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Abstract. A local positive (semi)definite shift-splitting preconditioner for non-Hermi-
tian saddle point problems arising in finite element discretisations of hybrid formula-
tions of time-harmonic eddy current models is constructed. The convergence of the
corresponding iteration methods is proved and the spectral properties of the associated
preconditioned saddle point matrices are studied. Numerical experiments show the ef-
ficiency of the proposed preconditioner for Krylov subspace methods.

AMS subject classifications: 65F10, 65F50

Key words: Saddle point problem, splitting iteration, preconditioning, convergence, time-harmonic
eddy current model.

1. Introduction

Let A∈ Cn×n be a non-Hermitian positive (semi)definite matrix — i.e. H = (1/2)(A+A∗)

is positive (semi)definite, and B ∈ Cm×n with m ≤ n be a full rank matrix. We consider
iterative solutions of the following large sparse saddle point problem:

Aw ≡

�
A B∗

−B 0

��
x

y

�
=

�
f

g

�
≡ p, (1.1)

where B∗ denotes the conjugate transpose of B and f ∈ Cn, g ∈ Cm are given vectors. It is
well-known that if A and B are, respectively, positive definite and full rank matrices or if

null(A)∩ null(B) = {0}, null(B∗) = {0},
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then the non-Hermitian saddle point matrix A is nonsingular [6, 17]. The saddle point
problem (1.1) appears in various applications, including computational fluid dynamics
[30], constrained and weighted least squares problems [34], electromagnetism [19], time-
harmonic eddy current models [5, 36, 38, 39], geomechanics [18], and meshfree discreti-
sation of elasticity problems [15,27]. The reader can also consult [17] and the references
therein for more information about the problem.

Recently, a lot of efforts have been spent on iteration methods for the problem (1.1). The
list of the methods studied includes classical Uzawa iteration method [2] and its generalisa-
tions [13,20,28,31], Hermitian and skew-Hermitian splitting (HSS) iteration methods [11]
and its variants [9,10,26,33,45], shift-splitting iteration methods [1,14,22–24,29,41,42],
residual reduction algorithms [3] and Krylov subspace iteration methods [40]. If A is
a non-Hermitian and/or ill-conditioned matrix, the preconditioning is often used to accel-
erate the convergence. For example, block diagonal and block triangular preconditioners
are considered in [4, 12], HSS preconditioners in [16, 21, 25] and shift-splitting precondi-
tioners in [23,43]— cf. also [17,35] and references therein. These iteration methods and
preconditioners often depend on the problem studied and have to be adjusted with respect
to the corresponding coefficient matrices.

In this work, we focus on a class of non-Hermitian saddle point problems arising in the
finite element discretisations of hybrid formulations of time-harmonic eddy current models
[38, 39]. A model often used to simulate the electromagnetic phenomena of alternating
currents at low frequencies can be described by the equations

curl
�
σ−1curl HC

�
+ iωµHC = curl

�
σ−1Je,C

�
in ΩC ,

curl
�
µ−1curl EI

�
= −iωJe,I in ΩI ,

div(εEI ) = 0 in ΩI ,

µ−1curl EI × n= 0 on ∂Ω,

εEI · n= 0 on ∂Ω,

HC × n= (−iωµ)−1curl EI × n on Γ ,

EI × n= σ−1
�
curl HC − Je,C

�
× n on Γ ,

(1.2)

where E, H, Je, µ, σ, ω and i, respectively, denote electric field, magnetic field, generator
current, magnetic permeability, electric conductivity, a nonzero angular frequency and the
imaginary unit. The computational domain Ω ⊂ R3 is a simply connected Lipschitz poly-
hedron, which consists of the conducting region ΩC ⊂ Ω and its complement ΩI = Ω\Ω̄C .
We assume that ΩC and ΩI are Lipschitz polyhedrons, ΩC is connected but not necessarily
simply connected and by Ω̄C and Ω̄I we denote the closures of ΩC and ΩI , respectively. Ap-
plying the finite element method of [39] to (1.2), one obtains the following linear system:





MC − iSC −iDT BT
C 0

−iD SI +τBT
I BI 0 BT

I

−BC 0 0 0
0 −BI 0 0









HC

eEI

eQ
eΦI



=





−iFC

−iGI

0
0



 , (1.3)
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where MC ∈ R
n1×n1 is a symmetric positive definite matrix, SC ∈ R

n1×n1 and SI ∈ R
n2×n2

are symmetric positive semidefinite matrices, BC ∈ R
m1×n1 , BI ∈ R

m2×n2 and D ∈ Rn2×n1

are real matrices, and τ is a given parameter. Unknown complex vectors HC , eEI , Q = ieQ
and ΦI = ieΦI are, respectively, the coefficients of the finite element approximations of HC ,
eEI , q and φI in some bases of finite element spaces. Recall that eEI is a suitable magnetic
vector potential such that HI = −(iωµ)

−1curleEI , and q and φI are Lagrange multipliers —
cf. [5,38].

Setting

A :=

�
MC − iSC −iDT

−iD SI +τBT
I BI

�
, B :=

�
BC 0
0 BI

�
,

we can regard the system (1.3) as a non-Hermitian saddle point problem (1.1). Besides,
considering the system (1.3), we usually distinguish the situations where the first Betti
number of ΩI is zero or greater than zero [5,38]. In the former case, the matrix SI +τBT

I BI

is symmetric positive definite whereas in the later it is symmetric positive semidefinite.
Iteration methods, such as the modified block SOR method and the Uzawa-like method

[38], the block alternating splitting implicit (BASI) iteration method [5] and the alternating
positive semidefinite splitting (APSS) iteration method [36] have been applied to the saddle
point system (1.3). However, the convergence and the choice of relaxation parameters in
modified block SOR and Uzawa-like methods are not well studied and for non-Hermitian
saddle point system (1.3), the convergence of BASI and APSS iteration methods is slow.
Therefore, the aim of this work is to construct a more effective preconditioner for the saddle
point system (1.3).

Recently, shift-splitting (SS) preconditioners have been studied [14,22–24,29,41]. For
non-Hermitian saddle point problem, the shift-splitting preconditioner is defined by

PSS =
1

2
(αI +A ) =

1

2

�
αI + A B∗

−B αI

�
, (1.4)

where α is a positive constant and I is the identity matrix of a suitable size. In fact, the shift-
splitting preconditioner can be generated by the following shift-splitting iteration method.

Method 1.1 (Shift-splitting iteration method). Let α be a positive constant and [x (0); y(0)]

the initial guess vector. For k = 0,1,2, . . . until certain stopping criterion is satisfied, com-
pute

1

2

�
αI + A B∗

−B αI

��
x (k+1)

y(k+1)

�
=

1

2

�
αI − A −B∗

B αI

��
x (k)

y(k)

�
+

�
f

g

�
. (1.5)

Theoretical analysis shows that the stationary iteration method (1.5) for saddle point
problems is unconditionally convergent. For saddle point problems with a Hermitian posi-
tive definite (1,1) block matrix, the spectral properties of the shift-splitting preconditioned
matrix are discussed in [37, 44]. A generalised shift-splitting preconditioner with an ad-
ditional parameter β has been studied in [23, 24, 41–43]. Numerical results suggest that
the shift-splitting preconditioner PSS and its generalisations are efficient in saddle point
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problems of computational fluid dynamics [22–24, 44] and in meshfree discretisations of
elasticity problems [37]. However, for time-harmonic current eddy models there are imple-
mentation difficulties associated with special block structure of the non-Hermitian saddle
point matrix in (1.3).

Using the shift-splitting preconditioner PSS in (1.4) and following the ideas of [10,28,
47], we establish a local positive (semi)definite shift-splitting (LPSS) preconditioner for
non-Hermitian saddle point problems of time-harmonic current eddy models. A new LPSS
preconditioner can be induced by the LPSS stationary iteration method. We analyse the
convergence of the LPSS iteration method and spectral properties of the LPSS precondi-
tioned matrix. Two numerical examples illustrate the feasibility and effectiveness of the
new LPSS preconditioner. It is shown that this preconditioner outperforms the existing
BASI, APSS and SS preconditioners for the saddle point problem (1.3).

The remainder of this paper is as follows. In Section 2, we introduce an LPSS precon-
ditioner, study the convergence of the corresponding LPSS iteration method and analyse
the spectral properties of the LPSS preconditioned saddle point matrix. In Section 3, the
LPSS preconditioner is applied to time-harmonic eddy current models. Numerical results
presented in Section 4, show the effectiveness of the LPSS preconditioner. Final conclusions
and remarks are in Section 5.

2. An LPSS Preconditioner

Here, we consider a new local positive (semi)definite shift-splitting (LPSS) precondi-
tioner for the non-Hermitian saddle point problem (1.1) and study its convergence. Besides,
we also study the spectral properties of the LPSS preconditioned saddle point matrix.

Let α > 0 be a positive constant, A be a non-Hermitian positive definite matrix and
A = P + S a splitting of A such that P ∈ Cn×n and S ∈ Cn×n are, respectively, positive
definite and skew-Hermitian matrices. This yields the local positive definite shift-splitting

A =PLPSS −QLPSS (2.1)

ofA with the matrices

PLPSS =
1

2

�
αI + 2P B∗

−B αI

�
, QLPSS =

1

2

�
αI − 2S −B∗

B αI

�
. (2.2)

Splitting (2.1) is used in the construction of the following LPSS iteration method for the
problem (1.1).

Method 2.1. (LPSS iteration method) Let A= P+S be the above splitting of the matrix A in
(1.1), α a given positive constant and [x (0); y(0)] an initial guess vector. For k = 0,1,2, . . .
compute

1

2

�
αI + 2P B∗

−B αI

��
x (k+1)

y(k+1)

�
=

1

2

�
αI − 2S −B∗

B αI

��
x (k)

y(k)

�
+

�
f

g

�
(2.3)

until a stopping criterion is satisfied.



An LPSS Preconditioner for Saddle Point Problems 139

The LPSS iteration method is similar to a shift-splitting iteration method. In particular,
if P coincides with the Hermitian part H of A, then the LPSS iteration method reduces to
the modified shift-splitting iteration method in [47]. We note that in actual implementa-
tion, the one step LPSS iteration method requires significantly smaller computation costs
than two-step iteration methods such as the HSS iteration method [11], the PSS iteration
method [10], the BASI iteration method [5] and the APSS iteration method [36]. In order
to accelerate the convergence rate of Krylov subspace iteration methods, the splitting ma-
trix PLPSS can be used as a preconditioner. It is called the LPSS preconditioner. The linear
systemAw = p can be now written as a left-preconditioned system — viz.

P −1
LPSSAw =P −1

LPSSp.

If A is non-Hermitian positive semidefinite matrix and P is a positive-semidefinite matrix,
the LPSS preconditioner (2.2) can be constructed similar to the previous considerations. At
any step of the method (2.3) and the LPSS preconditioned Krylov subspace methods, one
has to find solutions of the generalised residual equation

PLPSSz =
1

2

�
αI + 2P B∗

−B αI

��
z1

z2

�
=

�
r1

r2

�
= r. (2.4)

Algorithm 2.1 provides a framework for implementation of the LPSS iteration method and
the LPSS preconditioner. It shows that the main cost is related to solving the Eq. (2.5).
However, for specific problems, the linear subsystem may be positive definite and highly
reducible, so that it can be easily solved by certain iterative methods. In particular, in
Section 3, we consider certain applications connected with time-harmonic eddy current
models.

Algorithm 2.1

Let r = [r1; r2] and z = [z1; z2] be, respectively, current and generalised residual vectors
with r1, z1 ∈ C

n and r2, z2 ∈ C
m.

The linear system (2.4) can be solved as follows:

(1) Compute t1 = 2r1 − (2/α)B
∗r2.

(2) Find solutions of the equation
�
αI + 2P +

1

α
B∗B

�
z1 = t1. (2.5)

(3) Compute z2 = (1/α)(Bz1 + 2r2).

2.1. Convergence of LPSS iteration method

Consider the convergence of the LPSS iteration method (2.3). It can be rewritten as
a fixed point problem — viz.

w(k+1) = Γw(k) + q,
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w(k) =
�
x (k); y(k)
�

with the iteration matrix

Γ =P −1
LPSSQLPSS =

�
αI + 2P B∗

−B αI

�−1 �
αI − 2S −B∗

B αI

�
,

and q =P −1
LPSS

p.
Let ρ(Γ ) denote the spectral radius of Γ . The LPSS iteration method converges if and

only if ρ(Γ ) < 1. If λ is an eigenvalue of Γ and [u; v] is the corresponding eigenvector, then
�
αI − 2S −B∗

B αI

��
u

v

�
= λ

�
αI + 2P B∗

−B αI

��
u

v

�
, (2.6)

or, equivalently, if

α(λ− 1)u+ 2(λP + S)u+ (λ+ 1)B∗v = 0, (2.7)

(λ+ 1)Bu = α(λ− 1)v. (2.8)

Assuming that λ 6= 0, we prove some auxiliary results.

Lemma 2.1. Let α be a positive constant, A∈ Cn×n a non-Hermitian positive definite matrix,

A= P + S a splitting of A such that P ∈ Cn×n and S ∈ Cn×n are, respectively, positive-definite

and skew-Hermitian matrices and B ∈ Cm×n a full row rank matrix. If λ is an eigenvalue of

the LPSS iteration matrix Γ and [u; v] its corresponding eigenvector, then

(1) λ 6= ±1;

(2) u is a nonzero vector.

Proof. We prove this lemma by contradiction. If λ= 1, the Eq. (2.6) takes the form
�

A B∗

−B 0

��
u

v

�
= 0.

Since the matrixA is nonsingular, we obtain u= 0 and v = 0 that contradicts the assump-
tion that [u; v] is an eigenvector. Hence, λ 6= 1.

If λ= −1, the Eq. (2.6) takes the form
�
αI + P − S 0

0 αI

��
u

v

�
= 0.

The non-singularity of αI + P − S and the condition α > 0 yield u = 0 and v = 0, contra-
dicting the assumption that [u; v] is an eigenvector. Hence, λ 6= −1.

Assume now that u = 0. The Eq. (2.8) takes the form

α(λ− 1)v = 0,

and since α > 0 and λ 6= 1, this implies v = 0, which is not possible. Thus, u 6= 0, which
finishes the proof.
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Lemma 2.2 (cf. Horn and Johnson [32]). If S ∈ Cn×n is a skew-Hermitian matrix, then iS

is a Hermitian matrix and u∗Su is a purely imaginary number or zero for any u ∈ Cn.

Lemma 2.3 (cf. Young [46]). Both roots of the complex quadratic equation λ2+φλ+ψ = 0
have modulus less than one if and only if |φ − φ̄ψ|+ |ψ|2 < 1, where φ̄ denotes the complex

conjugate of φ.

Theorem 2.1. Let α be a positive constant, A∈ Cn×n a non-Hermitian positive definite matrix,

A= P + S a splitting of A such that P ∈ Cn×n and S ∈ Cn×n are, respectively, positive-definite

and skew-Hermitian matrices and B ∈ Cm×n a full row rank matrix. Besides, let λ be an

eigenvalue of the LPSS iteration matrix Γ and [u; v] the corresponding eigenvector. Set

a+ i b :=
u∗Pu

u∗u
, c :=

u∗B∗Bu

u∗u
, id :=

u∗Su

u∗u
. (2.9)

The LPSS iteration method converges if and only if the parameter α satisfies the inequality

α >
d2 − a2 − b2 +
p
(d2 − a2 − b2)2 + 4c(b− d)2

2a
. (2.10)

Proof. According to Lemma 2.1, λ 6= 1. Therefore, it follows from (2.8) that

v =
λ+ 1

α(λ− 1)
Bu.

Substituting it into (2.7) yields

α(λ− 1)u+ 2(λP + S)u+
(λ+ 1)2

α(λ− 1)
B∗Bu = 0. (2.11)

Since u 6= 0, we can multiply the Eq. (2.11) by u∗/(u∗u) from the left, thus obtaining

α(λ− 1) + 2λ
u∗Pu

u∗u
+ 2

u∗Su

u∗u
+
(λ+ 1)2

α(λ− 1)

u∗B∗Bu

u∗u
= 0. (2.12)

Using the notation (2.9), we write the Eq. (2.12) in the form

λ2 +
2c − 2α2 − 2αa+ i2α(d − b)

α2 + 2αa+ c + i2αb
λ+

α2 + c − i2αd

α2 + 2αa+ c + i2αb
= 0, (2.13)

where a, b, c, d ∈ R, a > 0 and c ≥ 0 due to the properties of the matrices P,S and B∗B. Set

h1 := α2 + 2αa+ c, h2 := 2αb, h3 := 2c − 2α2 − 2αa, h4 = α
2 + c, h5 := 2αd ,

and write the Eq. (2.13) as
λ2 +φλ+ψ= 0, (2.14)
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where

φ =
h3 + i(h5 − h2)

h1 + ih2
=

h1h3 + h2h5 − h2
2 − i (h2h3 − h1h5 + h1h2)

h2
1 + h2

2

,

ψ =
h4 − ih5

h1 + ih2
=

h1h4 − h2h5 − i (h2h4 + h1h5)

h2
1 + h2

2

.

According to Lemma 2.3, the roots of the Eq. (2.14) satisfy the inequality |λ| < 1 if and
only if

|φ − φ̄ψ|+ |ψ|2 < 1. (2.15)

Direct computations show that

φ − φ̄ψ=
(h1 − h4)h3 − h2

2 + h2
5 − i (h1 + h3 + h4)(h2 − h5)

h2
1 + h2

2

, |ψ|2 =
h2

4 + h2
5

h2
1 + h2

2

.

Therefore, the inequality (2.15) holds if and only if

�
(h1 − h4)h3 − h2

2 + h2
5

�2
+
�
h1 + h3 + h4

�2�
h2 − h5

�2
<
�
h2

1 + h2
2 − h2

4 − h2
5

�2
,

h2
1 + h2

2 − h2
4 − h2

5 > 0,

which is equivalent to

α2a2 +αa(a2 + b2 − d2)− c(b − d)2 > 0. (2.16)

Since α > 0, the inequality (2.16) holds if and only if α satisfies the condition (2.10).
Therefore, the spectral radius ρ(Γ ) is smaller than one and the method converges if and
only if the inequality (2.10) holds.

Remark 2.1. If P = H, then (2.9) implies b = 0 and the condition (2.10) takes the form

α >
d2 − a2 +
p
(d2 − a2)2 + 4cd2

2a
,

which is consistent with the convergence condition for a modified shift-splitting iteration
method in [47, Theorem 2.4]. A condition sufficient for the convergence of the LPSS iter-
ation method in this case is

α >
ρ2(S)−λ2

min(H) +
q
(ρ2(S)−λ2

min(H))
2 + 4ρ(B∗B)ρ2(S)

2λmin(H)
,

where λmin(H) is the smallest eigenvalue of H and ρ(S) the spectral radius of S. However,
for general non-Hermitian positive definite matrices P, sufficient convergence conditions
are not known.
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Remark 2.2. If A is a positive semidefinite matrix, then the matrix P in the splitting A=

P + S of A is also positive semidefinite. If in addition a = 0, the convergence condition
(2.10) fails and the LPSS iteration method (2.3) diverges. Nevertheless, the matrix PLPSS

can be used as a preconditioner for Krylov subspace methods.

The proof of Theorem 2.1 shows that under the condition (2.10), the spectral radius of
the LPSS iteration matrix Γ is smaller than one, and the LPSS iteration method for the non-
Hermitian saddle point problem (1.1) with a positive definite matrix A converges. However,
in actual computations these parameters are difficult to determine. Moreover, even for
an optimal parameter α, the method can converge slowly. Therefore, the splitting matrix
PLPSS in (2.2) is often used as a preconditioner to accelerate the convergence rate of Krylov
subspace methods such as GMRES. It is well-known that the clustered spectrum of the
preconditioned matrix is related to a fast convergence, so now we are going to discuss the
spectral properties of the LPSS preconditioned matrices P −1

LPSS
A .

2.2. Spectral properties of preconditioned matrix

In this subsection, we describe the spectral properties of the LPSS preconditioned matri-
ces P −1

LPSSA when the (1,1) leading block matrix A is positive definite or positive semidef-
inite.

Theorem 2.2. Let α be a positive constant, A∈ Cn×n a non-Hermitian positive definite matrix,

A= P + S a splitting of A such that P ∈ Cn×n and S ∈ Cn×n are, respectively, positive-definite

and skew-Hermitian matrices and B ∈ Cm×n a full row rank matrix. If µ is an eigenvalue of

the LPSS preconditioned matrix P −1
LPSSA and [u; v] an associated eigenvector, then

(1) µ 6= 2, µ 6= 0 and u 6= 0.

(2) If v = 0, then u ∈ null(B) and µ→ 1+ id/(a+ i b) as α→ 0+, where a, b and d are

defined as in (2.9).

(3) If v 6= 0, then µ→ 2 as α→ 0+.

Proof. Let λ be an eigenvalue of the iteration matrix Γ . Because

P −1
LPSS
A =P −1

LPSS
(PLPSS −QLPSS) = I −P −1

LPSS
QLPSS = I − Γ ,

we have µ = 1−λ. It follows from Lemma 2.1 that µ 6= 2, µ 6= 0 and u 6= 0.
The eigenvalue and the eigenvector of the LPSS preconditioned matrix P −1

LPSS
A satisfy

the following generalised eigenvalue problem:
�

A B∗

−B 0

��
u

v

�
=
µ

2

�
αI + 2P B∗

−B αI

��
u

v

�
,

which is equivalent to the equations

[2A−µ(αI + 2P)]u = (µ− 2)B∗v, (2.17)

(µ− 2)Bu = αµv. (2.18)
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If v = 0, the Eq. (2.18) implies Bu = 0 since µ 6= 2 and α > 0. Therefore, the Eq. (2.17)
takes the form

2Au= µ(αI + 2P)u. (2.19)

Multiplying it by u∗/(u∗u) from the left yields

µ =
2u∗Au/(u∗u)

α+ 2u∗Pu/(u∗u)
= 1−

α− 2u∗Su/(u∗u)

α+ 2u∗Pu/(u∗u)
= 1−

α− i2d

α+ 2a+ i2b
. (2.20)

It follows that if α→ 0+, then µ→ 1+ id/(a + i b).
If v 6= 0, then the Eq. (2.18) can be written as v = ((µ− 2)/αµ)Bu and substituting it

into the Eq. (2.17), we obtain

2Au−µ(αI + 2P)u−
(µ− 2)2

αµ
B∗Bu = 0. (2.21)

Multiplying (2.21) by u∗/(u∗u) from the left leads to the equation

µ2(α2 + 2aα+ c + i2bα)− 2[aα+ 2c + i(b+ d)α]µ+ 4c = 0.

This equation has the roots

µ± =
aα+ 2c + i(b+ d)α± (γ1 + iγ2)

α2 + 2aα+ c + i2bα
= 1+

c −α[α+ a + i(b− d)]± (γ1 + iγ2)

c +α(α+ 2a+ i2b)
, (2.22)

where γ1, γ2 ∈ R and γ1 + iγ2 is one of the square roots of θ1 + iθ2 with

θ1 = α
2
�
a2 − (b+ d)2 − 4c

�
− 4αac, θ2 = 2α2a(b+ d) + 4αc(d − b). (2.23)

Direct computations show that

γ1 =

√√√
q
θ2

1 + θ
2
2 + θ1

2
, γ2 =

θ2

2γ1
= sign(θ2)

√√√
q
θ2

1 + θ
2
2 − θ1

2
.

It follows from (2.23) that θ1 → 0 and θ2 → 0 as α→ 0+, so that γ1 → 0 and γ2 → 0. In
addition, µ→ 2 as α→ 0+. Therefore, the eigenvalues of the LPSS preconditioned matrix
are close to 1+ id/(a + i b) or to 2 if α approaches zero but µ 6= 2.

Following Theorem 2.2, we can formulate a result for positive semidefinite matrices A

and P.

Theorem 2.3. Let α be a positive constant, A ∈ Cn×n a non-Hermitian positive semidefinite

matrix, A= P + S a splitting of A such that P ∈ Cn×n and S ∈ Cn×n are, respectively, positive

semidefinite and skew-Hermitian matrices and B ∈ Cm×n a full row rank matrix. If µ is an

eigenvalue of the LPSS preconditioned matrix P −1
LPSSA and [u; v] an associated eigenvector,

then

(1) u 6= 0.

(2) If v = 0 and µ 6= 2, then u ∈ null(B) and µ→ 1+ id/(a + i b) as α→ 0+, where a,b

and d are defined as in (2.9).

(3) If v 6= 0, then µ→ 2 as α→ 0+.
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3. Applications to Time-Harmonic Eddy Current Models

We now apply the LPSS preconditioner to the non-Hermitian saddle point problem (1.3)
arising in finite element discretisations of the hybrid formulations of time-harmonic eddy
current model (1.2). The problem (1.3) is considered in both simple and general topology
cases.

We note that the splitting matrices P and S can be chosen in different ways [10, 28].
For example, if P = A and S = 0, the LPSS preconditioner reduces to the SS preconditioner.
If P = H and S = S̄, the LPSS preconditioner is the same as in [47], where S̄ is the skew-
Hermitian part of the non-Hermitian positive (semi)definite matrix A. One can also choose
P = DH + 2LH and S = LT

H − LH + S̄, where DH and LH are, respectively, the diagonal
and the strictly lower triangular parts of H. In this case, P and S are, respectively, positive
(semi)definite and skew-Hermitian matrices. Here, we choose special splitting matrices
such that the corresponding LPSS preconditioner is easily implementable and the LPSS
preconditioned GMRES method converges fast. Using the special structure of the non-
Hermitian saddle point matrix in (1.3), we present a special LPSS preconditioner in both
simple and general topology cases.

3.1. Simple topology case

In the simple topology case, the first Betti number of ΩI is equal to zero. This condition
guarantees the invertibility of the matrix

AI =

�
AI BT

I

−BI 0

�
, (3.1)

where AI = iSI and the matrix SI is symmetric positive semidefinite. The matrix AI is
nonsingular if and only if

null(SI )
⋂

null(BI ) = {0} and null
�
BT

I

�
= {0}.

Hence, for any constant τ > 0, the matrix SI +τBT
I BI is symmetric positive definite. Thus,

the non-Hermitian 2× 2 block matrix

A=

�
Mc − iSc −iDT

−iD SI +τBT
I

BI

�

is positive definite. In this case, we consider the splitting A= P + S with a positive definite
matrix P and a skew-Hermitian matrix S — viz.

P =

�
Mc − iSc 0

0 SI +τBT
I

BI

�
, S =

�
0 −iDT

−iD 0

�
.

The corresponding splitting of A is

A =PLPSS −QLPSS =
1

2





αI + 2(MC − iSC) 0 BT
C

0
0 αI + 2(SI +τBT

I
BI ) 0 BT

I

−BC 0 αI 0
0 −BI 0 αI
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−
1

2





αI i2DT −BT
C 0

i2D αI 0 −BT
I

BC 0 αI 0
0 BI 0 αI



 (3.2)

with the induced LPSS preconditioner PLPSS.
In order to improve the convergence of the GMRES method by the above LPSS pre-

conditioner PLPSS, at each iteration we have to solve the following generalised residual
equation:

PLPSS r̄ =
1

2





αI + 2(MC − iSC ) 0 BT
C 0

0 αI + 2(SI +τBT
I BI ) 0 BT

I

−BC 0 αI 0
0 −BI 0 αI





×





r̄1

r̄2

r̄3

r̄4



 =





z̄1

z̄2

z̄3

z̄4



 = z̄, (3.3)

where r̄ = [r̄1; r̄2; r̄3; r̄4] and z̄ = [z̄1; z̄2; z̄3; z̄4] are, respectively, current and generalised
residual vectors. System (3.3) can be reduced to the following linear subsystems:

1

2

�
αI + 2(MC − iSC ) BT

C

−BC αI

��
r̄1

r̄3

�
=

�
z̄1

z̄3

�
, (3.4)

1

2

�
αI + 2(SI +τBT

I BI ) BT
I

−BI αI

��
r̄2

r̄4

�
=

�
z̄2

z̄4

�
. (3.5)

The systems (3.4) and (3.5) are positive definite and coupled. For the linear subsystem
(3.4), we can first determine r̄1 from the equation

�
αI + 2MC +

1

α
BT

C BC − i2SC

�
r̄1 = 2z̄1 −

2

α
BT

C z̄3,

and then obtain r̄3 — viz.

r̄3 =
1

α
(2z̄3 + BC r̄1).

Analogously, for the system (3.5), we first derive r̄2 from the equation
�
αI + 2SI +

�
2τ+

1

α

�
BT

I BI

�
r̄2 = 2z̄2 −

2

α
BT

I z̄4,

and then write

r̄4 =
1

α
(2z̄4 + BI r̄2).

These considerations lead to the following algorithm for implementing the LPSS pre-
conditioner PLPSS in (3.2).
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Algorithm 3.1

Let r̄ = [r̄1; r̄2; r̄3; r̄4] and z̄ = [z̄1; z̄2; z̄3; z̄4], where r̄1, z̄1 ∈ C
n1 , r̄2, z̄2 ∈ C

n2 , r̄3, z̄3 ∈ C
m1

and r̄4, z̄4 ∈ C
m2 .

The solution of the linear system (3.3) can be found in the following way:
(1) Solve the equation

�
αI + 2MC +

1

α
BT

C BC − i2SC

�
r̄1 = 2z̄1 −

2

α
BT

C z̄3

for r̄1.

(2) Solve the equation
�
αI + 2SI +

�
2τ+

1

α

�
BT

I BI

�
r̄2 = 2z̄2 −

2

α
BT

I z̄4

for r̄2.

(3) Compute r̄3 = (1/α)(2z̄3 + BC r̄1).

(4) Compute r̄4 = (1/α)(2z̄4 + BI r̄2).

We note that at each iteration step the main computational cost lies in solving the linear
systems with the coefficient matrices αI + 2MC + (1/α)B

T
C BC − i2SC and αI + 2SI + (2τ+

(1/α))BT
I BI . The matrix αI + 2MC + (1/α)B

T
C BC − i2SC can be regarded as a complex

symmetric matrix with a symmetric positive definite real part and a symmetric positive
semidefinite imaginary part. Therefore, the modified HSS iteration method [7] and the
preconditioned MHSS iteration method [8] can be used as inexact solvers. For the linear
system with the coefficient matrix αI + 2SI + (2τ + (1/α))B

T
I

BI , one can use the sparse
Cholesky factorisation or an incomplete Cholesky factorisation.

3.2. General topology case

In the general topology case, BI ẼI = 0 and the Lagrange multiplier ΦI introduced in
the insulator region satisfies the condition ΦI = 0. The saddle point problem (1.3) can be
reduced to the following system:




MC − iSC −iDT BT

C

−iD SI +τBT
I

BI 0
−BC 0 0








HC

eEI

eQ



 =




−iFC

−iGI

0



 . (3.6)

Set

A=

�
MC − iSC −iDT

−iD SI +τBT
I

BI

�
, B =
�
−BC 0
�

.

System (3.6) is also a non-Hermitian saddle point problem but now the first Betti num-
ber of ΩI is greater than zero, so that the matrix AI in (3.1) is singular [5, 38]. Thus,
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the (2,2) block matrix SI+τBT
I BI in (3.6) is symmetric positive semidefinite. Note that A is

a non-Hermitian positive semidefinite block matrix and B is a full rank matrix. We consider
a splitting A= P + S with a positive semidefinite matrix P and a skew-Hermitian matrix S

— viz.

P =

�
Mc − iSc 0

0 SI +τBT
I

BI

�
, S =

�
0 −iDT

−iD 0

�
.

The corresponding splitting of A is

A =PLPSS −QLPSS =
1

2




αI + 2(MC − iSC ) 0 BT

C

0 αI + 2(SI +τBT
I

BI ) 0
−BC 0 αI





−
1

2




αI i2DT −BT

C

i2D αI 0
BC 0 αI



 (3.7)

with the induced LPSS preconditioner PLPSS.

In order to use the LPSS preconditioner PLPSS in (3.7), at each iteration we have to
find solution of the following generalised residual equation:

PLPSS r̃ =
1

2




αI + 2(MC − iSC) 0 BT

C

0 αI + 2(SI +τBT
I

BI ) 0
−BC 0 αI





×




r̃1

r̃2

r̃3



 =




r̃1

r̃2

r̃3



 = z̃, (3.8)

where r̃ = [r̃1; r̃2; r̃3] and z̃ = [z̃1; z̃2; z̃3] are, respectively, current and generalised residual
vectors. For (3.8), we can solve the equation

�
αI + 2SI + 2τBT

I
BI

�
r̃2 = 2z̃2,

and the reduced linear system

1

2

�
αI + 2(MC − iSC ) BT

C

−BC αI

��
r̃1

r̃3

�
=

�
z̃1

z̃3

�
.

The system above has the same structure as the system (3.4) and to implement the LPSS
preconditioner PLPSS in (3.7), we have the following algorithm.
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Algorithm 3.2

Let r̃ = [r̃1; r̃2; r̃3] and z̃ = [z̃1; z̃2; z̃3], where r̃1, z̃1 ∈ C
n1 , r̃2, z̃2 ∈ C

n2 and r̃3, z̃3 ∈ C
m1 .

The linear system (3.8) can be solved in the following way:

(1) Solve �
αI + 2MC +

1

α
BT

C BC − i2SC

�
r̃1 = 2z̃1 −

2

α
BT

C z̃3

for r̃1.

(2) Solve
�
αI + 2SI + 2τBT

I BI

�
r̃2 = 2z̃2 for r̃2.

(3) Compute r̃3 = (1/α)(2z̃3 + BC r̃1).

The systems above can be solved by the methods discussed in Algorithm 3.1.

4. Numerical Experiments

In this section, we use numerical examples from [38] to test the feasibility and effective-
ness of the LPSS preconditioner proposed. We compare it with the BASI preconditioner [5],
the APSS preconditioner [36], the SS preconditioner [23] and the MSS preconditioner [47]
in terms of the number of iteration steps IT and elapsed CPU time (in seconds). These
preconditioned GMRES methods are used to solve non-Hermitian saddle point problems
arising in finite element discretisations of time-harmonic eddy current models.

In actual computations, all experiments start with the zero vector and stop if

RES=
‖b− Ax(k)‖2
‖b‖2

≤ 10−5

or if the number of iterations exceeds 1500. Computations are carried out in MATLAB
environment (version R2016a) on the high-performance computing platform of Nantong
University. The linear subsystems are solved by sparse Cholesky or LU factorisation in com-
bination with an approximate minimum degree (AMD) of column AMD reordering. The
parameter τ involved in the saddle point problem (1.3) and in four preconditioners is
τ = ‖SI‖2/‖BI‖

2
2. This balances matrices SI and BT

I BI in the Euclidean norm — cf. [5,38].

Example 4.1. Consider the hybrid formulation of the complete eddy current model (1.2),
where the conductor ΩC and the domain Ω are two cubes centered at the origin with edges
of length 2 and 10, respectively. We set ω = µ = σ|ΩC

= 1 and σ|ΩI
≡ 0, cf. [38].

The first Betti number here is zero, so that the LPSS preconditioner PLPSS is defined as
in (3.2). On the other hand, the BASI preconditioner

PBASI(a2) =
1

2α

�
αI +A1−BASI(a2)

� �
αI +A2−BASI(a2)

�
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=
1

2α





αI +MC − iSC 0 BT
C 0

0 αI + SI +τBT
I BI 0 BT

I

−BC 0 αI 0
0 −BI 0 αI





×





αI −iDT 0 0
−iD αI 0 0

0 0 αI 0
0 0 0 αI



 ,

in [5] has the best numerical performance in the three forms. The APSS preconditioner
in [36], the SS preconditioner in [23] and the MSS preconditioner in [47] are respectively
defined by

PAPSS =
1

2α
(αI +A1−APSS) (αI +A2−APSS)

=
1

2α





αI +MC − iSC −iDT BT
C 0

−iD αI 0 0
−BC 0 αI 0

0 0 0 αI









αI 0 0 0
0 αI + SI +τBT

I BI 0 BT
I

0 0 αI 0
0 −BI 0 αI



 ,

PSS =
1

2
(αI +A ) =

1

2





αI +MC − iSC −iDT BT
C 0

−iD αI + SI +τBT
I BI 0 BT

I

−BC 0 αI 0
0 −BI 0 αI



 ,

PMSS =
1

2





αI + 2MC 0 BT
C 0

0 αI + 2(SI +τBT
I BI) 0 BT

I

−BC 0 αI 0
0 −BI 0 αI



 .

We use four successively refined meshes and obtain four saddle point linear systems (1.3).
Table 1 shows the degree of freedom (DOF) for each discretised mesh and the corresponding
parameter τ.

Table 1: Example 4.1. DOF and parameter τ.

DOF n1 n2 m1 m2 τ

1958 236 1378 107 237 0.2803
13860 1516 10298 431 1615 1.3201
44820 4722 33963 971 5164 3.0582
103954 10736 79576 1728 11914 5.8942

Here, we adopt a practical algebraic estimation method from [36] to obtain the param-
eter α in the BASI, APSS, SS, MSS and LPSS preconditioners. In particular, we have

αBASI(a2) =
�
‖A1−BASI(a2)‖F + ‖A2−BASI(a2)‖F

�
/2n, αMSS = ‖AMSS‖F/n,

αAPSS =
�
‖A1−APSS‖F + ‖A2−APSS‖F

�
/2n, αSS = ‖A‖F/n, αLPSS = ‖ALPSS‖F/n,
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where ‖ · ‖F is the Frobenius norm and

ALPSS =

�
−2S −B∗

B 0

�
, AMSS =

�
−2S̄ −B∗

B 0

�

with the matrix

S̄ =

�
−iSc −iDT

−iD 0

�
.

In Example 4.1, the MSS preconditioned GMRES method with αMSS diverges even with
small DOF. For the MSS preconditioner with the same parameter as the LPSS precondi-
tioner, the numerical results are better. Table 2 shows the values of α for four successively
refined meshes. Table 3 presents numerical results for the GMRES method without any pre-
conditioner (denoted by I) and the preconditioned GMRES method with BASI(a2), APSS,
SS, MSS, and LPSS preconditioners with respect to different DOFs. Table 3 shows that the
convergence of GMRES and MSS preconditioned GMRES methods is very slow and if DOF is
large, they diverge within the prescribed iteration steps. The other preconditioned GMRES
methods provide satisfactory approximations for the exact solution. This indicates that the
practical estimation of the parameter α suggested in [36], is efficient for BASI, APSS, SS and
LPSS preconditioners but not for MSS one. For DOF=1958, the SS preconditioned GMRES
method is only slightly better than the LPSS preconditioned GMRES method in terms of

Table 2: Example 4.1. Parameter α for various preonditioners.

DOF BASI(a2) APSS SS MSS LPSS
1958 0.0662 0.0871 0.1294 0.0331 0.0331
13860 0.0589 0.0793 0.1170 0.0081 0.0081
44820 0.0498 0.0679 0.0992 0.0033 0.0033
103954 0.0444 0.0607 0.0885 0.0017 0.0017

Table 3: Example 4.1. Numerial results for preonditioned GMRES methods.

DOF I BASI(a2) APSS SS MSS LPSS

1958
IT 853 146 56 35 183 36

CPU 36.32 4.56 1.69 0.88 5.26 0.92
RES 9.85e-6 9.82e-06 9.68e-06 5.18e-6 5.73e-6 7.67e-6

13860
IT 1500 209 100 47 1154 33

CPU 338.07 63.47 29.80 14.38 364.60 8.47
RES 3.42e-5 9.50e-6 8.55e-06 8.84e-6 9.96e-6 7.82e-6

44820
IT 1500 385 64 40 1500 37

CPU 925.67 534.15 104.58 56.23 1384.21 41.08
RES 2.03e-4 9.65e-6 9.05e-6 7.65e-6 6.18e-5 9.26e-6

103954
IT 1500 512 82 44 1500 36

CPU 1802.69 2141.16 442.31 250.35 2356.46 130.24
RES 3.83e-4 9.76e-6 9.62e-6 7.56e-6 8.61e-4 7.50e-6
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Figure 1: Example 4.1. Residual urves for various preonditioned GMRES methods. Left: DOF=1958.

Right: DOF=13860.
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Figure 2: Example 4.1. Residual urves for various preonditioned GMRES methods. Left: DOF=44820.

Right: DOF=103954.

iteration steps and CPU time. For larger DOFs, however, the LPSS preconditioned GMRES
method performs much better than BASI(a2), APSS and SS preconditioned GMRES meth-
ods. In addition, the number of iteration steps in the LPSS preconditioned GMRES method
is almost the same for each of the four DOF. Thus for Example 4.1, the LPSS preconditioner
proposed here efficiently accelerate the GMRES method.

For other comparison of the preconditioned GMRES methods, in Figs. 1 and 2 we plot
the residual curves of the methods for four successively refined meshes. The graphs demon-
strate that the residual curves of SS and LPSS preconditioned GMRES decrease very sharply.
Moreover, if DOF grows, the efficiency of LPSS preconditioner improves.

Example 4.2. We consider the hybrid formulation of the complete eddy current model
(1.2), where the cube Ω with the edge 27cm contains two coaxial tori of square section
with the edge 1cm and the radius 6.5cm. The upper torus is a coil, part of the insulator
region ΩI with the clockwise current density Je,I = 106A/m2, and the second torus is the
conductor. Besides, µ = µ0 = 4π× 10−7H/m are the physical magnitudes, σ = 107S/m

is the magnetic permeability of the air and ω = 2π × 50rad/s the angular frequency —
cf. [38].
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Now the first Betti number is one. In this case, the LPSS preconditionerPLPSS is defined
in (3.8) and the BASI preconditioners considered in [5] are

PBASI(b2) =
1

2α




αI +MC − iSC 0 BT

C

0 αI + SI +τBT
I BI 0

−BC 0 αI








αI −iDT 0
−iD αI 0

0 0 αI



 .

The numerical performance of the two BASI schemes in [5] is almost the same. Therefore,
we only compare the LPSS preconditioner with the BASI scheme (b2). Besides, we also
consider the APSS preconditioner [36], the SS preconditioner [23] and the MSS precondi-
tioner [47], which have the form

PAPSS =
1

2α




αI +MC − iSC −iDT BT

C

−iD αI 0
−BC 0 αI








αI 0 0
0 αI + SI +τBT

I
BI 0

0 0 αI



 ,

PSS =
1

2




αI +MC − iSC −iDT BT

C

−iD αI + SI +τBT
I BI 0

−BC 0 αI



 ,

PMSS =
1

2




αI + 2MC 0 BT

C

0 αI + 2(SI +τBT
I BI ) 0

−BC 0 αI



 .

To discretise model (1.2), we now use two successively refined meshes and obtain two
saddle point linear systems. For each problem, the order of discretisation matrices and the
parameter τ are displayed in Table 4.

Table 4: Example 4.2. DOF and parameter τ.

DOF n1 n2 m1 τ

4763 580 4020 163 2.2528e8

34795 3416 30724 655 9.5772e8

For BASI(b2) preconditioner an experimentally found optimal parameters α is used —
cf. [5, Table I]. For APSS, SS, MSS and LPSS preconditioners, parameter α is obtained
by the practical algebraic estimation method mentioned in Example 4.1. The values of
the parameters are listed in Table 5. Table 6 shows numerical results for GMRES and
preconditioned GMRES methods incorporated with BASI(b2), APSS, SS, MSS and LPSS
preconditioners. The residual curves of the preconditioned GMRES methods are plotted
in Fig. 3. We note that LPSS preconditioned GMRES method requires the least iteration
steps and the least CPU time. Moreover, it is found that the residual curves of the LPSS
preconditioned GMRES have the fastest decrease.
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Table 5: Example 4.2. Parameter α for various preonditioners.

DOF BASI(b2) APSS SS MSS LPSS
4763 1.7e5 8.3e3 1.5e4 1.7e4 8.3e3
34795 1.9e5 7.3e3 1.3e4 1.5e4 7.3e3

Table 6: Example 4.2. Numerial results for preonditioned GMRES methods.

DOFs I BASI(b2) APSS SS MSS LPSS

4763
IT 39 39 11 14 11 9

CPU 3.58 3.66 1.61 2.33 1.58 1.42
RES 6.78e-6 6.84e-6 4.48e-6 2.97e-6 4.60e-6 2.45e-6

34795
IT 381 65 15 19 15 11

CPU 91.28 82.46 33.11 45.90 35.99 30.93
RES 9.73e-6 9.82e-6 7.29e-6 9.48e-6 7.15e-6 9.05e-6
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Figure 3: Example 4.2. Residual urves for di�erent preonditioned GMRES methods. Left: DOF=4763.

Right: DOF=34795.

5. Concluding Remarks

Using positive (semi)definite and skew-Hermitian splitting of a (1,1) block matrix and
shift-splitting technique, we developed a new local positive (semi)definite shift-splitting
(LPSS) preconditioner for a non-Hermitian saddle point problem. The convergence of the
corresponding LPSS stationary iteration method and the spectral properties of correspond-
ing preconditioned matrix are studied. The method is applied to non-Hermitian saddle
point problems arising in time-harmonic eddy current models with different first Betti num-
bers. The LPSS preconditioner is easily implementable and numerical results show that it
is more effective than BASI, APSS, SS, and MSS preconditioners.
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