Bonnesen-style Isoperimetric Inequalities of an n-simplex

Wang Wen ${ }^{1,2}$, Chen Ya-Ping ${ }^{3}$ and Yang Shi-guo ${ }^{1}$
(1. School of Mathematics and Statistics, Hefei Normal University, Hefei, 230601)
(2. School of Mathematical Science, University of Science and Technology of China, Hefei, 230026)
(3. International Branch of Nan Men Primary School at Shangcheng, Hefei, 231600)
\section*{Communicated by Lei Feng-chun}

Abstract

In this paper, by the theory of geometric inequalities, some new Bonnesenstyle isoperimetric inequalities of n-dimensional simplex are proved. In several cases, these inequalities imply characterizations of regular simplex.

Key words: simplex, isopermetric deficit, Bonnesen-style isoperimetric inequality
2010 MR subject classification: 51K05, 52A38, 52A40
Document code: A
Article ID: 1674-5647(2017)01-0019-07
DOI: 10.13447/j.1674-5647.2017.01.03

1 Introduction

Let Ω_{n} be an n-simplex in the n-dimensional Euclidean space E^{n} with vertices A_{1}, A_{2}, \cdots, A_{n+1}. Denote by $a_{i j}(i, j=1,2, \cdots, n+1)$ the edge lengths of Ω_{n} (sometimes, we can set $a_{1}, a_{2}, \cdots, a_{\frac{1}{2} n(n+1)}$ in some order). If all edge lengths are equal, the simplex is said to be regular. Let F_{i} denote the $(n-1)$-dimensional volume of the facet $f_{i}=$ $\left\{A_{1}, \cdots, A_{i-1}, A_{i+1}, \cdots, A_{n+1}\right\}$ opposite to the vertex $P_{i}(i=1,2, \cdots, n+1)$. Setting $F=\sum_{i=1}^{n+1} F_{i}$, hence F is the surface area of Ω_{n}.

As a well known result, for a simple closed curve \mathcal{C} (in the Euclidian plane) of length L enclosing a domain of area A, then

$$
\begin{equation*}
L^{2}-4 \pi A \geq 0 \tag{1.1}
\end{equation*}
$$

with equality holds if and only if the curve is a Euclidean circle. The quantity $L^{2}-4 \pi A$ is said to be the isoperimetric deficit of \mathcal{C} (see [1]-[3]).

[^0]As an extension, Bonnesen proved the following inequality (see [1]):

$$
\begin{equation*}
L^{2}-4 \pi A \geq \pi^{2}(R-r)^{2}, \tag{1.2}
\end{equation*}
$$

where R is the circumradius and r is the inradius of the curve \mathcal{C}. Note that if the right hand side of (1.2) equals zero, then $R=r$. This means that \mathcal{C} is a circle and $L^{2}-4 \pi A=0$.

More generally, inequalities of the form

$$
\begin{equation*}
L^{2}-4 \pi A \geq K \tag{1.3}
\end{equation*}
$$

are called Bonnesen-style isoperimetric inequalities if equality is only attained for the Euclidean circle (see [1]). See references [4]-[9] for more details.

When the simple closed curve \mathcal{C} is a triangle (in the Euclidean plane) of area S and with side lengths a_{1}, a_{2}, a_{3}, the following inequality is known:

$$
\begin{equation*}
P^{2} \geq 3 \sqrt{3} S, \tag{1.4}
\end{equation*}
$$

where $P=\frac{1}{2}\left(a_{1}+a_{2}+a_{3}\right)$. Equality holds if and only if this triangle is regular.
Inequality (1.4) may be deemed isoperimetric inequality for triangles.
Veljan-Korchmaros inequality (see [10]) concerning the volume and the edge lengths of Ω_{n} states as follows:

$$
\begin{equation*}
\prod_{1 \leq i<j \leq n+1} a_{i j}^{\frac{2}{n+1}} \geq\left(\frac{2^{n} n!^{2}}{n+1}\right)^{\frac{1}{2}} V \tag{1.5}
\end{equation*}
$$

with equality holds if and only if Ω_{n} is regular.
By utilize the arithmetic-geometric mean inequality to (1.5), we have

$$
\begin{equation*}
L^{2(n+1)} \geq \frac{n^{2(n+1)}(n+1)^{\frac{(n+1)(2 n-1)}{n}}}{2^{n+1}}(n!\cdot V)^{\frac{2(n+1)}{n}} \tag{1.6}
\end{equation*}
$$

with equality holds if and only if Ω_{n} is regular.
The inequality (1.6) may be deemed isoperimetric inequality of an n-simplex. The deficit value between the right-hand side and left-hand side of inequality (1.6) can be considered to be the isopermetric deficit for Ω_{n} :

$$
\begin{equation*}
\Delta_{1}=L^{2(n+1)}-\frac{n^{2(n+1)}\left(n+1 \frac{(n+1)(2 n-1)}{n}\right.}{2^{n+1}}(n!\cdot V)^{\frac{2(n+1)}{n}} . \tag{1.7}
\end{equation*}
$$

In addition, the volume V and the facet areas of the simplex Ω_{n} satisfy the following inequality:

$$
\begin{equation*}
(V)^{\frac{2}{n}} \leq[(n-1)!]^{\frac{2}{n-1}} \frac{(n+1)^{\frac{1}{n}}}{n^{\frac{1}{n-1}}}\left(\prod_{i=1}^{n+1} F_{i}\right)^{2\left(n^{2}-1\right)} \tag{1.8}
\end{equation*}
$$

with equality holds if and only if Ω_{n} is regular (see [11]).
By applying the arithmetic-geometric mean inequality to (1.8), we have

$$
\begin{equation*}
F^{2\left(n^{2}-1\right)} \geq\left[\frac{n \cdot(n+1)^{\frac{1}{n}}}{(n-1)!^{2}}(n!\cdot V)^{\frac{2(n-1)}{n}}\right]^{n^{2}-1} \tag{1.9}
\end{equation*}
$$

with equality holds if and only if Ω_{n} is regular.
The inequality (1.9) may be also called isoperimetric inequality for an n-simplex. The deficit value between the right-hand side and left-hand side of inequality (1.9) can be regarded as the other isopermetric deficit for the n-simplex Ω_{n} :

$$
\Delta_{2}=F^{2\left(n^{2}-1\right)}-\left[\frac{n \cdot(n+1)^{\frac{1}{n}}}{(n-1)!^{2}}(n!\cdot V)^{\frac{2(n-1)}{n}}\right]^{n^{2}-1} .
$$

2 Main Results

Our main results are stated as follows.
Theorem 2.1 Let Ω_{n} be an n-simplex. Then

$$
\begin{equation*}
\Delta_{1} \geq \frac{n^{2 n}(n+1)^{2 n+1}}{3 \times 2^{n+2}}(n!\cdot V)^{2}\left(R-\frac{\sqrt{n}}{(n+1)^{\frac{n+1}{2 n}}}(n!\cdot V)^{\frac{1}{n}}\right)^{2} \tag{2.1}
\end{equation*}
$$

with equality holds if and only if Ω_{n} is regular.
Theorem 2.2 Let Ω_{n} be an n-simplex. Then

$$
\begin{equation*}
\Delta_{2} \geq \frac{n^{3\left(n^{2}-1\right)}(n+1)^{n^{2}+n-1}}{3 \times n!^{2 n}} V^{2\left(n^{2}-n-1\right)}\left(R-\frac{\sqrt{n}}{(n+1)^{\frac{n+1}{2 n}}}(n!\cdot V)^{\frac{1}{n}}\right)^{2} \tag{2.2}
\end{equation*}
$$

with equality holds if and only if Ω_{n} is regular.
Corollary 2.1 Suppose that $A B C$ is a triangle of area S with the side lengths a_{1}, a_{2}, a_{3}. Then

$$
\begin{equation*}
P^{6}-2^{3} 3^{\frac{9}{2}} S^{3} \geq 324 S^{2}\left(R-\frac{2}{\sqrt[4]{27}} \sqrt{S}\right)^{2} \tag{2.3}
\end{equation*}
$$

with equality holds if and only if the triangle is regular, where $P=\frac{1}{2}\left(a_{1}+a_{2}+a_{3}\right)$.
Corollary 2.2 For a tetrahedron $A B C D$, we have

$$
\begin{align*}
& L^{8}-2^{12} 3^{\frac{32}{3}} V^{\frac{8}{3}} \geq 3^{7} \times 2^{11}\left(R-\frac{2}{\sqrt[6]{243}} \sqrt[3]{V}\right)^{2} \tag{2.4}\\
& F^{16}-\frac{3^{16}}{2^{\frac{8}{3}}} V^{\frac{32}{3}} \geq 3^{17} \times 2^{20}\left(R-\frac{2}{\sqrt[6]{243}} \sqrt[3]{V}\right)^{2} \tag{2.5}
\end{align*}
$$

and the equalities are attained if and only if the tetrahedron is regular, where F is the surface area of $A B C D$.

3 The Proofs of Theorems

To prove the above theorems, we need some lemmas.
Lemma 3.1 ${ }^{[11]}$ For an n-simplex Ω_{n}, we have

$$
\begin{align*}
& \sum_{1 \leq i<j \leq n+1} a_{i j}^{2} \leq(n+1)^{2} R^{2}, \tag{3.1}\\
&\left(\prod_{i=1}^{\frac{1}{2} n(n+1)} a_{i}\right)^{\frac{4}{n}} \geq \frac{2^{n+1} n!^{2}}{n} V^{2} \cdot R^{2}, \tag{3.2}\\
&\left(\prod_{i=1}^{n+1} F_{i}\right)^{n-1} \geq \frac{n^{\frac{3 n^{2}-4}{2}}}{(n+1)^{\frac{(n+1)(n-2)}{2}} n!^{n}} V^{n^{2}-n-1} \cdot R, \tag{3.3}
\end{align*}
$$

and the equalities are attained if and only if Ω_{n} is regular.

Lemma 3.2 ${ }^{[12]} \quad$ Let Ω_{n} be an n-simplex. Then

$$
\begin{equation*}
R^{2} \geq \frac{n}{(n+1)^{\frac{n+1}{n}}}(n!\cdot V)^{\frac{2}{n}}+\frac{1}{2(n+1)^{2}} \sum_{i=1}^{\frac{1}{2} n(n+1)}\left(a_{i}-\sqrt{\frac{2(n+1)}{n}} R\right)^{2} \tag{3.4}
\end{equation*}
$$

and the equality is attained if and only if Ω_{n} is regular.

Lemma 3.3 Let Ω_{n} be an n-simplex. Then

$$
\begin{equation*}
R^{2} \geq \frac{n}{(n+1)^{\frac{n+1}{n}}}(n!\cdot V)^{\frac{2}{n}}+\frac{1}{(n+1)^{2}} \sum_{i=1}^{\frac{1}{2} n(n+1)}\left(a_{i}-\frac{\sqrt{2}}{(n+1)^{\frac{1}{2 n}}}(n!\cdot V)^{\frac{1}{n}}\right)^{2} \tag{3.5}
\end{equation*}
$$

and the equality is attained if and only if Ω_{n} is regular.

Proof. By suitable calculation, we get

$$
\begin{align*}
& \sum_{i=1}^{\frac{1}{2} n(n+1)}\left(a_{i}-\frac{\sqrt{2}}{(n+1)^{\frac{1}{2 n}}}(n!\cdot V)^{\frac{1}{n}}\right)^{2} \\
= & \sum_{i=1}^{\frac{1}{2} n(n+1)} a_{i}^{2}+\frac{2}{(n+1)^{\frac{1}{n}}}(n!\cdot V)^{\frac{2}{n}} \cdot \frac{1}{2} n(n+1)-\frac{2 \sqrt{2}}{(n+1)^{\frac{1}{2 n}}}(n!\cdot V)^{\frac{1}{n}} \sum_{i=1}^{\frac{1}{2} n(n+1)} a_{i} \tag{3.6}
\end{align*}
$$

By (3.6), we have

$$
\begin{align*}
\sum_{i=1}^{\frac{1}{2} n(n+1)} a_{i}^{2}= & \frac{2 \sqrt{2}}{(n+1)^{\frac{1}{2 n}}}(n!\cdot V)^{\frac{1}{n}} \sum_{i=1}^{\frac{1}{2} n(n+1)} a_{i}-\frac{2}{(n+1)^{\frac{1}{n}}}(n!\cdot V)^{\frac{2}{n}} \cdot \frac{1}{2} n(n+1) \\
& +\sum_{i=1}^{\frac{1}{2} n(n+1)}\left(a_{i}-\frac{\sqrt{2}}{(n+1)^{\frac{1}{2 n}}}(n!\cdot V)^{\frac{1}{n}}\right)^{2} \\
\geq & n(n+1)^{\frac{n-1}{n}}(n!\cdot V)^{\frac{2}{n}}+\sum_{i=1}^{\frac{1}{2} n(n+1)}\left(a_{i}-\frac{\sqrt{2}}{(n+1)^{\frac{1}{2 n}}}(n!\cdot V)^{\frac{1}{n}}\right)^{2} \tag{3.7}
\end{align*}
$$

From (3.1) and (3.7), we get (3.5).

Lemma 3.4 Let X, Y, Z be any real numbers. Then

$$
\begin{equation*}
(X-Y)^{2} \leq 2\left[(X-Z)^{2}+(Y-Z)^{2}\right] \tag{3.8}
\end{equation*}
$$

Proof. By using the absolute value inequality and the arithmetic-geometric means inequality, we get

$$
\begin{aligned}
(X-Y)^{2} & =|X-Y|^{2} \\
& \leq(|X-Z|+|Y-Z|)^{2} \\
& =|X-Z|^{2}+|Y-Z|^{2}+2|x-Z| \cdot|Y-Z| \\
& \leq 2\left[|X-Z|^{2}+|Y-Z|^{2}\right] \\
& =2\left[(X-Z)^{2}+(Y-Z)^{2}\right]
\end{aligned}
$$

The Proof of Theorem 2.1 By using the arithmetic-geometric means inequality, (3.2) and (3.4), we find that

$$
\begin{align*}
L^{2(n+1)}= & \left(\sum_{i=1}^{\frac{n(n+1)}{2}} a_{i}\right)^{2(n+1)} \\
\geq & \left(\frac{n(n+1)}{2}\right)^{2(n+1)}\left(\prod_{i=1}^{\frac{n(n+1)}{2}} a_{i}\right)^{\frac{4}{n}} \\
\geq & \left(\frac{n(n+1)}{2}\right)^{2(n+1)} \frac{2^{n+1} n!^{2}}{n} V^{2} \cdot R^{2} \\
\geq & \left(\frac{n(n+1)}{2}\right)^{2(n+1)} \frac{2^{n+1} n!^{2}}{n} V^{2} \\
& \cdot\left\{\frac{(n!)^{\frac{2}{n}} n}{(n+1)^{\frac{n+1}{n}}} V^{\frac{2}{n}}+\frac{1}{2(n+1)^{2}} \frac{\sum_{i=1}^{\frac{n(n+1)}{2}}}{\sum^{2}}\left(a_{i}-\sqrt{\frac{2(n+1)}{n}} R\right)^{2}\right\} \\
= & \frac{n^{2(n+1)}(n+1)^{\frac{(n+1)(2 n-1)}{n}}}{2^{n+1}}(n!\cdot V)^{\frac{2(n+1)}{n}} \\
& +\frac{n^{2 n+1}(n+1)^{2 n}}{2^{n+2}}(n!\cdot V)^{2} \sum_{i=1}^{\frac{n(n+1)}{2}}\left(a_{i}-\sqrt{\frac{2(n+1)}{n}} R\right)^{2} . \tag{3.9}
\end{align*}
$$

On the other hand, we have

$$
\begin{align*}
L^{2(n+1)}= & \left(\frac{\sum_{i=1}^{\frac{n(n+1)}{2}} a_{i}}{)^{2(n+1)}}\right. \\
\geq & \left(\frac{n(n+1)}{2}\right)^{2(n+1)}\left(\prod_{i=1}^{\frac{n(n+1)}{2}} a_{i}\right)^{\frac{4}{n}} \\
\geq & \left(\frac{n(n+1)}{2}\right)^{2(n+1)} \frac{2^{n+1} n!^{2}}{n} V^{2} \cdot R^{2} \\
\geq & \left(\frac{n(n+1)}{2}\right)^{2(n+1)} \frac{2^{n+1} n!^{2}}{n} V^{2} \\
& \cdot\left\{\frac{(n!)^{\frac{2}{n}} n}{(n+1)^{\frac{n+1}{n}}} V^{\frac{2}{n}}+\frac{1}{(n+1)^{2}} \sum_{i=1}^{\frac{1}{2} n(n+1)}\left(a_{i}-\frac{\sqrt{2}}{(n+1)^{\frac{1}{2 n}}}(n!\cdot V)^{\frac{1}{n}}\right)^{2}\right\} \\
= & \frac{n^{2(n+1)}(n+1)^{\frac{(n+1)(2 n-1)}{n}}}{2^{n+1}}(n!\cdot V)^{\frac{2(n+1)}{n}} \\
& +\frac{n^{2 n+1}(n+1)^{2 n}}{2^{n+1}}(n!\cdot V)^{2} \sum_{i=1}^{\frac{1}{2} n(n+1)}\left(a_{i}-\frac{\sqrt{2}}{(n+1)^{\frac{1}{2 n}}}(n!\cdot V)^{\frac{1}{n}}\right)^{2} . \tag{3.10}
\end{align*}
$$

From (3.9) and (3.10), furthermore, applying (3.8), we obtain

$$
\begin{aligned}
3 \Delta_{1} \geq & \frac{n^{2 n+1}(n+1)^{2 n}}{2^{n+1}}(n!\cdot V)^{2} \\
& \cdot \sum_{i=1}^{\frac{n(n+1)}{2}}\left[\left(a_{i}-\sqrt{\frac{2(n+1)}{n}} R\right)^{2}+\left(a_{i}-\frac{\sqrt{2}}{(n+1)^{\frac{1}{2 n}}}(n!\cdot V)^{\frac{1}{n}}\right)^{2}\right] \\
\geq & \frac{n^{2 n+1}(n+1)^{2 n}}{2^{n+1}}(n!\cdot V)^{2} \sum_{i=1}^{\frac{n(n+1)}{2}} \frac{1}{2}\left(\sqrt{\frac{2(n+1)}{n}} R-\frac{\sqrt{2}}{(n+1)^{\frac{1}{2 n}}}(n!\cdot V)^{\frac{1}{n}}\right)^{2} \\
= & \frac{n^{2 n}(n+1)^{2 n+1}}{2^{n+2}}(n!\cdot V)^{2}\left(R-\frac{\sqrt{n}}{(n+1)^{\frac{n+1}{2 n}}}(n!\cdot V)^{\frac{1}{n}}\right)^{2} .
\end{aligned}
$$

Thus equality (2.1) is valid. From Lemmas 3.1-3.4, it is easy to see that equality holds in (2.1) if and only if Ω_{n} is regular.

The Proof of Theorem 2.2 Similar to the proof of Theorem 2.1, by the arithmeticgeometric mean inequality, the inequalities (3.3), (3.4) and (3.5), it follows that

$$
\begin{align*}
F^{2\left(n^{2}-1\right)}= & \left(\sum_{i=1}^{n+1} F_{i}\right)^{2\left(n^{2}-1\right)} \\
\geq & (n+1)^{2\left(n^{2}-1\right)}\left(\prod_{i=1}^{n+1} F_{i}\right)^{2(n-1)} \\
\geq & (n+1)^{2\left(n^{2}-1\right)}\left[\frac{n^{\frac{3 n^{2}-4}{2}}}{(n+1)^{\frac{(n+1)(n-2)}{2}} n!^{n}}\right]^{2} V^{2\left(n^{2}-n-1\right)} \cdot R^{2} \\
\geq & {\left[\frac{n \cdot(n+1)^{\frac{1}{n}}}{(n-1)!^{2}}(n!\cdot V)^{\frac{2(n-1)}{n}}\right]^{n^{2}-1}+\left[\frac{n^{\frac{3 n^{2}-4}{2}}(n+1)^{\frac{n(n+1)}{2}}}{n!^{n}}\right]^{2} V^{2\left(n^{2}-n-1\right)} } \\
& \times \frac{1}{2(n+1)^{2}} \sum_{i=1}^{\frac{n(n+1)}{2}}\left(a_{i}-\sqrt{\frac{2(n+1)}{n}} R\right)^{2} . \tag{3.11}
\end{align*}
$$

On the other hand, we have

$$
\begin{align*}
F^{2\left(n^{2}-1\right)}= & \left(\sum_{i=1}^{n+1} F_{i}\right)^{2\left(n^{2}-1\right)} \\
\geq & (n+1)^{2\left(n^{2}-1\right)}\left(\prod_{i=1}^{n+1} F_{i}\right)^{2(n-1)} \\
\geq & (n+1)^{2\left(n^{2}-1\right)}\left[\frac{n^{\frac{3 n^{2}-4}{2}}}{(n+1)^{\frac{(n+1)(n-2)}{2}} n!^{n}}\right]^{2} V^{2\left(n^{2}-n-1\right)} \cdot R^{2} \\
\geq & {\left[\frac{n \cdot(n+1)^{\frac{1}{n}}}{(n-1)!^{2}}(n!\cdot V)^{\frac{2(n-1)}{n}}\right]^{n^{2}-1}+\left[\frac{n^{\frac{3 n^{2}-4}{2}}(n+1)^{\frac{n(n+1)}{2}}}{n!^{n}}\right]^{2} V^{2\left(n^{2}-n-1\right)} } \\
& \times \frac{1}{(n+1)^{2}} \sum_{i=1}^{\frac{1}{2} n(n+1)}\left(a_{i}-\frac{\sqrt{2}}{(n+1)^{\frac{1}{2 n}}}(n!\cdot V)^{\frac{1}{n}}\right)^{2} . \tag{3.12}
\end{align*}
$$

From (3.11) and (3.12), furthermore, applying (3.8), we obtain

$$
\begin{aligned}
3 \Delta_{2} \geq & {\left[\frac{n^{\frac{3 n^{2}-4}{2}}(n+1)^{\frac{n(n+1)}{2}}}{n!^{!}(n+1)}\right]^{2} V^{2\left(n^{2}-n-1\right)} } \\
& \cdot \sum_{i=1}^{\frac{n(n+1)}{2}}\left[\left(a_{i}-\sqrt{\frac{2(n+1)}{n}} R\right)^{2}+\left(a_{i}-\frac{\sqrt{2}}{(n+1)^{\frac{1}{2 n}}}(n!\cdot V)^{\frac{1}{n}}\right)^{2}\right] \\
\geq & {\left[\frac{n^{\frac{3 n^{2}-4}{2}}(n+1)^{\frac{n(n+1)}{2}}}{n!^{n}(n+1)}\right]^{2} V^{2\left(n^{2}-n-1\right)} \sum_{i=1}^{\frac{n(n+1)}{2}} \frac{1}{2}\left(\sqrt{\frac{2(n+1)}{n}} R-\frac{\sqrt{2}}{(n+1)^{\frac{1}{2 n}}}(n!\cdot V)^{\frac{1}{n}}\right)^{2} } \\
= & \frac{n^{3\left(n^{2}-1\right)}(n+1)^{n^{2}+n-1}}{n!^{2 n}} V^{2\left(n^{2}-n-1\right)}\left(R-\frac{\sqrt{n}}{(n+1)^{\frac{n+1}{2 n}}}(n!\cdot V)^{\frac{1}{n}}\right)^{2} .
\end{aligned}
$$

Thus equality (2.2) is true. From Lemmas 3.1-3.4, it is easy to see that equality holds in (2.2) if and only if Ω_{n} is regular.

References

[1] Osserman R. Bonnesen-style isoperimetric inequalities. Amer. Math. Monthly, 1979, 86: 1-29.
[2] Bokowski J, Heil E. Integral representation of quermassintegrals and Bonnesen-style inequalities. Arch. Math. (Basel), 1986, 47(1): 79-89.
[3] Bonnesen T. Les Problèms des Isopérimètres et des Isépiphanes. Paris: Gauthier-Villars, 1929.
[4] Bonnesen T, Fenchel W. Theorie der konvexen Körper (German). Berichtigter Reprint. BerlinNew York: Springer-Verlag, 1974.
[5] Zhou J Z, Xia Y W, Zeng C N. Some new Bonnesen-style inequalities. J. Korean Math. Soc., 2011, 48(2): 421-430.
[6] Zhang G Y, Zhou J Z. Containment Measures in Integral Geometry. Integral Geometry and Convexity. Hackensack, NJ,: World Sci. Publ., 2006, 153-168.
[7] Martini H, Mustafaev Z. Extensions of a Bonnesen-style inequality to Minkowski spaces. Math. Inequal. Appl., 2008, 11: 739-748.
[8] Cianchi A, Pratelli A. On the isoperimetric deficit in Gauss space. Amer. J. Math., 2011, 133(1): 131-186.
[9] Figalli A, Maggi F, Pratelli A. A mass transportation approach to quantitative isoperimetric inequalities. Invent. Math., 2010, 182(1): 167-211.
[10] Zun S. Geometric Inequalities in China (in Chinese). Nanjing: Jiangsu Education Press, 1996.
[11] Mitrinović D S, Pečarić J E, Volenec V. Recent Advances in Geometric Inequalities. Mathematics and its Applications (East European Series), vol. 28. Dordrecht: Kluwer Academic Publishers Group, 1989.
[12] Wang W, Yang S G. On Bonnesen-style isoperimetric inequalities for n-simplices. Math. Inequal. Appl., 2015, 18(1): 133-144.

[^0]: Received date: April 29, 2015
 Foundation item: The Doctoral Programs Foundation (20113401110009) of Education Ministry of China, Universities Natural Science Foundation (KJ2016A310) of Anhui Province.

 E-mail address: wenwang1985@163.com (Wang W).

