On a Generalized Matrix Algebra over Frobenius Algebra

Xu Qing-Bing ${ }^{1}$ and Zhang Kong-sheng ${ }^{2}$
(1. Department of Basic Courses, Chuzhou Institute of Technology, Chuzhou, Anhui, 239000)
(2. Department of Mathematics, Southeast University, Nanjing, 210096)

Communicated by Du Xian-kun

Abstract

Let A be a Frobenius k-algebra. The matrix algebra $R=\left(\begin{array}{cc}A & { }_{A} A_{k} \\ { }_{k} A_{A} & k\end{array}\right)$ is called a generalized matrix algebra over a Frobenius algebra A. In this paper we show that R is also a Frobenius algebra.

Key words: Frobenius algebra, generalized matrix algebra, dual functor
2010 MR subject classification: 16E50, 16D50, 18B99
Document code: A
Article ID: 1674-5647(2019)01-0065-10
DOI: 10.13447/j.1674-5647.2019.01.07

1 Introduction

Let A, B be two finite dimensional algebras over a field $k,{ }_{A} M_{B},{ }_{B} N_{A}$ be two finitely generated bimodules. Assume that there are bimodule morphisms

$$
\begin{aligned}
& \tau: M \otimes_{B} N \longrightarrow A: \tau(m \otimes n)=(m, n) \\
& \mu: N \otimes_{A} M \longrightarrow B: \mu(n \otimes m)=[n, m]
\end{aligned}
$$

satisfying

$$
(m, n) m^{\prime}=m\left[n, m^{\prime}\right], \quad[n, m] n^{\prime}=n\left(m, n^{\prime}\right), \quad m, m^{\prime} \in M, n, n^{\prime} \in N
$$

where addition and multiplication are defined as in customary for matrices, $R=\left(\begin{array}{cc}A & M \\ N & B\end{array}\right)$ is a k-algebra, which is called generalized matrix algebra. One point extension algebra and local extension algebra are also generalized matrix algebras. Generalized matrix algebra also comes up as a Morita Context. For more details see [1]-[3].

Frobenius bimodules are connected with Frobenius algebras and extensions. For instance, a ring extension $\phi: R \rightarrow S$ is a Frobenius extension if and only if ${ }_{R} S_{S}$ is a Frobenius
bimodule. Let A be a finite dimensional k-algebra. If ${ }_{k} A_{A}$ is a Frobenius bimodule, there exists a bimodule isomorphism $\operatorname{Hom}_{k}\left({ }_{k} A, k\right) \cong{ }_{A} A_{k}$, then A is called a Frobenius algebra. Simple algebra over a field k, group algebra $k G$ are also Frobenius algebra. By [1] (see p261), if A is a Frobenius algebra, then

$$
\tau:{ }_{A} A \otimes_{k} A_{A} \longrightarrow A, \quad \mu:{ }_{k} A \otimes_{A} k \longrightarrow A_{k} .
$$

So $R=\left(\begin{array}{cc}A & { }_{A} A_{k} \\ { }_{k} A_{A} & k\end{array}\right)$ is a generalized matrix algebra over a Frobenius algebra A. In present paper, we show that R is also a Frobenius algebra. Throughout this paper, all rings have an identity element and all modules are unital, the following symbols can be referred in [4]-[6]. The latest related research on this subject can be found in [7]-[11].

2 The Functor Between mod $-A \times B$ and $\bmod -R$

For a ring A, the category of left A-modules is denoted by A-mod, mod $-A$ denotes the category of the right A-modules. Let $\mathcal{A}(R)$ be the category whose objects are $(X, Y)_{\alpha, \beta}$, where $X \in \bmod -A, Y \in \bmod -B, \alpha \in \operatorname{Hom}_{B}\left(X \otimes_{A} M, Y\right), \beta \in \operatorname{Hom}_{A}\left(Y \otimes_{B} N, X\right)$ such that

$$
\alpha(\beta(y \otimes n) \otimes m)=y[n, m], \quad \beta(\alpha(x \otimes m) \otimes n)=x(m, n)
$$

for all $x \in X, y \in Y, m \in M, n \in N$.
Instead of α and β, it is more convenient to use the following homomorphisms $\bar{\alpha}$ and $\bar{\beta}$,

$$
\begin{array}{ll}
\bar{\alpha}: X \rightarrow \operatorname{Hom}_{B}(M, Y), & \bar{\alpha}(x) m=\alpha(x \otimes m), \\
\bar{\beta}: Y \rightarrow \operatorname{Hom}_{A}(N, X), & \bar{\beta}(y) n=\beta(y \otimes n) .
\end{array}
$$

The morphisms of $\mathcal{A}(R)$ are pairs of $\left(\sigma_{1}, \sigma_{2}\right)$, where $\sigma_{1} \in \operatorname{Hom}_{A}\left(X, X^{\prime}\right), \sigma_{2} \in \operatorname{Hom}_{B}\left(Y, Y^{\prime}\right)$ such that the following diagrams are commutative.

Green ${ }^{[4]}$ proved that the category $\mathcal{A}(R)$ is equivalent to the category mod- R, i.e., there exists a categorical equivalent functor

$$
F: \mathcal{A}(R) \Leftrightarrow \bmod -R
$$

such that

$$
F(X, Y)_{\alpha, \beta}=X \oplus Y
$$

where the right modular operation is

$$
\left(\begin{array}{ll}
x & y
\end{array}\right)\left(\begin{array}{cc}
a & m \\
n & b
\end{array}\right)=(x a+\beta(y \otimes n) \quad \alpha(x \otimes n)+y b) .
$$

Similarly, let $\mathcal{B}(R)$ be a left R-modules category, there is a categorical equivalent functor

$$
G: \mathcal{B}(R) \Leftrightarrow R-\bmod
$$

such that

$$
G(X, Y)_{\alpha, \beta}=X \oplus Y
$$

Lemma 2.1 The ring monomorphism

$$
\Phi^{\prime}: A \times B \rightarrow\left(\begin{array}{cc}
A & M \\
N & B
\end{array}\right)
$$

induces a functor

$$
\Phi: \bmod -A \times B \rightarrow \bmod -R,
$$

where

$$
\begin{aligned}
& \Phi: \bmod -A \times B \longrightarrow \bmod -R \\
& X \times Y \longmapsto \operatorname{Hom}_{R}(R, X \times Y), \\
& \Phi(X \times Y)=\left(X \oplus \operatorname{Hom}_{B}(M, Y), \operatorname{Hom}_{A}(N, X) \oplus Y\right)_{\varepsilon, \delta}, \\
& \varepsilon:\left(X \oplus \operatorname{Hom}_{B}(M, Y) \otimes M\right.\left.\longrightarrow \operatorname{Hom}_{A}(N, X) \oplus Y\right) \\
&(x, g) \otimes m \longmapsto(x(m, \cdot), g(m)), \\
& \delta:\left(\operatorname{Hom}_{A}(N, X) \oplus Y\right) \otimes N\left.\longrightarrow X \oplus \operatorname{Hom}_{B}(M, Y)\right) \\
&(\eta, y) \otimes n \longmapsto(\eta(n), y[n, \cdot]) .
\end{aligned}
$$

Proof. See [4] for details.
In fact, Φ is a left exact functor. Since

$$
\begin{aligned}
& \varepsilon((f, \operatorname{Hom}(M, g) \bar{\alpha}) \otimes 1)(x \otimes m) \\
= & \varepsilon(f(x), \operatorname{Hom}(M, g) \bar{\alpha}(x)) \otimes m \\
= & (f(x)(m, \cdot), \operatorname{Hom}(M, g) \bar{\alpha}(x)(m)),
\end{aligned}
$$

we have

$$
\begin{aligned}
& (\operatorname{Hom}(N, f) \bar{\beta}, g) \alpha(x \otimes m) \\
= & (\operatorname{Hom}(N, f) \bar{\beta} \alpha(x \otimes m), g \alpha(x \otimes m)) \\
= & (f(x)(m, \cdot), \operatorname{Hom}(M, g) \bar{\alpha}(x)(m)) .
\end{aligned}
$$

Then

$$
\varepsilon((f, \operatorname{Hom}(M, g) \bar{\alpha}) \otimes 1)(x \otimes m)=(\operatorname{Hom}(N, f) \bar{\beta}, g) \alpha .
$$

So we have the following commutative diagram:

where

$$
\sigma_{1}=(f, \operatorname{Hom}(M, g) \bar{\alpha}), \quad \sigma_{2}=(\operatorname{Hom}(N, f) \bar{\beta}, g)
$$

Similarly,

Therefore, there is

$$
\theta: \operatorname{Hom}_{A \times B}\left(X \times Y, X^{\prime} \times Y^{\prime}\right) \rightarrow \operatorname{Hom}_{R}\left((X, Y)_{\alpha, \beta}, \Phi\left(X^{\prime} \times Y^{\prime}\right)\right)
$$

such that

$$
\theta(f, g)=((f, \operatorname{Hom}(M, g) \bar{\alpha}), \operatorname{Hom}(N, f) \bar{\beta}, g))
$$

is a morphism of additive group.
Now, let

$$
\rho: \operatorname{Hom}_{R}\left((X, Y)_{\alpha, \beta}, \Phi\left(X^{\prime} \times Y^{\prime}\right)\right) \rightarrow \operatorname{Hom}_{A \times B}\left(X \times Y, X^{\prime} \times Y^{\prime}\right)
$$

such that

$$
\rho(f, g)=\left(\pi_{X^{\prime}} f, \pi_{Y^{\prime}} g\right)
$$

where

$$
\pi_{X^{\prime}}: X^{\prime} \oplus \operatorname{Hom}_{B}\left(M, Y^{\prime}\right) \rightarrow X^{\prime}, \quad \pi_{Y^{\prime}}: Y^{\prime} \oplus \operatorname{Hom}_{A}\left(N, X^{\prime}\right) \rightarrow Y^{\prime}
$$

are projections. So we have

$$
\rho \theta=1, \quad \theta \rho=1
$$

Now we check $\theta \rho=1$ directly.
For all $(f, g) \in \operatorname{Hom}_{R}\left((X, Y)_{\alpha, \beta}, \Phi\left(X^{\prime} \times Y^{\prime}\right)\right)$,

$$
\theta \rho(f, g)=\theta\left(\pi_{X^{\prime}} f, \pi_{Y^{\prime}} g\right)
$$

by the following commutative diagram

we have

$$
\theta\left(\pi_{X^{\prime}} f, \pi_{Y^{\prime}} g\right)=(f, g)
$$

Since the right adjoint functor admits a left exact functor, so Φ is a left exact functor.

Proposition 2.1 Let

$$
\begin{aligned}
& f=\left(\begin{array}{ll}
f_{11} & f_{12} \\
f_{21} & f_{22}
\end{array}\right): X \oplus \operatorname{Hom}_{B}(M, Y) \rightarrow X^{\prime} \oplus \operatorname{Hom}_{B}\left(M, Y^{\prime}\right) \\
& g=\left(\begin{array}{ll}
g_{11} & g_{12} \\
g_{21} & g_{22}
\end{array}\right): Y \oplus \operatorname{Hom}_{A}(N, X) \rightarrow Y^{\prime} \oplus \operatorname{Hom}_{A}\left(N, X^{\prime}\right)
\end{aligned}
$$

Then,

$$
(f, g) \in \operatorname{Hom}_{R}\left(\Phi(X \times Y)_{\varepsilon, \delta}, \Phi(X \times Y)_{\varepsilon^{\prime}, \delta^{\prime}}\right)
$$

if and only if

$$
\begin{array}{ll}
\overline{\varepsilon_{1}^{\prime}} f_{11}=\operatorname{Hom}_{B}\left(M, g_{22}\right) \overline{\varepsilon_{1}}, & f_{22}=\operatorname{Hom}_{B}\left(M, g_{11}\right) \\
\overline{\varepsilon_{1}^{\prime}} f_{21}=\operatorname{Hom}_{B}\left(M, g_{12}\right), & f_{12}=\operatorname{Hom}_{B}\left(M, g_{21}\right) \overline{\varepsilon_{1}^{\prime}} \\
\overline{\delta_{1}^{\prime}} g_{11}=\operatorname{Hom}_{A}\left(N, f_{22}\right) \overline{\delta_{1}}, & g_{22}=\operatorname{Hom}_{A}\left(N, f_{11}\right) \\
\overline{\delta_{1}^{\prime}} g_{21}=\operatorname{Hom}_{A}\left(N, f_{12}\right), & g_{12}=\operatorname{Hom}_{A}\left(N, f_{21}\right) \overline{\delta_{1}^{\prime}}
\end{array}
$$

where

$$
\begin{array}{ll}
f_{11}: X_{A} \rightarrow X^{\prime}, & f_{12}: X_{A} \rightarrow \operatorname{Hom}_{B}\left(M, Y^{\prime}\right) \\
f_{21}: \operatorname{Hom}_{B}(M, Y) \rightarrow X^{\prime}, & f_{22}: \operatorname{Hom}_{B}(M, Y) \rightarrow \operatorname{Hom}_{B}\left(M, Y^{\prime}\right), \\
g_{11}: Y_{B} \rightarrow Y^{\prime}, & g_{12}: Y_{B} \rightarrow \operatorname{Hom}_{A}\left(N, X^{\prime}\right) \\
g_{21}: \operatorname{Hom}_{A}\left(N, X^{\prime}\right) \rightarrow X^{\prime}, & g_{22}: \operatorname{Hom}_{A}(N, X) \rightarrow \operatorname{Hom}_{A}\left(N, X^{\prime}\right), \\
& \varepsilon_{1}=X \otimes_{A} M \rightarrow \operatorname{Hom}_{A}(N, X): \varepsilon_{1}(x \otimes m)(n)=x(m, n) \\
& \varepsilon_{1}^{\prime}=X^{\prime} \otimes_{A} M \rightarrow \operatorname{Hom}_{A}\left(N, X^{\prime}\right): \varepsilon_{1}^{\prime}(x \otimes m)(n)=x(m, n) \\
& \delta_{1}=Y \otimes_{B} N \rightarrow \operatorname{Hom}_{B}(M, Y): \delta_{1}(y \otimes n)(m)=y[n, m] \\
& \delta_{1}^{\prime}=Y^{\prime} \otimes_{B} N \rightarrow \operatorname{Hom}_{B}\left(M, Y^{\prime}\right): \delta_{1}^{\prime}(y \otimes n)(m)=y[n, m]
\end{array}
$$

Proof. Put

$$
\begin{aligned}
& \varepsilon_{2}: \operatorname{Hom}_{B}(M, Y) \otimes_{A} M \rightarrow Y: \varepsilon_{2}(u \otimes m)=u(m) \\
& \varepsilon_{2}^{\prime}: \operatorname{Hom}_{B}\left(M, Y^{\prime}\right) \otimes_{A} M \rightarrow Y^{\prime}: \varepsilon_{2}^{\prime}(u \otimes m)=u(m)
\end{aligned}
$$

$(f, g) \in \operatorname{Hom}_{R}\left(\Phi(X \times Y)_{\varepsilon, \delta}, \Phi\left(X^{\prime} \times Y^{\prime}\right)_{\varepsilon^{\prime}, \delta^{\prime}}\right)$ if and only if there exist the following commutative diagrams:

if and only if

$$
\begin{aligned}
& \overline{\varepsilon_{1}^{\prime}} f_{11}=\operatorname{Hom}_{B}\left(M, g_{22}\right) \overline{\varepsilon_{1}}, \quad f_{22}=\operatorname{Hom}_{B}\left(M, g_{11}\right) \\
& f_{12}=\operatorname{Hom}_{B}\left(M, g_{21}\right) \overline{\varepsilon_{1}},
\end{aligned} \overline{\varepsilon_{1}^{\prime}} f_{21}=\operatorname{Hom}_{B}\left(M, g_{12}\right) .
$$

Similarly,

$$
\begin{array}{ll}
\overline{\delta_{1}^{\prime}} g_{11}=\operatorname{Hom}_{A}\left(N, f_{22}\right) \overline{\delta_{1}^{\prime}}, & g_{22}=\operatorname{Hom}_{A}\left(N, f_{11}\right) \\
g_{12}=\operatorname{Hom}_{A}\left(N, f_{21}\right) \overline{\delta_{1}}, & \overline{\delta_{1}^{\prime}} g_{21}=\operatorname{Hom}_{A}\left(N, f_{12}\right)
\end{array}
$$

The following example shows that Φ is not epic.
Example 2.1 Let $A=k^{2 \times 2}$ be an order 2 matrix algebra over field $k, B=k, M=k^{2}$. Put $X=\{(a, b) \mid a, b \in k\}, Y=k, R=\left(\begin{array}{cc}A & M \\ 0 & B\end{array}\right)$. Assume that $\boldsymbol{e}_{1}=(1,0)^{\mathrm{T}}, \boldsymbol{e}_{2}=(0,1)^{\mathrm{T}} \in$ M, f_{1}, f_{2} are the corresponding dual basis, i.e., $f_{i}\left(\boldsymbol{e}_{i}\right)=1, f_{i}\left(\boldsymbol{e}_{j}\right)=0(i \neq j ; i, j=1,2)$ and $f_{1}, f_{2} \in \operatorname{Hom}_{k}(M, k)$. Let $f_{11}=1_{X}, f_{21}=\left\langle f_{i} \mapsto \boldsymbol{e}_{i}, i=1,2\right\rangle, f_{12}=0, f_{22}=1_{\operatorname{Hom}_{k}(M, k)}$, $g_{11}=1_{Y}, g_{12}=g_{21}=g_{22}=0$. So

$$
\begin{aligned}
& f=\left(\begin{array}{ll}
f_{11} & f_{12} \\
f_{21} & f_{22}
\end{array}\right): X \oplus \operatorname{Hom}_{k}(M, k) \rightarrow X \oplus \operatorname{Hom}_{k}(M, k), \\
& g=\left(\begin{array}{ll}
g_{11} & g_{12} \\
g_{21} & g_{22}
\end{array}\right) \approx g_{11}: Y \rightarrow Y .
\end{aligned}
$$

Then, $(f, g) \in \operatorname{End}_{R}(\Phi(X \times Y))$.
However, since $f_{21} \neq 0$, so there is no $\left(f^{\prime}, g^{\prime}\right) \in \operatorname{Hom}_{A \times k}(\Phi(X \times Y), \Phi(X \times Y))$ such that $(f, g)=\Phi\left(f^{\prime}, g^{\prime}\right)$.

Corollary 2.1 The functor Φ : mod $-A \times B \rightarrow \bmod -R$ maps injective modules into injective modules.

Proof. By the property of adjoint pair (i, Φ), see [12], p406.
Muller ${ }^{[6]}$ proved that all the injective right R-modules are precisely the R-modules $\Phi^{\prime}(I \times$ J), where I is the injective right A-module, J is the injective right B-module. Particularly, all the indecomposable injective right R-modules are $\Phi(I \times 0)=\left(I, \operatorname{Hom}_{A}(N, I)\right)_{\varepsilon, \delta}$ or $\Phi(0 \times J)=\left(\operatorname{Hom}_{B}(M, J), J\right)_{\gamma, \lambda}$, where I is the indecomposable injective A-module, J is the indecomposable injective B-module,

$$
\begin{aligned}
& \left.\varepsilon: I \otimes_{A} M \rightarrow \operatorname{Hom}_{A}(N, I)\right): \varepsilon(x \otimes m)=x \tau(m \otimes \cdot), \\
& \delta: \operatorname{Hom}_{A}(N, I) \otimes N \rightarrow I: \delta(g \otimes n)=g(n), \\
& \gamma: \operatorname{Hom}_{\mathrm{B}}(M, J) \otimes_{A} M \rightarrow J: \gamma(g \otimes m)=g(m), \\
& \left.\lambda: J \otimes_{B} N \rightarrow \operatorname{Hom}_{B}(M, J)\right): \lambda(x \otimes n)=x \mu(n \otimes \cdot) .
\end{aligned}
$$

3 Dual Functor D and the Main Results

Let $R=\left(\begin{array}{cc}A & M \\ N & B\end{array}\right), D(\cdot)=\operatorname{Hom}_{k}(\cdot, k)$ be a usual k-dual functor, where k is a field.
Lemma 3.1 If $(X, Y)_{\alpha, \beta} \in \bmod -R$, then there exist isomorphisms

$$
\varepsilon: M \otimes_{B} D(Y) \cong D \operatorname{Hom}_{B}(M, Y)
$$

and

$$
\delta: N \otimes_{A} D(X) \cong D \operatorname{Hom}_{A}(N, X)
$$

such that

$$
D(X, Y)_{\alpha, \beta}=(D X, D Y)_{D(\bar{\beta}) \delta, D(\bar{\alpha}) \varepsilon} \in \bmod -R,
$$

where

$$
\begin{array}{ll}
D(\bar{\alpha}) \varepsilon: M \otimes D Y \rightarrow D X & \text { s.t. } D(\bar{\alpha}) \varepsilon(m \otimes h)(x)=h(\alpha(x \otimes m)), \\
D(\bar{\beta}) \delta: N \otimes D X \rightarrow D Y & \text { s.t. } D(\bar{\beta}) \delta(n \otimes h)(y)=h(\beta(y \otimes n)) .
\end{array}
$$

Proof. Let $\varepsilon: M \otimes_{B} D(Y) \rightarrow D \operatorname{Hom}_{B}(M, Y)$ such that

$$
\varepsilon(m \otimes h)(\lambda)=h(\lambda(m)), \quad m \in M, h \in D Y, \lambda \in \operatorname{Hom}_{B}(M, Y) .
$$

Then ε is a left A-module isomorphism. In fact, if $Y=D\left({ }_{B} B\right)$, then $D Y=B$ is a left B-module. Thus the isomorphisms are hold. Since $D\left({ }_{B} B\right)$ is a injective co-generator over the right B-module category, there exist the natural number m, n such that

$$
0 \rightarrow Y \rightarrow D(B)^{m} \rightarrow D(B)^{n} .
$$

Applying the right exact functors $M \otimes_{B} D(\cdot)$ and $D \operatorname{Hom}_{B}(M, \cdot)$ respectively, we can get the following commutative diagram

Therefore,

$$
\varepsilon: M \otimes_{B} D(Y) \cong D \operatorname{Hom}_{B}(M, Y) .
$$

Similarly,

$$
\delta: N \otimes_{A} D(X) \cong D \operatorname{Hom}_{A}(N, X): \delta(n \otimes h)(\lambda)=h(\lambda(n)) .
$$

For $\alpha: X \otimes M \rightarrow Y, \beta: Y \otimes N \rightarrow X$, we have

$$
\bar{\alpha}: X \rightarrow \operatorname{Hom}_{B}(M, Y), \quad \bar{\beta}: Y \rightarrow \operatorname{Hom}_{A}(N, X) .
$$

So

$$
\begin{aligned}
& D(\bar{\alpha}): D \operatorname{Hom}_{B}(M, Y) \rightarrow D X: D(\bar{\alpha})(\lambda)(x)=\lambda(\bar{\alpha}(x)), \\
& D(\bar{\beta}): D \operatorname{Hom}_{A}(N, X) \rightarrow D Y: D(\bar{\beta})(\lambda)(y)=\lambda(\bar{\beta}(y)) .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& D(\bar{\beta}) \delta: N \otimes D X \rightarrow D Y: D(\bar{\beta}) \delta(n \otimes h)(y)=h(\beta(y \otimes n)), \\
& D(\bar{\alpha}) \varepsilon: M \otimes D Y \rightarrow D X: D(\bar{\alpha}) \varepsilon(m \otimes h)(x)=h(\alpha(x \otimes m)) .
\end{aligned}
$$

So there exists a functor $\bar{D}: \mathcal{A}(R) \rightarrow \mathcal{B}(R)$ such that

$$
\bar{D}:(X, Y)_{\alpha, \beta} \rightarrow(D X, D Y)_{D(\bar{\beta}) \delta, D(\bar{\alpha}) \varepsilon} .
$$

Lemma 3.2 (1) Let $(X, Y)_{\alpha, \beta} \in \mathcal{A}(R), f: X \rightarrow X^{\prime}$ be a right A-module isomorphism, $g: Y \rightarrow Y^{\prime}$ be a right B-module isomorphism. Then there exists

$$
(X, Y)_{\alpha, \beta} \cong\left(X^{\prime}, Y^{\prime}\right)_{g \alpha\left(f^{-1} \otimes 1_{M}\right), f \beta\left(g^{-1} \otimes 1_{N}\right)}
$$

in $\mathcal{A}(R)$.
(2) Let $(X, Y)_{\alpha, \beta} \in \mathcal{B}(R), f: X \rightarrow X^{\prime}$ be a left A-module isomorphism, $g: Y \rightarrow Y^{\prime}$ be a left B-module isomorphism. Then there exists

$$
(X, Y)_{\alpha, \beta} \cong\left(X^{\prime}, Y^{\prime}\right)_{g \alpha\left(1_{N} \otimes f^{-1}\right), f \beta\left(1_{N} \otimes g^{-1}\right)}
$$

in $\mathcal{B}(R)$.
Proof. Check it directly.

Lemma 3.3 If $X \in \bmod -A, Y \in \bmod -B$, then

$$
D \Phi(X \times Y) \cong\left(D X \oplus M \otimes_{B} D Y, D Y \oplus N \otimes_{A} D X\right)_{p, q}
$$

where

$$
\begin{aligned}
& p: N \otimes\left(D X \oplus M \otimes_{B} D Y\right) \rightarrow D Y \oplus N \otimes_{A} D X: n \otimes(u, m \otimes v) \mapsto([n, m] v, n \otimes u) \\
& q: M \otimes\left(D Y \oplus N \otimes_{A} D X\right) \rightarrow D X \oplus M \otimes_{B} D Y: m \otimes(v, n \otimes u) \mapsto((m, n) u, m \otimes v)
\end{aligned}
$$

Proof. By Lemma 3.1, assume

$$
\begin{aligned}
& \mu: M \otimes_{B} D Y \cong D \operatorname{Hom}_{B}(M, Y): \mu(m \otimes h)(\lambda)=h(\lambda(m)) \\
& \omega: N \otimes_{A} D X \cong D \operatorname{Hom}_{A}(N, X): \omega(n \otimes h)(\lambda)=h(\lambda(n))
\end{aligned}
$$

So

$$
\begin{aligned}
D \Phi(X \times Y) & =D\left(X \oplus \operatorname{Hom}_{B}(M, Y), Y \oplus \operatorname{Hom}_{A}(N, X)\right)_{\alpha, \beta} \\
& \cong\left(D X \oplus D \operatorname{Hom}_{B}(M, Y), D Y \oplus D \operatorname{Hom}_{A}(N, X)\right)_{D(\bar{\beta}) \delta, D(\bar{\alpha}) \varepsilon} \\
& \cong\left(D X \oplus M \otimes_{B} D Y, D Y \oplus N \otimes_{A} D X\right)_{p, q}
\end{aligned}
$$

where

$$
\begin{aligned}
& \delta: N \otimes_{A} D\left(X \oplus \operatorname{Hom}_{B}(M, Y)\right) \rightarrow D \operatorname{Hom}_{A}\left(N, X \oplus \operatorname{Hom}_{B}(M, Y)\right), \\
& \varepsilon: M \otimes_{B} D\left(Y \oplus \operatorname{Hom}_{A}(N, X)\right) \rightarrow D \operatorname{Hom}_{B}\left(M, Y \oplus \operatorname{Hom}_{A}(N, X)\right), \\
& p=\left(1_{D Y}, \omega^{-1}\right) D(\bar{\beta}) \delta\left(1_{N} \otimes\left(1_{D X}, \mu\right)\right), \\
& q=\left(1_{D X}, \mu^{-1}\right) D(\bar{\alpha}) \varepsilon\left(1_{M} \otimes\left(1_{D Y}, \omega\right)\right) .
\end{aligned}
$$

Now, we only check $\left.p: N \otimes_{A}(D X \oplus M \otimes D Y)\right) \rightarrow D Y \oplus N \otimes D X: n \otimes(u, m \otimes v) \mapsto([n, m] v, n \otimes u)$.
Similarly, we can get

$$
\left.q: M \otimes_{B}(D Y \oplus N \otimes D X)\right) \rightarrow D X \oplus M \otimes D Y: m \otimes(v, n \otimes u) \mapsto((m, n) u, m \otimes v)
$$

Since $\left(1_{D Y}, \omega\right): D Y \oplus N \otimes_{A} D X \cong D Y \oplus D \operatorname{Hom}_{A}(N, X)$, we have

$$
\left(1_{D Y}, \omega\right)([n, m] v, n \otimes u)=([n, m] v, \omega(n \otimes u))
$$

where $n \in N, m \in M, v \in D Y, u \in \operatorname{Hom}_{A}(N, X)$, while

$$
D(\bar{\beta}) \delta\left(1_{N} \otimes\left(1_{D X}, \mu\right)\right): N \otimes(D X \oplus M \otimes D Y) \rightarrow D Y \oplus D \operatorname{Hom}_{A}(N, X)
$$

one has

$$
D(\bar{\beta}) \delta\left(1_{N} \otimes\left(1_{D X}, \mu\right)\right)(n \otimes(u, m \otimes v))=\delta(n \otimes(u, \mu(m \otimes v))) \bar{\beta}
$$

So it is just to prove

$$
\delta(n \otimes(u, \mu(m \otimes v))) \bar{\beta}(y, f)=(\omega(n \otimes u),[n, m] v)(y, f), \quad(y, f) \in Y \oplus \operatorname{Hom}_{A}(N, X)
$$

But

$$
\beta((y, f) \otimes n)=(y[n, \cdot], f(n))
$$

so

$$
\begin{aligned}
\delta(n \otimes(u, \mu(m \otimes v))) \bar{\beta}(y, f) & =(u, \mu(m \otimes v)) \bar{\beta}(y, f)(n) \\
& =(u, \mu(m \otimes v)(f(n), y[n, \cdot]) \\
& =(u(f(n)), v(y[n, m])) \\
& =(u(f(n)),[n, m] v(y)) .
\end{aligned}
$$

On the other hand,

$$
(\omega(n \otimes u),[n, m] v)(y, f)=(u(f(n)),[n, m] v(y))
$$

thus p is proved.
According to the symbols in Section 1, we have

$$
\Phi(A \times k)=R
$$

and

$$
\begin{aligned}
D \operatorname{Hom}_{R}\left((X, Y)_{\alpha, \beta}, R\right) & \cong D \operatorname{Hom}_{R}\left((X, Y)_{\alpha, \beta}, \Phi(A \times k)\right) \\
& =D \operatorname{Hom}_{A}(X, A) \times D \operatorname{Hom}_{k}(Y, k) \\
& \cong D \operatorname{Hom}_{A}(X, A) \times Y .
\end{aligned}
$$

The following theorem is a main result of this paper.
Theorem 3.1 A generalized matrix algebra R over a Frobenius algebra is also a Frobenius algebra.

Proof. We only need to check $\operatorname{Hom}_{k}\left({ }_{k} R, k\right) \cong{ }_{R} R_{k}$. By Lemma 3.3,

$$
D \Phi(A \times k) \cong\left(D A \oplus_{A} A, k \oplus_{k} A \otimes_{A} D A\right) \cong\left(A \oplus_{A} A_{k}, k \oplus_{k} A_{A}\right)={ }_{R} R_{k} .
$$

References

[1] Anderson F W, Fuller K R. Rings and Categories of Modules. New York: Springer-Verlag, 1992: 157-176.
[2] Golan J S. Torsion Theories. New York: Longman Scientific and Technical Harlow, 1986, 47-67.
[3] Haghany A, Varadarajan K. Study of formal triangular matrix rings. Comm. Algebra, 1999, 27(11): 5507-5525.
[4] Green E L. On the representation theory of rings in matrix form. Pacific J. Math., 1982, 100(1): 123-138.
[5] Huard F. One-point extensions of quasi-tilted algebras by projectives. Comm. Algebra, 2001, 29(7): 3055-3060.
[6] Muller M. Rings of quotients of generalized matrix rings. Comm. Algebra, 1987, 15(10): 19912015.
[7] Green E L, Psaroudakis C. On Artin algebras arising from Morita contexts. Algebr. Represent. Theory, 2014, 17(5): 1485-1525.
[8] Artenstein D, González A, Lanzilotta M. Constructing nearly Frobenius algebras. Algebr. Represent. Theory, 2015, 18(2): 339-367.
[9] Liu H X. Morita equivalence for semirings without identity. Ital. J. Pure Appl. Math., 2016, 36: 495-508.
[10] Tang G, Li C, Zhou Y. Study of Morita contexts. Comm. Algebra, 2014, 42(4): 1668-1681.
[11] Xu Q B, Zhang K S. The dual basis of some projective modules over formal matrix rings and its application (in Chinese). Adv. Math. (China), 2017, 46(4): 557-562.
[12] Wisbauer R. Foundations of Module and Ring Theory. London: Gordon and Breach Science Press, 1991: 405-463.

