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Abstract. The energy gradient method has been proposed with the aim of better
understanding the mechanism of flow transition from laminar flow to turbulent
flow. In this method, it is demonstrated that the transition to turbulence depends
on the relative magnitudes of the transverse gradient of the total mechanical energy
which amplifies the disturbance and the energy loss from viscous friction which
damps the disturbance, for given imposed disturbance. For a given flow geometry
and fluid properties, when the maximum of the function K (a function standing for
the ratio of the gradient of total mechanical energy in the transverse direction to
the rate of energy loss due to viscous friction in the streamwise direction) in the
flow field is larger than a certain critical value, it is expected that instability would
occur for some initial disturbances. In this paper, using the energy gradient anal-
ysis, the equation for calculating the energy gradient function K for plane Couette
flow is derived. The result indicates that K reaches the maximum at the moving
walls. Thus, the fluid layer near the moving wall is the most dangerous position
to generate initial oscillation at sufficient high Re for given same level of normal-
ized perturbation in the domain. The critical value of K at turbulent transition,
which is observed from experiments, is about 370 for plane Couette flow when two
walls move in opposite directions (anti-symmetry). This value is about the same
as that for plane Poiseuille flow and pipe Poiseuille flow (385-389). Therefore, it
is concluded that the critical value of K at turbulent transition is about 370-389 for
wall-bounded parallel shear flows which include both pressure (symmetrical case)
and shear driven flows (anti-symmetrical case).
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1 Introduction

Although more than a century has passed since the pioneering work of Reynolds
(1883) was done, flow transition from laminar flow to turbulence is still not completely
understood [1–5]. In practice, the understanding of turbulence transition and genera-
tion has great significance for basic sciences and many engineering fields. This issue
is intricately related to the instability problem of the base flow subjected to some im-
posed disturbances [1, 2].

In the past, several stability theories have been developed to describe the mech-
anism of flow instability. These are: the linear stability theory, which goes back to
Rayleigh (1880) is a widely used method and has been applied to several problems [6].
For Taylor-Couette flow and Rayleigh-Bernard convective problem, it agrees well with
experimental data. However, this theory fails when used for wall-bounded parallel
flows such as plane Couette flow, plane Poiseuille flow and pipe Poiseuille flow; the
energy method (Orr, 1907), which is based on the Reynolds-Orr equation is another
mature method for estimating flow instability [7]. However, agreement could not
be obtained between the theoretical predictions and the experiment data; the weakly
nonlinear stability theory (Stuart, 1971) emerged in 1960’s and the application is very
limited (see [8]); the secondary instability theory (Herbert et al. 1988), which was de-
veloped most recently, explains some of flow transition phenomena (mainly for the
boundary layer flow) better than the other earlier theories (see [9]). However, there
are still significant discrepancies between the predictions obtained using this method
and experimental data; particularly at transition.

Studies for parallel flows have attracted many scientists with great concern. For
these parallel flows, it is observed from experiments that there is a critical Reynolds
number Rec below which no turbulence can be sustained regardless of the level of im-
posed disturbance. For the pipe Poiseuille flow, this critical value of Reynolds number
is about 2000 from experiments [10, 11]. Above this Rec, the transition to turbulence
depends to a large extent on the initial disturbance to the flow. For example, exper-
iments showed that if the disturbances in a laminar flow can be carefully avoided
or considerably reduced, the onset of turbulence can be delayed to Reynolds num-
ber up to Re=O(105) [12]. Experiments also showed that for Re>Rec, only when a
threshold of disturbance amplitude is reached, can the flow transition to turbulence
occur [13]. Trefethen et al. suggested that the critical amplitude of the disturbance
leading to transition varies broadly with the Reynolds number and is associated with
an exponent rule of the form, A∝Reγ [12]. The magnitude of this exponent has sig-
nificant implication for turbulence research [12]. Chapman, through a formal asymp-
totic analysis of the Navier-Stokes equations (for Re→∞), found γ=−3/2 and −5/4
for plane Poiseuille flow with streamwise mode and oblique mode, respectively, with
generating a secondary instability, and γ=−1 for plane Couette flow with above both
modes. He also examined the boot-strapping route to transition without needing to
generate a secondary instability, and found γ=−1 for both plane Poiseuille flow and
plane Couette flow [14]. Recently, Hof et al. [15] used pulsed injection disturbances in
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experiments, to obtain the normalized disturbance flow rate in the pipe for the turbu-
lent transition, and found it to be inversely proportional to the Re number, i.e., γ=−1.
This experimental result means that the product of the amplitude of the disturbance
and the Reynolds number is a constant for the transition to turbulence. This phe-
nomenon must have a physical background, and a physical mechanism for this result
was proposed by Dou [16, 17].

Dou [16, 17] proposed an energy gradient theory with the aim of clarifying the
mechanism of flow transition from laminar flow to turbulence. He gave detailed
derivations for this method based on Newton’s mechanics, and thus it is compati-
ble to Navier-Stokes equations. For plane Poiseuille flow and Hagen-Poiseuille flow,
this method yields consistent results with experimental data. This method is also used
to explain the mechanism of instability of inflectional velocity profile for viscous flow
and this inflectional instability is only valid for pressure driven flows (it should be
noticed that inflectional instability is not suitable for plane Couette flow). However,
for shear driven flows such as plane Couette flow, the situation is changed since the
energy loss could not be obtained directly from Navier-Stokes equations. It should
be mentioned that the energy gradient method is a semi-empirical theory based on
physical analysis since the critical value of K is observed experimentally and cannot
be directly calculated from the theory so far.

In this paper, the energy gradient method is applied to plane Couette flow (Fig. 1).
The energy loss along the streamwise direction and the energy gradient along the
transverse direction as well as the expression of the energy gradient function are de-
rived. It is shown that the critical value of the energy gradient function determined
from experiments is about the same as that for Poiseuille flows. Thus, we verify that
the critical value of the energy gradient function, determined from experiment, is the
same for all wall bounded parallel flows with symmetrical case (pipe Poiseuille flow
and plane Poiseuille flow) or anti-symmetrical case (plane Couette flow).

Figure 1: Plane Couette flow with two plates moving in opposite directions (anti-symmetrical case).
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2 Energy gradient method

Dou [16, 17] proposed a mechanism with the aim to clarify the phenomenon of tran-
sition from laminar flow to turbulence for wall-bounded shear flows. In this mecha-
nism, the whole flow field is treated as an energy field. It is suggested that the gradient
of total mechanical energy in the transverse direction of the main flow and the loss of
the total mechanical energy from viscous friction in the streamwise direction domi-
nate the instability phenomena and hence the flow transition for a given disturbance.
It is suggested that the energy gradient in the transverse direction has the potential
to amplify a velocity disturbance, while the viscous friction loss in the streamwise di-
rection can resist and absorb this disturbance. The flow instability or the transition
to turbulence depends on the relative magnitude of these two roles of energy gradi-
ent amplification and viscous friction damping of the initial disturbance. The analysis
has obtained very consistent agreement for plane Poiseuille flow and pipe Poiseuille
flow for Newtonian fluid at the critical condition [16]. It is also demonstrated that an
inflection point existence on the velocity profile is a sufficient condition, but not only
a necessary condition, for flow instability, for both inviscid and viscous flows. Later,
Dou carried out more detailed derivations from physics to give a solid foundation for
this model, and explained recent experimental results on the scaling of the threshold
of disturbance amplitude with the Reynolds number found in the literature [17]. This
method is named the ”energy gradient method”. Here, we give a short discussion for a
better understanding of the work presented in this study.

For a given base flow, the fluid particles may move in an oscillatory fashion along
the streamwise direction if they are subjected to a disturbance. With the oscillatory
motion, the fluid particle may gain energy (∆E) via the disturbance, and simultane-
ously this particle may have energy loss (∆H) due to the fluid viscosity along the
streamwise direction. The following analysis suggests that the magnitudes of ∆E and
∆H determine the stability of the flow of fluid particles. For parallel flows, the rela-
tive magnitude of the energy gained from the disturbance and the energy loss due to
viscous friction determines the disturbance amplification or decay. Thus, for a given
flow, a stability criterion can be written as below for a half-period.

In the energy gradient method, it is indicated that the relative magnitude of the
energy of fluid particles gained and the energy loss due to viscous friction in a dis-
turbance cycle determines the disturbance amplification or decay. For a given flow, a
stability criterion is written as below for the half-period [17]

F =
∆E
∆H

=
(∂E/∂n)(2A/π)

(∂H/∂s)(πu/ω)
=

2
π2 K

Aω

u
=

2
π2 K

v′m
u

< Const, (2.1a)

K =
∂E/∂n
∂H/∂s

, (2.1b)

here, F is a function of space which expresses the ratio of the energy gained in a half-
period by the particle (∆E) and the energy loss due to viscosity in the half-period (∆H),
K is a dimensionless field variable (function) and expresses the ratio of transversal
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energy gradient and the rate of the energy loss along the streamline, which can be
calculated from Navier-Stokes equations. For parallel flows, E=ρV2/2 is the kinetic
energy per unit volumetric fluid, s is along the streamwise direction and n is along the
transverse direction, H is the energy loss per unit volumetric fluid along the streamline
for finite length. Furthermore, ρ is the fluid density, and u is the streamwise velocity
of the main flow. Here, v′m=Aω is the disturbance amplitude of velocity and the dis-
turbance has a period of T=2π/ω, A is the amplitude of disturbance in the transverse
direction, and ω is the frequency of the disturbance.

In Eq. (2.1a), when ∆E is large and ∆H is small, F will be very large. When F
reaches a magnitude larger than a critical value, the flow will be unstable. Otherwise,
the flow is stable and keeps laminar. Therefore, it can be found from Eq. (2.1a) that
the instability of a flow depends on the values of K and the amplitude of the relative
disturbance velocity v′m/u. For all types of flows, it has been shown that the mag-
nitude of K is proportional to the global Reynolds number (Re=ρUL/µ) for a given
geometry [16]. Thus, the criterion of Eq. (2.1a) can be written as

Re
v′m
u

< Const, (2.2)

for a given flow geometry, U is a characteristic velocity and generally a function of u.
Thus, Eq. (2.2) can be written as

Re
v′m
U

< Const, (2.3a)(v′m
U

)
c
∼ (Re)−1. (2.3b)

This scaling has been confirmed by careful experiments for the pipe flow [15]. For
plane Couette flow, although there is no experimental data available for this scaling,
this result of exponent explains the results by Chapman with a formal asymptotic
analysis of the Navier-Stokes equations (for Re→∞), for both streamwise mode and
oblique mode, with generating a secondary instability. Chapman also examined the
boot-strapping route to transition without needing to generate a secondary instability,
and found that γ=−1 for both plane Poiseuille flow and plane Couette flow [14].

The maximum of F in the field will reach its critical value with the increase of Re
(see Eq. (2.1a)). The critical value of F indicates the onset of instability in the flow at
this location and the initiation of flow transition to turbulence. Therefore, at the onset
of turbulence, the transition from laminar to turbulent flows is localized. Experiment
confirmed that the turbulent spot is actually a localized phenomenon which results
from the hairpin vortices [1]. As observed from experiments, a small region of turbu-
lence is generated in the flow at a relatively low Re number, while the turbulence is
generated in the full domain at a high Re [1].

In the energy gradient method [16, 17], it is seen that the instability of the flow
depends on the relative magnitude of the energy gradients in the transverse direction
and streamwise direction, for a given disturbance. It is found that the gradient of the
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total mechanical energy in the transverse direction has a potential to amplify a veloc-
ity disturbance, while the viscous friction loss in the streamwise direction can resist
and absorb this disturbance energy. The transition to turbulence therefore depends on
the relative magnitude of the two roles of energy gradient amplification and viscous
friction damping to the initial disturbance. The parameter K as defined in Eq. (2.1a)
is a field variable. Thus, the distribution of K in the flow field and the property of
disturbance may be the perfect means to describe the disturbance amplification or de-
cay in the flow. We suggested that the flow instability will first occur at the position of
Kmax which is construed to be the most ”dangerous” position. Thus, for a given distur-
bance, the occurrence of instability depends on the magnitude of this dimensionless
function K and the critical condition is determined by the maximum value of K in the
flow. For a given flow disturbance, there is a critical value of Kmax over which the flow
becomes unstable. We emphasize that Kmax is the maximum of the magnitude of K in
the flow domain at a given flow condition and geometry, while Kc is the critical value
of Kmax for instability initiation for a given geometry. For a given flow geometry and
fluid properties, when the maximum of K in the flow field exceeds a critical value Kc,
it is expected that instability can occur for a certain initial disturbance [16, 17]. Thus,
it is known that turbulence transition is a local phenomenon in the earlier stage. For
a given flow, K is proportional to the global Reynolds number. A large value of K has
the ability to amplify the disturbance, and vice versa. The analysis for Poiseuille flows
supported the idea that the transition to turbulence is due to the energy gradient and
the disturbance amplification [16, 17], rather than a linear instability [12].

For Poiseuille flows, Dou [16, 17] demonstrated that the energy gradient method
has led to a consistent value of Kc at the subcritical condition of transition determined
by experiments. It is found that Kc=385∼389 at the subcritical condition determined
by experiments for both plane Poiseuille flow and pipe Poiseuille flow, as pointed out
in Table 1. The most unstable position for plane Poiseuille flow and pipe Poiseuille
flow occurs at

y
h
= ±0.58, and

r
R

= 0.58,

respectively. These said locations have been confirmed by experiments [16, 17]. For
plane Poiseuille flow, Nishioka et al. [18] did experiment using ribbon induced dis-
turbance on the flow and showed that the averaged velocity profile displays intense
oscillation first in the range of

y
h
= 0.50 ∼ 0.62.

For pipe Poiseuille flow, Nishi et al. [19] did experiment using normal injection as
disturbance and showed that the averaged velocity profile is subjected to intensive
oscillation within r/R=0.53∼0.73 during the transition occurrence. These locations
observed in experiments are in agreement with the prediction of the energy gradient
method, say 0.58.

In plane Couette flow, the streamwise energy gradient (energy loss) for unit vol-
umetric fluid could not be obtained directly from the Navier-Stokes equation as for
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Poiseuille flows since the flow is uniform along the streamwise direction. Using the
energy analysis method, the equation for calculating the energy gradient function K
in plane Couette flow is derived in the following section.

3 Energy gradient method applied to plane Couette flow

In plane Couette flow, the viscous term µ∇2u in Navier-Stokes equation is zero, and
the total mechanical energy p + ρV2/2 per unit volume is constant along the stream-
wise direction. This is not to say that there is no energy loss due to friction in the flow.
Friction loss must still occur since this is a viscous flow (Zero energy loss only occurs
in inviscid flow). The energy magnitude is kept constant because the energy loss due
to viscous friction is exactly compensated by the energy input to the flow by the mov-
ing walls. The work done on the flow by the wall is balanced by the energy loss in the
flow.

The velocity distribution for plane Couette flow can be obtained by solving the
Navier-Stokes equation and applying the boundary conditions, as in [1, 3]

u = ky =
U
h

y, (3.1)

here, k=∂u/∂y is the shear rate and is determined by k=U/h. The velocity profile is
shown in Fig. 1. The shear stress is calculated as

τ = µ
∂u
∂y

= µk, (3.2)

the energy gradient in the transverse direction is calculated by

dE
dy

= ρV
∂V
∂y

= ρky · k = ρk2y. (3.3)

Taking an element in the fluid layer as shown in Fig. 2, the work done to the fluid
element of length of ∆x by the upper layer is

A1 = τ · ∆x · ∆z · (u + ∆u)dt,

Figure 2: A cubic fluid element in plane Couette flows. ∆z is perpendicular to x-y plane.
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the work done on the lower layer by the fluid element is

A2 = τ · ∆x · ∆z · udt.

Therefore, the net work done on the fluid element in time dt is given as

∆A = A1 − A2 = τ · ∆x · ∆z · ∆udt,

the fluid volume passing through dy depth in time dt is

∆Q = ∆y · ∆z · udt,

hence, the energy consumed by the element per unit volume of fluid over the length
of ∆x (Fig. 2) is

∆H =
∆A
∆Q

=
τ∆x∆z∆Vdt

∆y∆zVdt
=

τ∆x∆u
∆y · u

, (3.4)

the energy loss of unit volume of fluid in the length of ∆x is equal to the energy con-
sumed since the energy is constant along the streamline. Then, the energy loss per
volumetric fluid per unit length along the streamwise direction is given by

∆H
∆x

=
τ

u
∆u
∆y

, (3.5)

thus, the rate of energy loss along the streamline direction from Eq. (3.5) is

dH
dx

≡ τ

u
du
dy

. (3.6)

Substituting Eq. (3.3) and (3.6) into Eq. (2.1b), the ratio of the energy gradient in trans-
verse direction and the energy loss in streamwise direction can be written as

K = ρu
(∂u

∂y

)(dH
dx

)−1
= ρkky

(τ

u
du
dy

)−1
=

ρUh
µ

y2

h2 = Re
y2

h2 , (3.7)

where Re=ρUh/µ is the Reynolds number. It can be seen that the magnitude of K
is proportional to Re at any location in the flow field. K is a quadratic function of
y/h across the channel width. There is no maximum within the channel unlike for
Poiseuille flows [16]. It reaches its maximum only on the walls (y=±h)

Kmax =
ρUh

µ
= Re . (3.8)

The variations dE/dy, dH/dx, and K along the channel width are shown in Figs. 3-
5 for plane Couette flows with the two plates moving in opposite directions. It can
be seen from Fig. 3 that the gradient of the mechanical energy along the transverse
direction in plane Couette flow is linear along the width of the channel and it attains
its maximum at the walls. Therefore, the fluid layer near the wall has the greatest
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Figure 3: Distribution of energy gradient along the transverse direction in plane Couette flow for anti-
symmetrical case shown in Fig. 1.

potential to amplify a disturbance. From Fig. 4, it is observed that the energy loss
distribution in plane Couette flow is lower at the walls and it attains its largest value
at the centre of the channel. Therefore, the ability of flow to damp a disturbance is
low near the walls and is large at the centre of the channel. The mechanism of energy
loss damping disturbance has been detailed in [20] for both plane Couette flow and
Taylor-Couette flow. It is found from Fig. 5 that value of K is zero at the centreline
and it reaches its maximum at the walls. From the energy gradient method [16, 17],
Eq. (2.1a) indicates that

K
(v′m

u

)
< Const,

is the criteria for stability for parallel flows. Thus, the flow is expected to be more un-
stable, where K is higher than that where K is lower, for given same level of normalized
perturbation (v′m/u). The first instability should be associated with the maximum of
K, Kmax, in the flow field for same given disturbance level. Therefore, the flow near the
wall is the most dangerous position to amplify a given disturbance for plane Couette
flow if the disturbance is uniformly distributed.
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Figure 4: Energy loss distribution in plane Couette
flow for anti-symmetrical case shown in Fig. 1.
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4 Discussions

4.1 Instability mechanism and disturbance amplification

As is well known, the development of a disturbance is subjected to the governing
equations (i.e., Navier-Stokes equations) and the boundary and initial conditions. The
value of K represents the effect of the governing equations on the disturbance. Thus,
the flow stability depends on the distribution of K in the flow field and the initial dis-
turbance provided to the flow. On the other hand, we should distinguish between the
disturbance in laminar state and the velocity fluctuation in turbulent state. The lam-
inar flow is completely different from turbulent flow regarding the disturbance. The
place where the disturbance is the largest in laminar flow is not necessarily the same as
that where the turbulent stresses are largest in the corresponding turbulent state. Near
the moving wall, the capacity of the base flow to amplify a disturbance is largest ow-
ing to the maximal magnitude of K (Fig. 5). However, actually, the flow disturbances
at the wall should be vanishing due to no-slip condition. Therefore, it is likely that the
most dangerous position is not directly at the wall, but at a location (very) near the
wall where an initial disturbance is present and yet K has a large magnitude. Thus, a
small disturbance could be easily amplified by the large energy gradient at such po-
sition. Therefore, the fluid layer near the moving wall is the most dangerous position
to generate initial oscillation. This mechanism is obviously correct from the principle
of energy conservation. Turbulence sustenance is maintained by input of energy from
external sources, otherwise it would die. The moving wall is the object to put the en-
ergy into the flow and therefore it has the power to sustain the turbulence. The place
where the energy is higher should be the region of intense turbulent fluctuation.

Fig. 6 shows the measurements by Bottin et al. [21] for plane Couette flow during
the process leading to the formation of a turbulent spot. Three slices of profiles are
sketched within a turbulent spot in plane Couette flow. This picture was taken for

Figure 6: Sectional views of the flow at the border of a turbulent spot in three x=constant planes for
Re=340 for plane Couette flow. Here, x is in the streamwise direction, y is in transverse direction, and z is
in the spanwise direction (Bottin et al. 1998; Courtesy of Dauchot).
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the flow near the critical condition (Re=340). The profile on the right side is at the
edge of the spot and is in the initial instability stage. It is seen that the flow oscillation
first occurs near one of the moving walls. From this figure, it is also observed that the
process of flow transition is not symmetrical relative to the channel width which might
be subjected to the influence of experiment and facility uncertainties. This experiment
indicates that the role of the Kmax dominates near the moving wall, and further lends
credibility to the energy gradient theory. Analytical study of Lessen and Cheifetz [22]
also showed that the instability of the base flow first starts from the place near one of
the walls.

4.2 Comparison with experiments at critical condition

Earlier experimental results on plane Couette flow showed that the critical Reynolds
number lies in the range of 280 to 750 [23, 24]. Lundbladh and Johansson (1991)’s di-
rect numerical simulation produced a critical condition of Rec=375 for plane Couette
flow [25]. For this type of flow, Hegseth et al. [26] observed an intermittent turbulent
state which occurs in the range of Re of 380-450. Below this range, the laminar state
is stable to finite amplitude perturbation and above this range the entire flow domain
is turbulent. For 380<Re<450 and after a perturbation is imposed, the dynamical
regime shows a fluctuating mixture of laminar and turbulent domains which is remi-
niscent of spatiotemporal intermittency. This result showed that the minimum Re for
the transition with finite amplitude disturbance is about 380. Tillmark and Alfreds-
son [27], Davidud et al. [28], and Malerud et al. [29] carried out some experiments for
turbulent transition for plane Couette flows using flow visualization techniques. All
of these experiments showed that the critical condition occurs at about Rec=370 ± 10.
Although the subsequent experimental results showed a lower critical Reynolds num-
ber (325∼380) [30, 31], this does not detract from the comparisons carried out here.
Using the experimental data Rec=370, we obtain Kc=370 from Eq. (3.8) at the critical
condition determined by experiments below which no turbulence occurs (see Table 1).

Table 1: Comparison of the critical Reynolds number and the energy gradient parameter Kmax for plane
Poiseuille flow and pipe Poiseuille flow as well as for plane Couette flow [16,17]. U is the averaged velocity,
u0 the velocity at the mid-plane of the channel, D the diameter of the pipe, h the half-width of the channel
for plane Poiseuille flow (L=2h) and plane Couette flow. The experimental data for plane Poiseuille flow
and pipe Poiseuille flow are taken from Patel and Head [11]. The experimental data for plane Couette flow
is taken from Tillmark and Alfredsson [27], Daviaud et al. [28], and Malerud et al. [29]. Here, two Reynolds
numbers are used since both definitions are employed in literature. The data of critical Reynolds number
from energy method are taken from [1]. For Plane Poiseuille flow and pipe Poiseuille flow, the Kmax occurs
at y/h=0.58, and r/R=0.58, respectively. For plane Couette flow, the Kmax occurs at y/h=1.0.

Flow type Re expression Linear stability Energy Experiments, Energy gradient
analysis, Rec method Rec method, Kmax at

Rec Rec (from
experiments), ≡ Kc

Pipe Poiseuille Re = ρUD/µ Stable for all Re 81.5 2000 385
Plane Poiseuille Re = ρUL/µ 7696 68.7 1350 389

Re = ρu0h/µ 5772 49.6 1012 389
Plane Couette Re = ρUh/µ Stable for all Re 20.7 370 370
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This critical value of Kc=370 is near to the value for Poiseuille flows, 385∼389. The
small difference in the value obtained is subjected to the uncertainty of the critical con-
dition in experiments. For example, the determination of transition is deduced from
the abrupt change in the drag coefficient as found by Patel and Head [11], while the
flow visualization method is used in [30, 31]. These results demonstrate that the criti-
cal value of Kmax for wall-bounded parallel flows including both pressure driven and
shear driven flows is about 370∼389. This consistency also suggests that the mecha-
nisms of instabilities in wall-bounded parallel shear flow are perhaps the same. They
are all dominated by the transverse energy gradient and the streamwise flow energy
loss. The results obtained in this study provide further basis for better understanding
of the mechanism of instability and transition to turbulence in parallel shear flows.

4.3 Flux of vorticity rather than vorticity to dominate transition

In turbulence modelling, the turbulent stress is generally modelled in terms of the ve-
locity gradient of mean flows or the strain-rate-tensor. The magnitude of the velocity
gradient or the vorticity is an indication of the strength of turbulent stress in some
cases. Thus, it may be deduced that the turbulent transition might be related to the
magnitude of the velocity gradient. However, from the energy gradient method, the
magnitude of the velocity gradient or vorticity is not the dominating factor influenc-
ing the transition. Instead, it is the flux of vorticity (u∂u/∂y in 2D parallel flow case)
or the energy gradient which is the governing factor. Fig. 7 depicts the development
of plane Couette flow with the increase of the channel width. In these three cases, the
shear rate (velocity gradient) is kept the same and the width of the channel is allowed
to vary. With increasing channel width, Re increases. As we could see from experi-
ments, the flow remained laminar in (a) and (b) when the Re is lower than the critical

(a) (b) (c)

Figure 7: Development of plane Couette flow with increasing channel width (two plates move in opposite
directions; here it is noticed as anti-symmetrical case). The shear rate is the same for three cases. With
the increasing of the channel width, Re increases. The flow is laminar for (a) and (b) cases, and it becomes
turbulent for (c) with the increasing Re.
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Reynolds number. The flow in (c) becomes turbulent when Re is higher than a critical
value. It is therefore suggested that the transition to turbulence is not due directly
to the influence of the velocity gradient although it depends on Re. From Fig. 7 and
Eq. (3.3), it is seen that the maximum energy gradient (or flux of vorticity), which is lo-
cated close to the walls increases with the channel width (and also Re). From Fig. 7 and
Eq. (3.6), it is also seen that the energy loss near the walls decreases with the channel
width (and also Re). Therefore, the turbulent transition for large width is attributed to
the increase of the transverse energy gradient (or flux of vorticity in 2D parallel flow)
near the walls and the decrease of the energy loss in the streamwise direction near the
walls, rather than the magnitude of velocity gradient or vorticity.

5 Conclusions

In this paper, the instability of plane Couette flow is studied using the energy gradient
method. The expression of K, the ratio of the gradient of the total mechanical energy in
the transverse direction to the rate of loss of the total mechanical energy in streamwise
direction, is derived using energy analysis. It is shown that the transverse gradient of
the mechanical energy (or the flux of the vortex) is destabilizing and the energy loss
due to viscosity is stabilizing. At the transition, it is found that the critical value of
Kmax determined from experimental data is about 370 (or 325∼370) for plane Couette
flow (two plates move in opposite directions) and the most unstable position is near
the walls. In the range of Re mentioned above (325∼370 or so), it has been found in
experiment that there is a behaviour of intermittent of turbulence in which laminar
flow and turbulent flow co-exist in the domain [32], which means that this flow range
of Re is the transition stage. It is interesting to note that based on the critical conditions
determined by experiments, the critical value of K for plane Couette flow (two plates
move in opposite directions) is about the same as that for plane Poiseuille flow and
pipe Poiseuille flow. Therefore, it is suggested that the critical value of K at turbulent
transition is about 370-389 for wall-bounded parallel shear flows which include both
pressure (symmetrical case) and shear driven flows (anti-symmetrical case). These re-
sults show that the energy gradient method is universal for both pressure and shear
driven flows. In separate works, the energy gradient method is also demonstrated to
be valid for Taylor-Couette flow between concentric rotating cylinders [33], bound-
ary layer flows [34], and straight annulus flows [35], and excellent agreements have
been achieved with all the available experimental data in literature. In [36], criteria for
turbulent transition have been proposed for pressure and shear driven flows, respec-
tively, following the principle of energy gradient theory. With the proposed theory,
turbulence can be controlled with manipulation of the distribution of the energy gra-
dient function in the flow field.

Using the energy gradient method, it is found in plane Couette flows that the fluid
layer near the moving walls is the most dangerous position to generate initial oscil-
lation at sufficient high Re for given same level of normalized perturbation in the
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domain. This mechanism has been also explained by the principle of energy trans-
mission between fluid layers since turbulence sustenance is maintained by input of
energy from external sources.

The energy gradient method employed here may provide a universal basis for the
modelling and prediction of the transition process. This is especially relevant since
shear-driven flows and pressure-driven flows are very different, and yet the mecha-
nism for transition to turbulence is very similar based on the energy gradient theory.
The marked difference between the shear driven and pressure driven flows lies in the
energy transmission process: in the former, the energy is transported to the wall from
the core, but in the latter it is transported to the core from the wall. This difference de-
termines the feature of the most dangerous position in the flow field for the instability.
This difference in energy transmission may be relevant to the different turbulent stress
distribution near the wall as simulated by Bech et al. [37]. However, even though there
is a difference in the behaviour of flow fields, the transition to turbulence occurs at the
same value of the energy gradient quantity (Kmax).
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