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1 Introduction

Let Ωn be an n-simplex in the n-dimensional Euclidean space En with vertices A1, A2,

· · · , An+1. Denote by aij (i, j = 1, 2, · · · , n + 1) the edge lengths of Ωn (sometimes, we

can set a1, a2, · · · , a 1
2n(n+1) in some order). If all edge lengths are equal, the simplex

is said to be regular. Let Fi denote the (n − 1)-dimensional volume of the facet fi =

{A1, · · · , Ai−1, Ai+1, · · · , An+1} opposite to the vertex Pi (i = 1, 2, · · · , n+ 1). Setting

F =
n+1∑
i=1

Fi, hence F is the surface area of Ωn.

As a well known result, for a simple closed curve C (in the Euclidian plane) of length L

enclosing a domain of area A, then

L2 − 4πA ≥ 0, (1.1)

with equality holds if and only if the curve is a Euclidean circle. The quantity L2 − 4πA is

said to be the isoperimetric deficit of C (see [1]–[3]).
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As an extension, Bonnesen proved the following inequality (see [1]):

L2 − 4πA ≥ π2(R− r)2, (1.2)

where R is the circumradius and r is the inradius of the curve C. Note that if the right hand

side of (1.2) equals zero, then R = r. This means that C is a circle and L2 − 4πA = 0.

More generally, inequalities of the form

L2 − 4πA ≥ K (1.3)

are called Bonnesen-style isoperimetric inequalities if equality is only attained for the Eu-

clidean circle (see [1]). See references [4]–[9] for more details.

When the simple closed curve C is a triangle (in the Euclidean plane) of area S and with

side lengths a1, a2, a3, the following inequality is known:

P 2 ≥ 3
√
3S, (1.4)

where P =
1

2
(a1 + a2 + a3). Equality holds if and only if this triangle is regular.

Inequality (1.4) may be deemed isoperimetric inequality for triangles.

Veljan-Korchmaros inequality (see [10]) concerning the volume and the edge lengths of

Ωn states as follows: ∏
1≤i<j≤n+1

a
2

n+1

ij ≥
(
2nn!2

n+ 1

) 1
2

V (1.5)

with equality holds if and only if Ωn is regular.

By utilize the arithmetic-geometric mean inequality to (1.5), we have

L2(n+1) ≥ n2(n+1)(n+ 1)
(n+1)(2n−1)

n

2n+1
(n! · V )

2(n+1)
n (1.6)

with equality holds if and only if Ωn is regular.

The inequality (1.6) may be deemed isoperimetric inequality of an n-simplex. The deficit

value between the right-hand side and left-hand side of inequality (1.6) can be considered

to be the isopermetric deficit for Ωn:

∆1 = L2(n+1) − n2(n+1)(n+ 1)
(n+1)(2n−1)

n

2n+1
(n! · V )

2(n+1)
n . (1.7)

In addition, the volume V and the facet areas of the simplex Ωn satisfy the following

inequality:

(V )
2
n ≤ [(n− 1)!]

2
n−1

(n+ 1)
1
n

n
1

n−1

(
n+1∏
i=1

Fi

)2(n2−1)

(1.8)

with equality holds if and only if Ωn is regular (see [11]).

By applying the arithmetic-geometric mean inequality to (1.8), we have

F 2(n2−1) ≥
[
n · (n+ 1)

1
n

(n− 1)!2
(n! · V )

2(n−1)
n

]n2−1

(1.9)

with equality holds if and only if Ωn is regular.

The inequality (1.9) may be also called isoperimetric inequality for an n-simplex. The

deficit value between the right-hand side and left-hand side of inequality (1.9) can be re-

garded as the other isopermetric deficit for the n-simplex Ωn:

∆2 = F 2(n2−1) −
[
n · (n+ 1)

1
n

(n− 1)!2
(n! · V )

2(n−1)
n

]n2−1

.
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2 Main Results

Our main results are stated as follows.

Theorem 2.1 Let Ωn be an n-simplex. Then

∆1 ≥ n2n(n+ 1)2n+1

3× 2n+2
(n! · V )2

(
R−

√
n

(n+ 1)
n+1
2n

(n! · V )
1
n

)2

(2.1)

with equality holds if and only if Ωn is regular.

Theorem 2.2 Let Ωn be an n-simplex. Then

∆2 ≥ n3(n2−1)(n+ 1)n
2+n−1

3× n!2n
V 2(n2−n−1)

(
R−

√
n

(n+ 1)
n+1
2n

(n! · V )
1
n

)2

(2.2)

with equality holds if and only if Ωn is regular.

Corollary 2.1 Suppose that ABC is a triangle of area S with the side lengths a1, a2, a3.

Then

P 6 − 233
9
2S3 ≥ 324S2

(
R− 2

4
√
27

√
S

)2

(2.3)

with equality holds if and only if the triangle is regular, where P =
1

2
(a1 + a2 + a3).

Corollary 2.2 For a tetrahedron ABCD, we have

L8 − 2123
32
3 V

8
3 ≥ 37 × 211

(
R− 2

6
√
243

3
√
V

)2

, (2.4)

F 16 − 316

2
8
3

V
32
3 ≥ 317 × 220

(
R− 2

6
√
243

3
√
V

)2

, (2.5)

and the equalities are attained if and only if the tetrahedron is regular, where F is the surface

area of ABCD.

3 The Proofs of Theorems

To prove the above theorems, we need some lemmas.

Lemma 3.1 [11] For an n-simplex Ωn, we have∑
1≤i<j≤n+1

a2ij ≤ (n+ 1)2R2, (3.1)

 1
2n(n+1)∏

i=1

ai


4
n

≥ 2n+1n!2

n
V 2 ·R2, (3.2)

(
n+1∏
i=1

Fi

)n−1

≥ n
3n2−4

2

(n+ 1)
(n+1)(n−2)

2 n!n
V n2−n−1 ·R, (3.3)

and the equalities are attained if and only if Ωn is regular.
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Lemma 3.2 [12] Let Ωn be an n-simplex. Then

R2 ≥ n

(n+ 1)
n+1
n

(n! · V )
2
n +

1

2(n+ 1)2

1
2n(n+1)∑

i=1

(
ai −

√
2(n+ 1)

n
R

)2

, (3.4)

and the equality is attained if and only if Ωn is regular.

Lemma 3.3 Let Ωn be an n-simplex. Then

R2 ≥ n

(n+ 1)
n+1
n

(n! · V )
2
n +

1

(n+ 1)2

1
2n(n+1)∑

i=1

(
ai −

√
2

(n+ 1)
1
2n

(n! · V )
1
n

)2

, (3.5)

and the equality is attained if and only if Ωn is regular.

Proof. By suitable calculation, we get
1
2n(n+1)∑

i=1

(
ai −

√
2

(n+ 1)
1
2n

(n! · V )
1
n

)2

=

1
2n(n+1)∑

i=1

a2i +
2

(n+ 1)
1
n

(n! · V )
2
n · 1

2
n(n+ 1)− 2

√
2

(n+ 1)
1
2n

(n! · V )
1
n

1
2n(n+1)∑

i=1

ai. (3.6)

By (3.6), we have
1
2n(n+1)∑

i=1

a2i =
2
√
2

(n+ 1)
1
2n

(n! · V )
1
n

1
2n(n+1)∑

i=1

ai −
2

(n+ 1)
1
n

(n! · V )
2
n · 1

2
n(n+ 1)

+

1
2n(n+1)∑

i=1

(
ai −

√
2

(n+ 1)
1
2n

(n! · V )
1
n

)2

≥ n(n+ 1)
n−1
n (n! · V )

2
n +

1
2n(n+1)∑

i=1

(
ai −

√
2

(n+ 1)
1
2n

(n! · V )
1
n

)2

. (3.7)

From (3.1) and (3.7), we get (3.5).

Lemma 3.4 Let X, Y, Z be any real numbers. Then

(X − Y )2 ≤ 2[(X − Z)2 + (Y − Z)2]. (3.8)

Proof. By using the absolute value inequality and the arithmetic-geometric means inequal-

ity, we get

(X − Y )2 = |X − Y |2

≤ (|X − Z|+ |Y − Z|)2

= |X − Z|2 + |Y − Z|2 + 2|x− Z| · |Y − Z|

≤ 2[|X − Z|2 + |Y − Z|2]

= 2[(X − Z)2 + (Y − Z)2].
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The Proof of Theorem 2.1 By using the arithmetic-geometric means inequality, (3.2)

and (3.4), we find that

L2(n+1) =

n(n+1)
2∑

i=1

ai

2(n+1)

≥
(
n(n+ 1)

2

)2(n+1)
n(n+1)

2∏
i=1

ai


4
n

≥
(
n(n+ 1)

2

)2(n+1)
2n+1n!2

n
V 2 ·R2

≥
(
n(n+ 1)

2

)2(n+1)
2n+1n!2

n
V 2

·

 (n!)
2
nn

(n+ 1)
n+1
n

V
2
n +

1

2(n+ 1)2

n(n+1)
2∑

i=1

(
ai −

√
2(n+ 1)

n
R

)2


=
n2(n+1)(n+ 1)

(n+1)(2n−1)
n

2n+1
(n! · V )

2(n+1)
n

+
n2n+1(n+ 1)2n

2n+2
(n! · V )2

n(n+1)
2∑

i=1

(
ai −

√
2(n+ 1)

n
R

)2

. (3.9)

On the other hand, we have

L2(n+1) =

n(n+1)
2∑

i=1

ai

2(n+1)

≥
(
n(n+ 1)

2

)2(n+1)
n(n+1)

2∏
i=1

ai


4
n

≥
(
n(n+ 1)

2

)2(n+1)
2n+1n!2

n
V 2 ·R2

≥
(
n(n+ 1)

2

)2(n+1)
2n+1n!2

n
V 2

·

 (n!)
2
nn

(n+ 1)
n+1
n

V
2
n +

1

(n+ 1)2

1
2n(n+1)∑

i=1

(
ai −

√
2

(n+ 1)
1
2n

(n! · V )
1
n

)2


=
n2(n+1)(n+ 1)

(n+1)(2n−1)
n

2n+1
(n! · V )

2(n+1)
n

+
n2n+1(n+ 1)2n

2n+1
(n! · V )2

1
2n(n+1)∑

i=1

(
ai −

√
2

(n+ 1)
1
2n

(n! · V )
1
n

)2

. (3.10)

From (3.9) and (3.10), furthermore, applying (3.8), we obtain
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3∆1 ≥ n2n+1(n+ 1)2n

2n+1
(n! · V )2

·

n(n+1)
2∑

i=1

(ai −√2(n+ 1)

n
R

)2

+

(
ai −

√
2

(n+ 1)
1
2n

(n! · V )
1
n

)2


≥ n2n+1(n+ 1)2n

2n+1
(n! · V )2

n(n+1)
2∑

i=1

1

2

(√
2(n+ 1)

n
R−

√
2

(n+ 1)
1
2n

(n! · V )
1
n

)2

=
n2n(n+ 1)2n+1

2n+2
(n! · V )2

(
R−

√
n

(n+ 1)
n+1
2n

(n! · V )
1
n

)2

.

Thus equality (2.1) is valid. From Lemmas 3.1–3.4, it is easy to see that equality holds in

(2.1) if and only if Ωn is regular.

The Proof of Theorem 2.2 Similar to the proof of Theorem 2.1, by the arithmetic-

geometric mean inequality, the inequalities (3.3), (3.4) and (3.5), it follows that

F 2(n2−1) =

(
n+1∑
i=1

Fi

)2(n2−1)

≥ (n+ 1)2(n
2−1)

(
n+1∏
i=1

Fi

)2(n−1)

≥ (n+ 1)2(n
2−1)

[
n

3n2−4
2

(n+ 1)
(n+1)(n−2)

2 n!n

]2
V 2(n2−n−1) ·R2

≥

[
n · (n+ 1)

1
n

(n− 1)!2
(n! · V )

2(n−1)
n

]n2−1

+

[
n

3n2−4
2 (n+ 1)

n(n+1)
2

n!n

]2
V 2(n2−n−1)

× 1

2(n+ 1)2

n(n+1)
2∑

i=1

(
ai −

√
2(n+ 1)

n
R

)2

. (3.11)

On the other hand, we have

F 2(n2−1) =

(
n+1∑
i=1

Fi

)2(n2−1)

≥ (n+ 1)2(n
2−1)

(
n+1∏
i=1

Fi

)2(n−1)

≥ (n+ 1)2(n
2−1)

[
n

3n2−4
2

(n+ 1)
(n+1)(n−2)

2 n!n

]2
V 2(n2−n−1) ·R2

≥

[
n · (n+ 1)

1
n

(n− 1)!2
(n! · V )

2(n−1)
n

]n2−1

+

[
n

3n2−4
2 (n+ 1)

n(n+1)
2

n!n

]2
V 2(n2−n−1)

× 1

(n+ 1)2

1
2n(n+1)∑

i=1

(
ai −

√
2

(n+ 1)
1
2n

(n! · V )
1
n

)2

. (3.12)
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From (3.11) and (3.12), furthermore, applying (3.8), we obtain

3∆2 ≥

[
n

3n2−4
2 (n+ 1)

n(n+1)
2

n!n(n+ 1)

]2
V 2(n2−n−1)

·

n(n+1)
2∑

i=1

(ai −√2(n+ 1)

n
R

)2

+

(
ai −

√
2

(n+ 1)
1
2n

(n! · V )
1
n

)2


≥

[
n

3n2−4
2 (n+ 1)

n(n+1)
2

n!n(n+ 1)

]2
V 2(n2−n−1)

n(n+1)
2∑

i=1

1

2

(√
2(n+ 1)

n
R−

√
2

(n+ 1)
1
2n

(n! · V )
1
n

)2

=
n3(n2−1)(n+ 1)n

2+n−1

n!2n
V 2(n2−n−1)

(
R−

√
n

(n+ 1)
n+1
2n

(n! · V )
1
n

)2

.

Thus equality (2.2) is true. From Lemmas 3.1–3.4, it is easy to see that equality holds in

(2.2) if and only if Ωn is regular.
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