Trees with Given Diameter Minimizing the Augmented Zagreb Index and Maximizing the ABC Index

Huang Yu-fei
(Department of Mathematics Teaching, Guangzhou Civil Aviation College, Guangzhou, 510403)
Communicated by Du Xian-kun

Abstract

Let G be a simple connected graph with vertex set $V(G)$ and edge set $E(G)$. The augmented Zagreb index of a graph G is defined as

$$
A Z I(G)=\sum_{u v \in E(G)}\left(\frac{d_{u} d_{v}}{d_{u}+d_{v}-2}\right)^{3}
$$

and the atom-bond connectivity index (ABC index for short) of a graph G is defined as

$$
A B C(G)=\sum_{u v \in E(G)} \sqrt{\frac{d_{u}+d_{v}-2}{d_{u} d_{v}}},
$$

where d_{u} and d_{v} denote the degree of vertices u and v in G, respectively. In this paper, trees with given diameter minimizing the augmented Zagreb index and maximizing the ABC index are determined, respectively.
Key words: tree, augmented Zagreb index, ABC index, diameter
2010 MR subject classification: 05C35, 05C50
Document code: A
Article ID: 1674-5647(2017)01-0008-11
DOI: 10.13447/j.1674-5647.2017.01.02

1 Introduction

Let G be a simple connected graph with vertex set $V(G)$ and edge set $E(G)$. Let N_{u} denote the set of all neighbors of a vertex $u \in V(G)$, and $d_{u}=\left|N_{u}\right|$ denote the degree of u in G. A connected graph G is called a tree if $|E(G)|=|V(G)|-1$. The length of a shortest path connecting the vertices u and v in G is called the distance between u and v, and denoted by $d(u, v)$. The diameter d of G is the maximum distance $d(u, v)$ over all pairs of vertices u and v in G.

Molecular descriptors have found wide applications in QSPR/QSAR studies (see [1]). Among them, topological indices have a prominent place. Augmented Zagreb index, which was introduced by Furtula et al. ${ }^{[2]}$, is a valuable predictive index in the study of the heat of formation in octanes and heptanes. Another topological index, Atom-bond connectivity index (for short, ABC index), proposed by Estrada et al. ${ }^{[3]}$, displays an excellent correlation with the heat of formation of alkanes (see [3]) and strain energy of cycloalkanes (see [4]).

The augmented Zagreb index of a graph G is defined as:

$$
A Z I(G)=\sum_{u v \in E(G)}\left(\frac{d_{u} d_{v}}{d_{u}+d_{v}-2}\right)^{3}
$$

and the ABC index of a graph G is defined as:

$$
A B C(G)=\sum_{u v \in E(G)} \sqrt{\frac{d_{u}+d_{v}-2}{d_{u} d_{v}}} .
$$

Some interesting problems such as mathematical-chemical properties, bounds and extremal graphs on the augmented Zagreb index and the ABC index for various classes of connected graphs have been investigated in [2], [5] and [6]-[10], respectively. Besides, in the literature, there are many papers concerning the problems related to the diameter (see, e.g., [11][13]). In this paper, trees with given diameter minimizing the augmented Zagreb index and maximizing the ABC index are determined, respectively.

2 Trees with Given Diameter Minimizing the Augmented Zagreb Index

A vertex u is called a pendent vertex if $d_{u}=1$. Let S_{n} and P_{n} denote the star and path of order n, respectively. Let $S_{l}^{n_{1}, n_{2}}$ be the tree of order $n(\geq 3)$ obtained from the path P_{l} by attaching n_{1} and n_{2} pendent vertices to the end-vertices of P_{l} respectively, where l, n_{1}, n_{2} are positive integers, $n_{1} \leq n_{2}$ and $l+n_{1}+n_{2}=n$. Especially, $S_{1}^{n_{3}, n-n_{3}-1} \cong S_{n}$ and $S_{n-2}^{1,1} \cong P_{n}$, where $1 \leq n_{3} \leq\left\lfloor\frac{n-1}{2}\right\rfloor$.

Let $\mathcal{T}_{n}^{(d)}$ denote the set of trees with n vertices and diameter d, where $2 \leq d \leq n-1$. Obviously, $\mathcal{T}_{n}^{(2)}=\left\{S_{n}\right\}$ and $\mathcal{T}_{n}^{(n-1)}=\left\{P_{n}\right\}$. By simply calculating, we have

$$
A Z I\left(S_{n}\right)=\frac{(n-1)^{4}}{(n-2)^{3}}, \quad A Z I\left(P_{n}\right)=8(n-1)
$$

2.1 The Augmented Zagreb Index of a Tree with Diameter 3

It can be seen that $\mathcal{T}_{n}^{(3)}=\left\{S_{2}^{p-1, n-p-1} \left\lvert\, 2 \leq p \leq\left\lfloor\frac{n}{2}\right\rfloor\right.\right\}$. In the following, we give an order of the augmented Zagreb index of a tree with diameter 3.

Lemma 2.1 Let

$$
g(x)=\frac{x^{2}}{(x-1)^{2}}, \quad k(x)=\frac{-2 x^{2}}{(x-1)^{3}}, \quad m(x)=\frac{-3}{x(x-1)}+\frac{-2 x+1}{x^{2}(x-1)^{2}} .
$$

Then $g(x)$ is decreasing for $x \geq 2$, and $k(x), m(x)$ are both increasing for $x \geq 2$.

Proof. By directly computing, we have

$$
\begin{aligned}
& g^{\prime}(x)=\frac{-2 x}{(x-1)^{3}}<0, \\
& k^{\prime}(x)=\frac{2 x^{2}+4 x}{(x-1)^{4}}>0, \\
& m^{\prime}(x)=\frac{3(2 x-1)}{x^{2}(x-1)^{2}}+\frac{2\left(3 x^{2}-3 x+1\right)}{x^{3}(x-1)^{3}}>0
\end{aligned}
$$

for $x \geq 2$. The proof is finished.

Lemma 2.2 Let $n \geq 5$ and

$$
f(p)=\frac{p^{3}(n-p)^{3}}{(n-2)^{3}}+\frac{p^{3}}{(p-1)^{2}}+\frac{(n-p)^{3}}{(n-p-1)^{2}} .
$$

Then $f(p)$ is increasing for $2 \leq p \leq\left\lfloor\frac{n}{2}\right\rfloor$.
Proof. Let $J(p)=\frac{p^{3}(n-p)^{3}}{(n-2)^{3}}$. Then

$$
f(p)=J(p)+\frac{p^{3}}{(p-1)^{2}}+\frac{(n-p)^{3}}{(n-p-1)^{2}} .
$$

Now we consider the following two cases.
Case 1. $2 \leq p \leq \frac{2}{5+\sqrt{5}} n$.
In this time, we have

$$
n \geq \frac{5+\sqrt{5}}{2} p \geq 8
$$

Hence

$$
\begin{equation*}
J^{\prime}(p)=\frac{3 p^{2}(n-p)^{2}(n-2 p)}{(n-2)^{3}}>0 \tag{2.1}
\end{equation*}
$$

and

$$
\begin{aligned}
f^{\prime}(p) & =J^{\prime}(p)+\frac{p^{2}(p-3)}{(p-1)^{3}}+\frac{(n-p)^{2}(-n+p+3)}{(n-p-1)^{3}} \\
& =J^{\prime}(p)+\frac{p^{2}}{(p-1)^{2}}+\frac{-2 p^{2}}{(p-1)^{3}}+\frac{-(n-p)^{2}}{(n-p-1)^{2}}+\frac{2(n-p)^{2}}{(n-p-1)^{3}} \\
& =J^{\prime}(p)+g(p)-g(n-p)+k(p)+\frac{2(n-p)^{2}}{(n-p-1)^{3}},
\end{aligned}
$$

where the functions $g(x)$ and $k(x)$ are defined in Lemma 2.1. Since $n-p \geq p \geq 2$, by Lemma 2.1, we have

$$
g(p)-g(n-p) \geq 0, \quad k(p) \geq k(2)=-8 .
$$

Note that $\frac{2(n-p)^{2}}{(n-p-1)^{3}}>0$, we have

$$
f^{\prime}(p) \geq J^{\prime}(p)-8+\frac{2(n-p)^{2}}{(n-p-1)^{3}}>J^{\prime}(p)-8 .
$$

Now we just need to show that $J^{\prime}(p) \geq 8$. By directly computing, we have

$$
\begin{align*}
J^{\prime \prime}(p) & =\frac{6 p(n-p)\left(5 p^{2}-5 p n+n^{2}\right)}{(n-2)^{3}} \\
& =\frac{30 p(n-p)}{(n-2)^{3}}\left(p-\frac{2}{5+\sqrt{5}} n\right)\left(p-\frac{2}{5-\sqrt{5}} n\right) .^{n} . \tag{2.2}
\end{align*}
$$

Since $p \leq\left\lfloor\frac{n}{2}\right\rfloor<\frac{2}{5-\sqrt{5}} n \approx 0.724 n$ and $p \leq \frac{2}{5+\sqrt{5}} n$, then $J^{\prime \prime}(p)>0$. Therefore,

$$
J^{\prime}(p) \geq J^{\prime}(2)=\frac{12(n-4)}{n-2}=12-\frac{24}{n-2} \geq 8
$$

since $n \geq 8$. Thus, $f^{\prime}(p)>0$ for $2 \leq p \leq \frac{2}{5+\sqrt{5}} n$.
Case 2. $\frac{2}{5+\sqrt{5}} n<p \leq\left\lfloor\frac{n}{2}\right\rfloor$.
Note that

$$
\begin{aligned}
f(p) & =J(p)+\frac{p^{3}}{(p-1)^{2}}+\frac{(n-p)^{3}}{(n-p-1)^{2}} \\
& =J(p)+p+2+\frac{3}{p-1}+\frac{1}{(p-1)^{2}}+(n-p)+2+\frac{3}{n-p-1}+\frac{1}{(n-p-1)^{2}} \\
& =J(p)+n+4+\frac{3}{p-1}+\frac{1}{(p-1)^{2}}+\frac{3}{n-p-1}+\frac{1}{(n-p-1)^{2}} .
\end{aligned}
$$

It is easy to get that for $\frac{2}{5+\sqrt{5}} n<p<p+1 \leq\left\lfloor\frac{n}{2}\right\rfloor$,

$$
f(p+1)=J(p+1)+n+4+\frac{3}{p}+\frac{1}{p^{2}}+\frac{3}{n-p-2}+\frac{1}{(n-p-2)^{2}} .
$$

Then from the fact that

$$
\left(\frac{3}{n-p-2}-\frac{3}{n-p-1}\right)+\left[\frac{1}{(n-p-2)^{2}}-\frac{1}{(n-p-1)^{2}}\right]>0
$$

we obtain

$$
\begin{aligned}
f(p+1)-f(p)= & J(p+1)-J(p)+\left(\frac{3}{p}-\frac{3}{p-1}\right)+\left[\frac{1}{p^{2}}-\frac{1}{(p-1)^{2}}\right] \\
& +\left(\frac{3}{n-p-2}-\frac{3}{n-p-1}\right)+\left[\frac{1}{(n-p-2)^{2}}-\frac{1}{(n-p-1)^{2}}\right] \\
& >J(p+1)-J(p)+\frac{-3}{p(p-1)}+\frac{-2 p+1}{p^{2}(p-1)^{2}} \\
= & J(p+1)-J(p)+m(p),
\end{aligned}
$$

where the function $m(x)$ is defined in Lemma 2.1. By Lemma 2.1, we get

$$
m(p) \geq m(2)=-\frac{9}{4} .
$$

To prove $f(p+1)>f(p)$, it suffice to prove $J(p+1)-J(p) \geq \frac{9}{4}$ for $\frac{2}{5+\sqrt{5}} n<p<$ $p+1 \leq\left\lfloor\frac{n}{2}\right\rfloor$. From (2.2), when $p>\frac{2}{5+\sqrt{5}} n$, we have

$$
J^{\prime \prime}(p)<0 .
$$

Combining this with inequality (2.1), namely, $J(p)$ is increasing for p. It implies that $J(p+1)-J(p)$ is decreasing for p. Therefore,

$$
J(p+1)-J(p) \geq J\left(\left\lfloor\frac{n}{2}\right\rfloor\right)-J\left(\left\lfloor\frac{n}{2}\right\rfloor-1\right)
$$

If n is even, then $n \geq 6$ and

$$
\begin{aligned}
J\left(\left\lfloor\frac{n}{2}\right\rfloor\right)-J\left(\left\lfloor\frac{n}{2}\right\rfloor-1\right) & =J\left(\frac{n}{2}\right)-J\left(\frac{n}{2}-1\right) \\
& =\frac{\left(\frac{n}{2}\right)^{3}\left(\frac{n}{2}\right)^{3}}{(n-2)^{3}}-\frac{\left(\frac{n}{2}-1\right)^{3}\left(\frac{n}{2}+1\right)^{3}}{(n-2)^{3}} \\
& =\frac{3}{16} n+\frac{9}{8}+\frac{15}{4(n-2)}+\frac{3}{(n-2)^{2}}+\frac{1}{(n-2)^{3}} \\
& >\frac{3}{16} n+\frac{9}{8} \\
& \geq \frac{9}{4} .
\end{aligned}
$$

If n is odd, then $n \geq 5$ and

$$
\begin{aligned}
J\left(\left\lfloor\frac{n}{2}\right\rfloor\right)-J\left(\left\lfloor\frac{n}{2}\right\rfloor-1\right) & =J\left(\frac{n-1}{2}\right)-J\left(\frac{n-1}{2}-1\right) \\
& =\frac{\left(\frac{n-1}{2}\right)^{3}\left(\frac{n+1}{2}\right)^{3}}{(n-2)^{3}}-\frac{\left(\frac{n-3}{2}\right)^{3}\left(\frac{n+3}{2}\right)^{3}}{(n-2)^{3}} \\
& =\frac{3 n^{4}-30 n^{2}+91}{8(n-2)^{3}} \\
& =\frac{9}{4}+\frac{3}{8} n+\frac{21}{4(n-2)}-\frac{3}{(n-2)^{2}}+\frac{19}{8(n-2)^{3}} \\
& >\frac{9}{4} .
\end{aligned}
$$

It leads to $f(p+1)>f(p)$. Hence $f(p)$ is increasing for $\frac{2}{5+\sqrt{5}} n<p \leq\left\lfloor\frac{n}{2}\right\rfloor$.

Theorem 2.1 Let $\mathcal{T}_{n}^{(3)}=\left\{S_{2}^{p-1, n-p-1} \left\lvert\, 2 \leq p \leq\left\lfloor\frac{n}{2}\right\rfloor\right.\right\}$. Then for $n \geq 4$,

$$
A Z I\left(S_{2}^{\left\lfloor\frac{n-2}{2}\right\rfloor,\left\lceil\frac{n-2}{2}\right\rceil}\right)>\cdots>A Z I\left(S_{2}^{2, n-4}\right)>A Z I\left(S_{2}^{1, n-3}\right)=16+\frac{(n-2)^{3}}{(n-3)^{2}}
$$

Proof. Note that $\mathcal{T}_{4}^{(3)}=\left\{S_{2}^{1,1}\right\}$, and for $n \geq 5$,

$$
A Z I\left(S_{2}^{p-1, n-p-1}\right)=\frac{p^{3}(n-p)^{3}}{(n-2)^{3}}+\frac{p^{3}}{(p-1)^{2}}+\frac{(n-p)^{3}}{(n-p-1)^{2}}
$$

Then by Lemma 2.2, we obtain the desired results.

2.2 Trees with Diameter $4 \leq d \leq n-1$ Minimizing the Augmented Zagreb Index

Let G be a simple connected graph. Let $x_{i j}$ be the number of edges in G connecting vertices of degrees i and j, and $Z_{i j}=\left(\frac{i j}{i+j-2}\right)^{3}$, where i, j are positive integers with $i+j \neq 2$. Clearly, $Z_{i j}=Z_{j i}$. Denote by Δ the maximum degree of G. The augmented Zagreb index
of G can be rewritten as

$$
A Z I(G)=\sum_{\substack{1 \leq \leq \leq j \leq \leq \\ i \\ i} j \neq 2} x_{i j} Z_{i j} .
$$

Lemma 2.3 ${ }^{[5]}$ (1) $Z_{1 j}$ is decreasing for $j \geq 2$;
(2) $Z_{2 j}=8$ for $j \geq 1$;
(3) If $i \geq 3$ is fixed, then $Z_{i j}$ is increasing for $j \geq 1$.

Let $T \in \mathcal{T}_{n}^{(d)}$ be a tree with a diameter-preserve path $P_{d+1}=v_{1} v_{2} \cdots v_{d+1}$, where $4 \leq d \leq n-1$. Clearly,

$$
d_{v_{1}}=d_{v_{d+1}}=1 .
$$

Let $V_{1}=V\left(P_{d+1}\right)$. For $i \in\{2,3, \cdots, d\}$, let

$$
V_{i}=\left\{v \in V(T) \mid d\left(v, v_{i}\right)<d\left(v, v_{j}\right), 2 \leq j \leq d, j \neq i\right\} \backslash\left\{v_{1}, v_{i}, v_{d+1}\right\} .
$$

Then $V(T)=\bigcup_{i=1}^{d} V_{i}$ and $V_{i} \cap V_{j}=\emptyset$ for any $1 \leq i<j \leq d$. Moreover, since P_{d+1} is a diameter-preserve path, all vertices in V_{2} and V_{d} are pendent vertices in T. Denote by $T\left[V^{*}\right]$ the subgraph of T induced by V^{*}, where $V^{*} \subseteq V(T)$. We construct a sequence of trees with diameter d recursively as follows: Let $T_{1} \cong T$. For $i=2,3, \cdots, d-2(4 \leq d \leq n-1)$, let T_{i} be the tree obtained from T_{i-1} by deleting the vertices in V_{i+1} and the edges incident with them, and attaching $\left|V_{i+1}\right|$ pendent vertices to the vertex v_{2} (see Figs. 2.1-2.4).

Fig. $2.2 T_{2}$

Fig. $2.4 T_{d-2}$

Lemma 2.4 $A Z I\left(T_{i}\right) \leq A Z I\left(T_{i-1}\right)$ with equality if and only if $V_{i+1}=\emptyset$, where $i=$ $2,3, \cdots, d-2$ and $4 \leq d \leq n-1$.

Proof. Clearly, $\operatorname{AZI}\left(T_{i}\right)=A Z I\left(T_{i-1}\right)$ if $V_{i+1}=\emptyset$. It suffice to show that $\operatorname{AZI}\left(T_{i}\right)<$ $A Z I\left(T_{i-1}\right)$ if $V_{i+1} \neq \emptyset$.

Case 1. $\quad i=2$.
Notice that $\left|E\left(T\left[V_{3} \cup\left\{v_{3}\right\}\right]\right)\right|=\left|V_{3}\right|$. By Lemma 2.3, for any $u v \in E\left(T\left[V_{3} \cup\left\{v_{3}\right\}\right]\right)$ (since $d_{u}+d_{v}>2$, without loss of generality, assume that $d_{v}>1$), we obtain

$$
Z_{d_{u}, d_{v}} \geq Z_{1, d_{v}} \geq Z_{1,\left|V_{3}\right|+2} \geq Z_{1,\left|V_{2}\right|+\left|V_{3}\right|+2}
$$

Since $V_{3} \neq \emptyset$, one has $d_{v_{3}}>2$. It follows from $d_{v_{2}}, d_{v_{4}} \geq 2$ and Lemma 2.3 that

$$
Z_{d_{v_{2}}, d_{v_{3}}} \geq Z_{2, d_{v_{3}}}=Z_{2,\left|V_{2}\right|+\left|V_{3}\right|+2}=8, \quad Z_{d_{v_{3}}, d_{v_{4}}} \geq Z_{2, d_{v_{4}}} .
$$

Therefore, bearing in mind that $V_{3} \neq \emptyset$,

$$
\begin{aligned}
& A Z I\left(T_{2}\right)-A Z I\left(T_{1}\right) \\
= & {\left[\left(\left|V_{2}\right|+1+\left|V_{3}\right|\right) Z_{1,\left|V_{2}\right|+\left|V_{3}\right|+2}+Z_{2,\left|V_{2}\right|+\left|V_{3}\right|+2}+Z_{2, d_{v_{4}}}\right] } \\
& -\left[\left(\left|V_{2}\right|+1\right) Z_{1,\left|V_{2}\right|+2}+\sum_{u v \in E\left(T\left[V_{3} \cup\left\{v_{3}\right\}\right]\right)} Z_{d_{u}, d_{v}}+Z_{d_{v_{2}}, d_{v_{3}}}+Z_{d_{v_{3}}, d_{v_{4}}}\right] \\
\leq & \left(\left|V_{2}\right|+1\right)\left(Z_{1,\left|V_{2}\right|+\left|V_{3}\right|+2}-Z_{1,\left|V_{2}\right|+2}\right) \\
< & 0 .
\end{aligned}
$$

Case 2. $3 \leq i \leq d-2$.
Clearly,

$$
\left|E\left(T\left[V_{i+1} \cup\left\{v_{i+1}\right\}\right]\right)\right|=\left|V_{i+1}\right| .
$$

For any $u v \in E\left(T\left[V_{i+1} \cup\left\{v_{i+1}\right\}\right]\right)$ (since $d_{u}+d_{v}>2$, without loss of generality, suppose $d_{v}>1$), by Lemma 2.3, we have

$$
Z_{d_{u}, d_{v}} \geq Z_{1, d_{v}} \geq Z_{1,\left|V_{i+1}\right|+2} \geq Z_{1, \sum_{t=2}^{i+1}\left|V_{t}\right|+2} .
$$

Besides, since $d_{v_{i+1}} \geq 2$ and $d_{v_{i+2}} \geq 2$, by Lemma 2.3, one has

$$
Z_{d_{v_{i+1}}, d_{v_{i}+2}} \geq Z_{2, d_{v_{i+2}}}
$$

Then

$$
\begin{aligned}
& A Z I\left(T_{i}\right)-A Z I\left(T_{i-1}\right) \\
= & {\left[\left(\sum_{t=2}^{i}\left|V_{t}\right|+1+\left|V_{i+1}\right|\right) Z_{1, \sum_{t=2}^{i+1}\left|V_{t}\right|+2}+Z_{2, d_{v_{i+2}}}\right] } \\
& -\left[\left(\sum_{t=2}^{i}\left|V_{t}\right|+1\right) Z_{1, \sum_{t=2}^{i}\left|V_{t}\right|+2}+\sum_{u v \in E\left(T\left[V_{i+1} \cup\left\{v_{i+1}\right\}\right]\right)} Z_{d_{u}, d_{v}}+Z_{d_{v_{i+1}}, d_{v_{i+2}}}\right] \\
\leq & \left(\sum_{t=2}^{i}\left|V_{t}\right|+1\right)\left(Z_{1, \sum_{t=2}^{i+1}\left|V_{t}\right|+2}-Z_{1, \sum_{t=2}^{i}\left|V_{t}\right|+2}\right) \\
< & 0
\end{aligned}
$$

and the last inequality holds since $V_{i+1} \neq \emptyset$.
Theorem 2.2 Let $T \in \mathcal{T}_{n}^{(d)}$, where $4 \leq d \leq n-1$. Then

$$
A Z I(T) \geq \frac{\left(\left\lfloor\frac{n-d+1}{2}\right\rfloor+1\right)^{3}}{\left\lfloor\frac{n-d+1}{2}\right\rfloor^{2}}+\frac{\left(\left\lceil\frac{n-d+1}{2}\right\rceil+1\right)^{3}}{\left\lceil\frac{n-d+1}{2}\right\rceil^{2}}+8(d-2)
$$

Proof. For $T \in \mathcal{T}_{n}^{(d)}(4 \leq d \leq n-1)$, by Lemma 2.4, we obtain

$$
A Z I(T)=A Z I\left(T_{1}\right) \geq \cdots \geq A Z I\left(T_{d-2}\right)
$$

with equality if and only if $T \cong T_{d-2}$. Actually,

$$
T_{d-2} \cong S_{d-1}^{\left|V_{d}\right|+1, n-\left|V_{d}\right|-d}
$$

where $0 \leq\left|V_{d}\right| \leq\left\lfloor\frac{n-d-1}{2}\right\rfloor$. Note that

$$
A Z I\left(S_{d-1}^{\left|V_{d}\right|+1, n-\left|V_{d}\right|-d}\right)=\frac{\left(\left|V_{d}\right|+2\right)^{3}}{\left(\left|V_{d}\right|+1\right)^{2}}+\frac{\left(n-\left|V_{d}\right|-d+1\right)^{3}}{\left(n-\left|V_{d}\right|-d\right)^{2}}+8(d-2)
$$

Let $t(x)=\frac{(x+1)^{3}}{x^{2}}$. Thus

$$
A Z I\left(S_{d-1}^{\left|V_{d}\right|+1, n-\left|V_{d}\right|-d}\right)=t\left(\left|V_{d}\right|+1\right)+t\left(n-\left|V_{d}\right|-d\right)+8(d-2)
$$

Since for $x \geq 2$,

$$
t^{\prime}(x)=\frac{(x+1)^{2}(x-2)}{x^{3}} \geq 0, \quad t^{\prime \prime}(x)=\frac{6(x+1)}{x^{4}}>0
$$

the function $t(x)$ is convex increasing for $x \geq 2$.
Besides, $t(1)=8>t(2)=\frac{27}{4}$, and it follows that

$$
t(1)+t(n-d)>t(2)+t(n-d-1) \geq \cdots \geq t\left(\left\lfloor\frac{n-d+1}{2}\right\rfloor\right)+t\left(\left\lceil\frac{n-d+1}{2}\right\rceil\right)
$$

It leads to

$$
\frac{\left(\left|V_{d}\right|+2\right)^{3}}{\left(\left|V_{d}\right|+1\right)^{2}}+\frac{\left(n-\left|V_{d}\right|-d+1\right)^{3}}{\left(n-\left|V_{d}\right|-d\right)^{2}} \geq \frac{\left(\left\lfloor\frac{n-d+1}{2}\right\rfloor+1\right)^{3}}{\left\lfloor\frac{n-d+1}{2}\right\rfloor^{2}}+\frac{\left(\left\lceil\frac{n-d+1}{2}\right\rceil+1\right)^{3}}{\left\lceil\frac{n-d+1}{2}\right\rceil^{2}}
$$

and the equality holds if and only if $\left|V_{d}\right|=\left\lfloor\frac{n-d-1}{2}\right\rfloor$. Consequently,

$$
A Z I(T) \geq \frac{\left(\left\lfloor\frac{n-d+1}{2}\right\rfloor+1\right)^{3}}{\left\lfloor\frac{n-d+1}{2}\right\rfloor^{2}}+\frac{\left(\left\lceil\frac{n-d+1}{2}\right\rceil+1\right)^{3}}{\left\lceil\frac{n-d+1}{2}\right\rceil^{2}}+8(d-2)
$$

3 Trees with Given Diameter Maximizing the ABC Index

In this section, we continue to use the marks in Section 2.
Lemma 3.1 ${ }^{[10]} \quad$ Let T be a tree with n vertices and p pendent vertices, where $2 \leq p \leq n-2$.
Then $A B C(T) \leq \frac{\sqrt{2}}{2}(n-p)+(p-1) \sqrt{\frac{p-1}{p}}$ with equality if and only if $T \cong S_{n-p}^{1, p-1}$.

It is known from Section 2 that

$$
\begin{aligned}
& \mathcal{T}_{n}^{(2)}=\left\{S_{n}\right\} \\
& \mathcal{T}_{n}^{(3)}=\left\{S_{2}^{p-1, n-p-1} \left\lvert\, 2 \leq p \leq\left\lfloor\frac{n}{2}\right\rfloor\right.\right\} \\
& \mathcal{T}_{n}^{(n-1)}=\left\{P_{n}\right\}
\end{aligned}
$$

By simply computing, we have

$$
A B C\left(S_{n}\right)=\sqrt{(n-1)(n-2)}, \quad A B C\left(P_{n}\right)=\frac{\sqrt{2}}{2}(n-1)
$$

Note that $S_{2}^{p-1, n-p-1}\left(2 \leq p \leq\left\lfloor\frac{n}{2}\right\rfloor\right)$ have exactly $n-2$ pendent vertices, it follows from Lemma 3.1 that

Corollary 3.1 Let $T \in \mathcal{T}_{n}^{(3)}(n \geq 4)$. Then $A B C(T) \leq \sqrt{2}+(n-3) \sqrt{\frac{n-3}{n-2}}$ with equality if and only if $T \cong S_{2}^{1, n-3}$.

Let $A_{i j}=\sqrt{\frac{i+j-2}{i j}}$, where i, j are positive integers. It is obvious that $A_{i j}=A_{j i}$, and the ABC index of a simple connected graph G can be restated as

$$
A B C(G)=\sum_{1 \leq i \leq j \leq \Delta} x_{i j} A_{i j}
$$

where $x_{i j}$ denotes the number of edges in G connecting vertices of degrees i and j, and Δ denotes the maximum degree of G.

Lemma 3.2 ${ }^{[8],[9]}$ (1) $A_{1 j}$ is increasing for $j \geq 1$;
(2) $\quad A_{2 j}=\frac{\sqrt{2}}{2}$ for $j \geq 1$;
(3) If $i \geq 3$ is fixed, then $A_{i j}$ is decreasing for $j \geq 1$.

Let $T \in \mathcal{T}_{n}^{(d)}$ be a tree with a diameter-preserve path $P_{d+1}=v_{1} v_{2} \cdots v_{d+1}$, where $4 \leq d \leq n-2$. Let $V_{i}(i=1, \cdots, d)$ be the vertices sets and $T_{j}(j=1, \cdots, d-2)$ be the sequences of trees with diameter d defined in Subsection 2.2.

Lemma 3.3 $A B C\left(T_{i}\right) \geq A B C\left(T_{i-1}\right)$ with equality if and only if $V_{i+1}=\emptyset$, where $i=$ $2,3, \cdots, d-2$ and $4 \leq d \leq n-2$.

Proof. It is obvious that $A B C\left(T_{i}\right)=A B C\left(T_{i-1}\right)$ if $V_{i+1}=\emptyset$. We need to show that $A B C\left(T_{i}\right)>A B C\left(T_{i-1}\right)$ if $V_{i+1} \neq \emptyset$.

Case 1. $\quad i=2$.
Clearly,

$$
\left|E\left(T\left[V_{3} \cup\left\{v_{3}\right\}\right]\right)\right|=\left|V_{3}\right| .
$$

By Lemma 3.2, for any $u v \in E\left(T\left[V_{3} \cup\left\{v_{3}\right\}\right]\right.$) (since $d_{u}+d_{v}>2$, without loss of generality, assume that $d_{v}>1$), we have

$$
A_{d_{u}, d_{v}} \leq A_{1, d_{v}} \leq A_{1,\left|V_{3}\right|+2} \leq A_{1,\left|V_{2}\right|+\left|V_{3}\right|+2}
$$

Since $V_{3} \neq \emptyset$, we know $d_{v_{3}}>2$, and combining this with $d_{v_{2}}, d_{v_{4}} \geq 2$ and Lemma 3.2, we get

$$
A_{d_{v_{2}}, d_{v_{3}}} \leq A_{2, d_{v_{3}}}=A_{2,\left|V_{2}\right|+\left|V_{3}\right|+2}, \quad A_{d_{v_{3}}, d_{v_{4}}} \leq A_{2, d_{v_{4}}} .
$$

Consequently,

$$
\begin{aligned}
& A B C\left(T_{2}\right)-A B C\left(T_{1}\right) \\
= & {\left[\left(\left|V_{2}\right|+1+\left|V_{3}\right|\right) A_{1,\left|V_{2}\right|+\left|V_{3}\right|+2}+A_{2,\left|V_{2}\right|+\left|V_{3}\right|+2}+A_{2, d_{v_{4}}}\right] } \\
& -\left[\left(\left|V_{2}\right|+1\right) A_{1,\left|V_{2}\right|+2}+\sum_{u v \in E\left(T\left[V_{3} \cup\left\{v_{3}\right\}\right]\right)} A_{d_{u}}, d_{v}+A_{d_{v_{2}}, d_{v_{3}}}+A_{d_{v_{3}}, d_{v_{4}}}\right] \\
\geq & \left(\left|V_{2}\right|+1\right)\left(A_{1,\left|V_{2}\right|+\left|V_{3}\right|+2}-A_{\left.1,\left|V_{2}\right|+2\right)}\right. \\
> & 0,
\end{aligned}
$$

and the last inequality holds since $V_{3} \neq \emptyset$.
Case 2. $3 \leq i \leq d-2$.
It can be seen that

$$
\left|E\left(T\left[V_{i+1} \cup\left\{v_{i+1}\right\}\right]\right)\right|=\left|V_{i+1}\right| .
$$

For any $u v \in E\left(T\left[V_{i+1} \cup\left\{v_{i+1}\right\}\right]\right)$ (since $d_{u}+d_{v}>2$, without loss of generality, suppose $d_{v}>1$), it follows from Lemma 3.2 that

$$
A_{d_{u}, d_{v}} \leq A_{1, d_{v}} \leq A_{1,\left|V_{i+1}\right|+2} \leq A_{1, \sum_{t=2}^{i+1}\left|V_{t}\right|+2}
$$

Moreover, since $d_{v_{i+1}} \geq 2$ and $d_{v_{i+2}} \geq 2$, by Lemma 3.2 we have

$$
A_{d_{v_{i+1}}, d_{v_{i+2}}} \leq A_{2, d_{v_{i+2}}}
$$

Then bearing in mind that $V_{i+1} \neq \emptyset$, we have

$$
\begin{aligned}
& A B C\left(T_{i}\right)-A B C\left(T_{i-1}\right) \\
= & {\left[\left(\sum_{t=2}^{i}\left|V_{t}\right|+1+\left|V_{i+1}\right|\right) A_{1, \sum_{t=2}^{i+1}\left|V_{t}\right|+2}+A_{2, d_{v_{i+2}}}\right] } \\
& -\left[\left(\sum_{t=2}^{i}\left|V_{t}\right|+1\right) A_{1, \sum_{t=2}^{i}\left|V_{t}\right|+2}+\sum_{u v \in E\left(T\left[V_{i+1} \cup\left\{v_{i+1}\right\}\right]\right)} A_{d_{u}, d_{v}}+A_{d_{v_{i+1}}, d_{v_{i+2}}}\right] \\
\geq & \left(\sum_{t=2}^{i}\left|V_{t}\right|+1\right)\left(A_{1, \sum_{t=2}^{i+1}\left|V_{t}\right|+2}-A_{1, \sum_{t=2}^{i}\left|V_{t}\right|+2}\right) \\
> & 0 .
\end{aligned}
$$

This completes the proof of Lemma 3.3.
Theorem 3.1 Let $T \in \mathcal{T}_{n}^{(d)}$, where $4 \leq d \leq n-2$. Then

$$
A B C(T) \leq \frac{\sqrt{2}}{2}(d-1)+(n-d) \sqrt{\frac{n-d}{n-d+1}}
$$

with equality holding if and only if $T \cong S_{d-1}^{1, n-d}$.
Proof. For $T \in \mathcal{T}_{n}^{(d)}(4 \leq d \leq n-2)$, it follows from Lemma 3.3 that

$$
A B C(T)=A B C\left(T_{1}\right) \leq \cdots \leq A B C\left(T_{d-2}\right)
$$

with equality if and only if $T \cong T_{d-2}$. Note that $T_{d-2} \cong S_{d-1}^{\left|V_{d}\right|+1, n-\left|V_{d}\right|-d}$, and they have exactly $n-d+1$ pendent vertices, where $0 \leq\left|V_{d}\right| \leq\left\lfloor\frac{n-d-1}{2}\right\rfloor$. Then by Lemma 3.1, we have

$$
\begin{aligned}
A B C(T) & \leq A B C\left(S_{d-1}^{\left|V_{d}\right|+1, n-\left|V_{d}\right|-d}\right) \\
& \leq A B C\left(S_{d-1}^{1, n-d}\right) \\
& =\frac{\sqrt{2}}{2}(d-1)+(n-d) \sqrt{\frac{n-d}{n-d+1}},
\end{aligned}
$$

with equality holding if and only if $\left|V_{d}\right|=0$, that is, $T \cong S_{d-1}^{1, n-d}$.
Remark 3.1 From the main results of this paper (e.g. Theorems 2.1, 2.2, 3.1 and Corollary 3.1), the tree with diameter d (resp. $d=2,3, n-2, n-1$) minimizing the augmented Zagreb index and maximizing the ABC index are the same (resp. $S_{n}, S_{2}^{1, n-3}, S_{n-3}^{1,2}, P_{n}$). However, for general cases (excluding special n value), the tree with diameter $d(4 \leq d \leq n-3)$ minimizing the augmented Zagreb index (that is, $S_{d-1}^{\left\lfloor\frac{n-d+1}{{ }^{2}}\right\rfloor,\left\lceil\frac{n-d+1}{2}\right\rceil}$) is different from that maximizing the ABC index (that is, $S_{d-1}^{1, n-d}$).

References

[1] Todeschini R, Consonni V. Handbook of Molecular Descriptors. Weinheim: Wiley-VCH, 2000.
[2] Furtula B, Graovac A, Vukic̆ević D. Augmented Zagreb index. J. Math. Chem., 2010, 48: 370-380.
[3] Estrada E, Torres L, Rodríguez L, Gutman I. An atom-bond connectivity index: Modelling the enthalpy of formation of alkanes. Indian J. Chem., 1998, 37A: 849-855.
[4] Estrada E. Atom-bond connectivity and the energetic of branched alkanes. Chem. Phys. Lett., 2008, 463: 422-425.
[5] Huang Y F, Liu B L, Gan L. Augmented Zagreb index of connected graphs. MATCH Commun. Math. Comput. Chem., 2012, 67(2): 483-494.
[6] Das K C. Atom-bond connectivity index of graphs. Discrete Appl. Math., 2010, 158: 11811188.
[7] Furtula B, Graovac A, Vukičević D. Atom-bond connectivity index of trees. Discrete Appl. Math., 2009, 157: 2828-2835.
[8] Gan L, Hou H Q, Liu B L. Some results on atom-bond connectivity index of graphs. MATCH Commun. Math. Comput. Chem., 2011, 66: 669-680.
[9] Xing R D, Zhou B, Du Z B. Further results on atom-bond connectivity index of trees. Discrete Appl. Math., 2010, 158: 1536-1545.
[10] Zhou B, Xing R D. On atom-bond connectivity index. Z. Naturforsch, 2011, 66a: 61-66.
[11] Li S, Zhang M. Sharp upper bounds for Zagreb indices of bipartite graphs with a given diameter. Appl. Math. Lett., 2011, 24: 131-137.
[12] Pan X, Liu H, Liu M H. Sharp bounds on the zeroth-order general Randić index of unicyclic graphs with given diameter. Appl. Math. Lett., 2011, 24: 687-691.
[13] Yang Y, Lu L. The Randić index and the diameter of graphs. Discrete Math., 2011, 311: 1333-1343.

