 16,000 seconds for Tw = 4◦C and 12,000 seconds for Tw = 8◦C, the water comes
into contact with the outer insulated pipe of the annulus and therefore, there is a drop
in average heat transfer coefficients. The variation of molten volume ratio V/Vo (V-
volume of molten region, Vo volume of heat source) with time is given on Fig. 19,
together with the experimental data of White et al. [5] for Tw = 4, 8 and 10◦C.
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Figure 17: The temperature field (left) and the flow field (right) for Tw = 13.6◦C.

0 5000 10000 15000 20000
0

50

100

150

200

250

300

350

400

450

500

Time [s]

A
v
e

ra
g

e
 h

e
a

t 
tr

a
n

s
fe

r 
c
o

e
ff
ic

ie
n

ts
 h

 [
W

/m
2
K

]

T
w

=4
o
C

T
w

=8
o
C

T
w

=12
o
C

2

0
2

1
hdh

Figure 18: Average heat transfer coefficients as a
function of time for different wall temperatures.
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Figure 19: Variation of molten volume with time.
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4 Conclusions

Isothermal phase change phenomena, such as water freezing and ice melting, are suc-
cessfully simulated using a single domain enthalpy-based model. Performed calcu-
lations exhibit qualitatively good agreement with the available experimental [15] and
other numerical results [16] for the same geometry. The obtained numerical results
indicate that with such boundary conditions, natural convection has negligible influ-
ence in the case of freezing. The convection in the liquid has no significant influence
on the rate of the freezing process and on the shape of the solid-liquid interface. The
time needed for the complete solidification of water in the annulus strongly depends
on the temperature of the heat sink and that is the inner pipe wall. Heat conduction
resistance is increased as the thickness of the ice layer increases, and, therefore, the
rate of solidification is slower.

On the other side, in the case of melting, the temperature of the inner cylinder wall
strongly affects the flow in the liquid and the shape of solid-liquid interface. For the
inner pipe temperatures under or equal to 4◦C, the water with the highest density is
located next to the inner wall and the flow is directed to the bottom of annulus causing
a pear-shaped melted region to appear on the bottom of annulus and the highest heat
transfer coefficient on the top of annulus. With inner wall temperature Tw above 4◦C,
the isotherm with the highest water density moves through the liquid region, and
separates two distinct cells with opposite flow directions. Higher wall temperatures
move maximum density isotherm closer to the phase-change interface and causes the
supremacy of the clockwise flow in the liquid, forming a pear-shape on the top side of
annulus.

To the authors’ knowledge, fixed grid enthalpy-based method has not been pre-
viously used for the analysis of ice-water isothermal phase change in the geometry
of horizontal cylindrical annulus. It would be valuable to have several benchmark re-
sults for this problem, obtained by using different numerical approaches as a reference
for qualitative, as well as quantitative comparison.

Nomenclature

C [kg/m3s] constant in Darcy law
g [m2/s] acceleration of gravity
gs volumetric fraction of liquid
h [J/kg] sensible enthalpy
H [J/kg] total enthalpy
∆H [J/kg] latent heat content
k iteration step
L [J/kg] latent heat of phase change
p [Pa] pressure
q small constant to avoid dividing by zero
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r [m] radial coordinate
ri [m] inner pipe radius
ro [m] outer pipe radius
rs [m] radius of ice surface
Sh [W/m3] source term in energy equation
Sr, Sϕ [J/m3] source terms in momentum equations
T [◦C] temperature
Tf [◦C] temperature of phase change
Ti [◦C] initial temperature
Tw [◦C] temperature of the inner pipe wall
t [s] Time
V⃗ [m/s] velocity vector
vr, vϕ [m/s] component of velocity vector in polar coordinates

Greek symbols

β [K−1] coefficient of thermal expansion
λ [W/mK] thermal conductivity
µ [Pas] dynamic viscosity
ρ [kg/m3] density
ϕ [◦] angular coordinate

Subscripts

l liquid
r [m] radial
re f Reference
s solid
ϕ [◦] angular
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[11] İ. DINÇER, AND M. A. ROSEN, Thermal Energy Storage: Systems and Applications, John
Willey & Sons, New York, 2001.

[12] B. ZALBA, J. M. MARIN, L. F. CABEZA, AND H. MEHLING, Review on thermal energy
storage with phase change: materials, heat transfer analysis and applications, Appl. Thermal.
Eng., 23 (2003), pp. 251–283.

[13] A. SAITO, Recent advances in research on cold thermal energy storage, J. Refr., 25 (2002), pp.
177–189.

[14] L. S. YAO, AND J. PRUSA, Melting and freezing, Adv. Heat. Trans., 19 (1989), pp. 1–95.
[15] D. WHITE, R. VISKANTA, AND W. LEIDENFROST, Heat transfer during melting of ice around

a horizontal, isothermal cylinder, Exp. Fluids., 4 (1986), pp. 171–179.
[16] C. J. HO, AND S. CHEN, Numerical simulation of melting of ice around a horizontal cylinder,

Int. J. Heat. Mass. Trans., 29/9 (1986), pp. 1359–1369.
[17] W. D BENNON, AND F. P. INCROPERA, A continuum model for momentum, heat and species

transport in binary solid-liquid phase change systems-I, model formulation, Int. J. Heat. Mass.
Trans., 10 (1986), pp. 2161–2170.

[18] S. V PATANKAR, Numerical Heat Transfer and Fluid Flow, Hemisphere, New York, 1980.
[19] T. SAITOH, AND K. HIROSE, Numerical method for the two-dimensional freezing problem

around a horizontal cylinder encompassing a density inversion point, B. JSME., 187/20 (1981),
pp. 147–152.


