Trees with Given Diameter Minimizing the Augmented Zagreb Index and Maximizing the ABC Index

HUANG YU-FEI

(Department of Mathematics Teaching, Guangzhou Civil Aviation College, Guangzhou, 510403)

Communicated by Du Xian-kun

Abstract: Let G be a simple connected graph with vertex set V(G) and edge set E(G). The augmented Zagreb index of a graph G is defined as

$$AZI(G) = \sum_{uv \in E(G)} \left(\frac{d_u d_v}{d_u + d_v - 2}\right)^3,$$

and the atom-bond connectivity index (ABC index for short) of a graph G is defined as

$$ABC(G) = \sum_{uv \in E(G)} \sqrt{\frac{d_u + d_v - 2}{d_u d_v}},$$

where d_u and d_v denote the degree of vertices u and v in G, respectively. In this paper, trees with given diameter minimizing the augmented Zagreb index and maximizing the ABC index are determined, respectively.

Key words: tree, augmented Zagreb index, ABC index, diameter

2010 MR subject classification: 05C35, 05C50

Document code: A

Article ID: 1674-5647(2017)01-0008-11

DOI: 10.13447/j.1674-5647.2017.01.02

1 Introduction

Let G be a simple connected graph with vertex set V(G) and edge set E(G). Let N_u denote the set of all neighbors of a vertex $u \in V(G)$, and $d_u = |N_u|$ denote the degree of u in G. A connected graph G is called a tree if |E(G)| = |V(G)| - 1. The length of a shortest path connecting the vertices u and v in G is called the distance between u and v, and denoted by d(u, v). The diameter d of G is the maximum distance d(u, v) over all pairs of vertices u and v in G.

Received date: Feb. 3, 2015.

Foundation item: The NSF (11501139) of China.

E-mail address: fayger@qq.com (Huang Y F).

Molecular descriptors have found wide applications in QSPR/QSAR studies (see [1]). Among them, topological indices have a prominent place. Augmented Zagreb index, which was introduced by Furtula et $al^{[2]}$, is a valuable predictive index in the study of the heat of formation in octanes and heptanes. Another topological index, Atom-bond connectivity index (for short, ABC index), proposed by Estrada et al.^[3], displays an excellent correlation with the heat of formation of alkanes (see [3]) and strain energy of cycloalkanes (see [4]).

The augmented Zagreb index of a graph G is defined as:

$$AZI(G) = \sum_{uv \in E(G)} \left(\frac{d_u d_v}{d_u + d_v - 2}\right)^3$$

and the ABC index of a graph G is defined as:

$$ABC(G) = \sum_{uv \in E(G)} \sqrt{\frac{d_u + d_v - 2}{d_u d_v}}$$

Some interesting problems such as mathematical-chemical properties, bounds and extremal graphs on the augmented Zagreb index and the ABC index for various classes of connected graphs have been investigated in [2], [5] and [6]–[10], respectively. Besides, in the literature, there are many papers concerning the problems related to the diameter (see, e.g., [11]) [13]). In this paper, trees with given diameter minimizing the augmented Zagreb index and maximizing the ABC index are determined, respectively.

$\mathbf{2}$ Trees with Given Diameter Minimizing the Augmented Zagreb Index

A vertex u is called a pendent vertex if $d_u = 1$. Let S_n and P_n denote the star and path of order n, respectively. Let $S_l^{n_1, n_2}$ be the tree of order $n \geq 3$ obtained from the path P_l by attaching n_1 and n_2 pendent vertices to the end-vertices of P_l respectively, where l, n_1 , n_2 are positive integers, $n_1 \leq n_2$ and $l + n_1 + n_2 = n$. Especially, $S_1^{n_3, n - n_3 - 1} \cong S_n$ and $S_{n-2}^{1,1} \cong P_n$, where $1 \le n_3 \le \left| \frac{n-1}{2} \right|$.

Let $\mathcal{T}_n^{(d)}$ denote the set of trees with *n* vertices and diameter *d*, where $2 \leq d \leq n-1$. Obviously, $\mathcal{T}_n^{(2)} = \{S_n\}$ and $\mathcal{T}_n^{(n-1)} = \{P_n\}$. By simply calculating, we have

$$AZI(S_n) = \frac{(n-1)^4}{(n-2)^3}, \qquad AZI(P_n) = 8(n-1).$$

2.1The Augmented Zagreb Index of a Tree with Diameter 3

It can be seen that $\mathcal{T}_n^{(3)} = \left\{ S_2^{p-1,n-p-1} \mid 2 \le p \le \left\lfloor \frac{n}{2} \right\rfloor \right\}$. In the following, we give an order of the augmented Zagreb index of a tree with diameter 3.

Lemma 2.1

a 2.1 Let $g(x) = \frac{x^2}{(x-1)^2}, \qquad k(x) = \frac{-2x^2}{(x-1)^3}, \qquad m(x) = \frac{-3}{x(x-1)} + \frac{-2x+1}{x^2(x-1)^2}.$ Then g(x) is decreasing for $x \ge 2$, and k(x), m(x) are both increasing for $x \ge 2$.

Proof. By directly computing, we have

$$g'(x) = \frac{-2x}{(x-1)^3} < 0,$$

$$k'(x) = \frac{2x^2 + 4x}{(x-1)^4} > 0,$$

$$m'(x) = \frac{3(2x-1)}{x^2(x-1)^2} + \frac{2(3x^2 - 3x + 1)}{x^3(x-1)^3} > 0$$

for $x \ge 2$. The proof is finished.

Lemma 2.2 Let
$$n \ge 5$$
 and
 $f(p) = \frac{p^3(n-p)^3}{(n-2)^3} + \frac{p^3}{(p-1)^2} + \frac{(n-p)^3}{(n-p-1)^2}$
Then $f(p)$ is increasing for $2 \le p \le \lfloor \frac{n}{2} \rfloor$.

Proof. Let
$$J(p) = \frac{p^3(n-p)^3}{(n-2)^3}$$
. Then

$$f(p) = J(p) + \frac{p^3}{(p-1)^2} + \frac{(n-p)^3}{(n-p-1)^2}.$$

Now we consider the following two cases.

Case 1. $2 \le p \le \frac{2}{5 + \sqrt{5}}n.$

In this time, we have

$$n \ge \frac{5 + \sqrt{5}}{2}p \ge 8.$$

Hence

$$J'(p) = \frac{3p^2(n-p)^2(n-2p)}{(n-2)^3} > 0,$$
(2.1)

and

$$\begin{split} f'(p) &= J'(p) + \frac{p^2(p-3)}{(p-1)^3} + \frac{(n-p)^2(-n+p+3)}{(n-p-1)^3} \\ &= J'(p) + \frac{p^2}{(p-1)^2} + \frac{-2p^2}{(p-1)^3} + \frac{-(n-p)^2}{(n-p-1)^2} + \frac{2(n-p)^2}{(n-p-1)^3} \\ &= J'(p) + g(p) - g(n-p) + k(p) + \frac{2(n-p)^2}{(n-p-1)^3}, \end{split}$$

where the functions g(x) and k(x) are defined in Lemma 2.1. Since $n-p \ge p \ge 2$, by Lemma 2.1, we have

$$g(p) - g(n - p) \ge 0,$$
 $k(p) \ge k(2) = -8.$

Note that $\frac{2(n-p)^2}{(n-p-1)^3} > 0$, we have $f'(p) \ge J'(p) - 8 + \frac{2(n-p)^2}{(n-p-1)^3} > J'(p) - 8.$ Now we just need to show that $J'(p) \ge 8$. By directly computing, we have $6p(n-p)(5p^2-5pn+n^2)$

$$T(p) = \frac{6p(n-p)(3p-3pn+n-)}{(n-2)^3} = \frac{30p(n-p)}{(n-2)^3} \left(p - \frac{2}{5+\sqrt{5}}n\right) \left(p - \frac{2}{5-\sqrt{5}}n\right).$$
(2.2)

Since $p \leq \left\lfloor \frac{n}{2} \right\rfloor < \frac{2}{5-\sqrt{5}}n \approx 0.724n$ and $p \leq \frac{2}{5+\sqrt{5}}n$, then J''(p) > 0. Therefore,

$$J'(p) \ge J'(2) = \frac{12(n-4)}{n-2} = 12 - \frac{24}{n-2} \ge 8$$

since $n \ge 8$. Thus, f'(p) > 0 for $2 \le p \le \frac{2}{5 + \sqrt{5}}n$.

J''

Case 2. $\frac{2}{5+\sqrt{5}}n .$ Note that

$$\begin{aligned} f(p) &= J(p) + \frac{p^3}{(p-1)^2} + \frac{(n-p)^3}{(n-p-1)^2} \\ &= J(p) + p + 2 + \frac{3}{p-1} + \frac{1}{(p-1)^2} + (n-p) + 2 + \frac{3}{n-p-1} + \frac{1}{(n-p-1)^2} \\ &= J(p) + n + 4 + \frac{3}{p-1} + \frac{1}{(p-1)^2} + \frac{3}{n-p-1} + \frac{1}{(n-p-1)^2}. \end{aligned}$$

It is easy to get that for $\frac{2}{5+\sqrt{5}}n ,$

$$f(p+1) = J(p+1) + n + 4 + \frac{3}{p} + \frac{1}{p^2} + \frac{3}{n-p-2} + \frac{1}{(n-p-2)^2}$$

Then from the fact that

$$\left(\frac{3}{n-p-2} - \frac{3}{n-p-1}\right) + \left[\frac{1}{(n-p-2)^2} - \frac{1}{(n-p-1)^2}\right] > 0,$$

we obtain

$$\begin{split} f(p+1) - f(p) = &J(p+1) - J(p) + \left(\frac{3}{p} - \frac{3}{p-1}\right) + \left[\frac{1}{p^2} - \frac{1}{(p-1)^2}\right] \\ &+ \left(\frac{3}{n-p-2} - \frac{3}{n-p-1}\right) + \left[\frac{1}{(n-p-2)^2} - \frac{1}{(n-p-1)^2}\right] \\ &> J(p+1) - J(p) + \frac{-3}{p(p-1)} + \frac{-2p+1}{p^2(p-1)^2} \\ &= J(p+1) - J(p) + m(p), \end{split}$$

where the function m(x) is defined in Lemma 2.1. By Lemma 2.1, we get

$$n(p) \ge m(2) = -\frac{9}{4}.$$

To prove f(p+1) > f(p), it suffice to prove $J(p+1) - J(p) \ge \frac{9}{4}$ for $\frac{2}{5+\sqrt{5}}n$ $p+1 \leq \left\lfloor \frac{n}{2} \right\rfloor$. From (2.2), when $p > \frac{2}{5+\sqrt{5}}n$, we have J''(p) < 0.

Combining this with inequality (2.1), namely, J(p) is increasing for p. It implies that J(p+1) - J(p) is decreasing for p. Therefore,

 $J(p+1) - J(p) \ge J\left(\left|\frac{n}{2}\right|\right) - J\left(\left|\frac{n}{2}\right| - 1\right).$

If n is even, then n > 6 and

$$J\left(\left\lfloor\frac{n}{2}\right\rfloor\right) - J\left(\left\lfloor\frac{n}{2}\right\rfloor - 1\right) = J\left(\frac{n}{2}\right) - J\left(\frac{n}{2} - 1\right)$$
$$= \frac{\left(\frac{n}{2}\right)^3 \left(\frac{n}{2}\right)^3}{(n-2)^3} - \frac{\left(\frac{n}{2} - 1\right)^3 \left(\frac{n}{2} + 1\right)^3}{(n-2)^3}$$
$$= \frac{3}{16}n + \frac{9}{8} + \frac{15}{4(n-2)} + \frac{3}{(n-2)^2} + \frac{1}{(n-2)^3}$$
$$> \frac{3}{16}n + \frac{9}{8}$$
$$\ge \frac{9}{4}.$$

If n is odd, then $n \ge 5$ and

$$J\left(\left\lfloor\frac{n}{2}\right\rfloor\right) - J\left(\left\lfloor\frac{n}{2}\right\rfloor - 1\right) = J\left(\frac{n-1}{2}\right) - J\left(\frac{n-1}{2} - 1\right)$$
$$= \frac{\left(\frac{n-1}{2}\right)^3 \left(\frac{n+1}{2}\right)^3}{(n-2)^3} - \frac{\left(\frac{n-3}{2}\right)^3 \left(\frac{n+3}{2}\right)^3}{(n-2)^3}$$
$$= \frac{3n^4 - 30n^2 + 91}{8(n-2)^3}$$
$$= \frac{9}{4} + \frac{3}{8}n + \frac{21}{4(n-2)} - \frac{3}{(n-2)^2} + \frac{19}{8(n-2)^3}$$
$$> \frac{9}{4}.$$

It leads to f(p+1) > f(p). Hence f(p) is increasing for $\frac{2}{5+\sqrt{5}}n .$

Theorem 2.1 Let
$$\mathcal{T}_n^{(3)} = \left\{ S_2^{p-1,n-p-1} \mid 2 \le p \le \left\lfloor \frac{n}{2} \right\rfloor \right\}$$
. Then for $n \ge 4$,
 $AZI(S_2^{\lfloor \frac{n-2}{2} \rfloor, \lceil \frac{n-2}{2} \rceil}) > \dots > AZI(S_2^{2,n-4}) > AZI(S_2^{1,n-3}) = 16 + \frac{(n-2)^3}{(n-3)^2}$.

Proof. Note that $\mathcal{T}_4^{(3)} = \{S_2^{1,1}\}$, and for $n \ge 5$,

$$AZI(S_2^{p-1, n-p-1}) = \frac{p^3(n-p)^3}{(n-2)^3} + \frac{p^3}{(p-1)^2} + \frac{(n-p)^3}{(n-p-1)^2}$$

Then by Lemma 2.2, we obtain the desired results.

2.2 Trees with Diameter $4 \le d \le n-1$ Minimizing the Augmented Zagreb Index

Let G be a simple connected graph. Let x_{ij} be the number of edges in G connecting vertices of degrees i and j, and $Z_{ij} = \left(\frac{ij}{i+j-2}\right)^3$, where i, j are positive integers with $i+j \neq 2$. Clearly, $Z_{ij} = Z_{ji}$. Denote by Δ the maximum degree of G. The augmented Zagreb index of G can be rewritten as

$$AZI(G) = \sum_{\substack{1 \le i \le j \le \Delta \\ i+j \ne 2}} x_{ij} Z_{ij}$$

Lemma 2.3^[5] (1) Z_{1j} is decreasing for $j \ge 2$;

- (2) $Z_{2j} = 8 \text{ for } j \ge 1;$
- (3) If $i \geq 3$ is fixed, then Z_{ij} is increasing for $j \geq 1$.

Let $T \in \mathcal{T}_n^{(d)}$ be a tree with a diameter-preserve path $P_{d+1} = v_1 v_2 \cdots v_{d+1}$, where $4 \leq d \leq n-1$. Clearly,

$$d_{v_1} = d_{v_{d+1}} = 1.$$

Let
$$V_1 = V(P_{d+1})$$
. For $i \in \{2, 3, \dots, d\}$, let
 $V_i = \{v \in V(T) \mid d(v, v_i) < d(v, v_j), \ 2 \le j \le d, \ j \ne i\} \setminus \{v_1, \ v_i, \ v_{d+1}\}.$

Then $V(T) = \bigcup_{i=1}^{a} V_i$ and $V_i \cap V_j = \emptyset$ for any $1 \leq i < j \leq d$. Moreover, since P_{d+1} is a diameter-preserve path, all vertices in V_2 and V_d are pendent vertices in T. Denote by $T[V^*]$ the subgraph of T induced by V^* , where $V^* \subseteq V(T)$. We construct a sequence of trees with diameter d recursively as follows: Let $T_1 \cong T$. For $i = 2, 3, \dots, d-2$ ($4 \leq d \leq n-1$), let T_i be the tree obtained from T_{i-1} by deleting the vertices in V_{i+1} and the edges incident with them, and attaching $|V_{i+1}|$ pendent vertices to the vertex v_2 (see Figs. 2.1–2.4).

Lemma 2.4 $AZI(T_i) \leq AZI(T_{i-1})$ with equality if and only if $V_{i+1} = \emptyset$, where $i = 2, 3, \dots, d-2$ and $4 \leq d \leq n-1$.

Proof. Clearly, $AZI(T_i) = AZI(T_{i-1})$ if $V_{i+1} = \emptyset$. It suffice to show that $AZI(T_i) < AZI(T_{i-1})$ if $V_{i+1} \neq \emptyset$.

Case 1. i = 2.

Notice that $|E(T[V_3 \cup \{v_3\}])| = |V_3|$. By Lemma 2.3, for any $uv \in E(T[V_3 \cup \{v_3\}])$ (since $d_u + d_v > 2$, without loss of generality, assume that $d_v > 1$), we obtain

$$Z_{d_u,d_v} \ge Z_{1,d_v} \ge Z_{1,|V_3|+2} \ge Z_{1,|V_2|+|V_3|+2}$$

Since $V_3 \neq \emptyset$, one has $d_{v_3} > 2$. It follows from $d_{v_2}, d_{v_4} \ge 2$ and Lemma 2.3 that

$$Z_{d_{v_2},d_{v_3}} \ge Z_{2,d_{v_3}} = Z_{2,|V_2|+|V_3|+2} = 8, \qquad Z_{d_{v_3},d_{v_4}} \ge Z_{2,d_{v_4}}.$$

Therefore, bearing in mind that $V_3 \neq \emptyset$,

$$\begin{split} &AZI(T_2) - AZI(T_1) \\ &= \left[(|V_2| + 1 + |V_3|) Z_{1,|V_2| + |V_3| + 2} + Z_{2,|V_2| + |V_3| + 2} + Z_{2,d_{v_4}} \right] \\ &- \left[(|V_2| + 1) Z_{1,|V_2| + 2} + \sum_{uv \in E(T[V_3 \cup \{v_3\}])} Z_{d_u,d_v} + Z_{d_{v_2},d_{v_3}} + Z_{d_{v_3},d_{v_4}} \right] \\ &\leq (|V_2| + 1) (Z_{1,|V_2| + |V_3| + 2} - Z_{1,|V_2| + 2}) \\ &< 0. \end{split}$$

Case 2. $3 \le i \le d-2$. Clearly,

$$|E(T[V_{i+1} \cup \{v_{i+1}\}])| = |V_{i+1}|.$$

For any $uv \in E(T[V_{i+1} \cup \{v_{i+1}\}])$ (since $d_u + d_v > 2$, without loss of generality, suppose $d_v > 1$), by Lemma 2.3, we have

$$Z_{d_u,d_v} \ge Z_{1,d_v} \ge Z_{1,|V_{i+1}|+2} \ge Z_{1,\sum_{t=2}^{i+1}|V_t|+2}.$$

Besides, since $d_{v_{i+1}} \ge 2$ and $d_{v_{i+2}} \ge 2$, by Lemma 2.3, one has

 $Z_{d_{v_{i+1}},d_{v_{i+2}}} \ge Z_{2,d_{v_{i+2}}}.$

Then

$$\begin{aligned} AZI(T_i) - AZI(T_{i-1}) \\ &= \left[\left(\sum_{t=2}^{i} |V_t| + 1 + |V_{i+1}| \right) Z_{1,\sum_{t=2}^{i+1} |V_t| + 2} + Z_{2,d_{v_{i+2}}} \right] \\ &- \left[\left(\sum_{t=2}^{i} |V_t| + 1 \right) Z_{1,\sum_{t=2}^{i} |V_t| + 2} + \sum_{uv \in E(T[V_{i+1} \cup \{v_{i+1}\}])} Z_{d_u,d_v} + Z_{d_{v_{i+1}},d_{v_{i+2}}} \right] \\ &\leq \left(\sum_{t=2}^{i} |V_t| + 1 \right) \left(Z_{1,\sum_{t=2}^{i+1} |V_t| + 2} - Z_{1,\sum_{t=2}^{i} |V_t| + 2} \right) \\ &< 0. \end{aligned}$$

and the last inequality holds since $V_{i+1} \neq \emptyset$.

Theorem 2.2 Let $T \in \mathcal{T}_n^{(d)}$, where $4 \le d \le n-1$. Then

$$AZI(T) \ge \frac{\left(\left\lfloor \frac{n-d+1}{2} \right\rfloor + 1\right)^3}{\left\lfloor \frac{n-d+1}{2} \right\rfloor^2} + \frac{\left(\left\lceil \frac{n-d+1}{2} \right\rceil + 1\right)^3}{\left\lceil \frac{n-d+1}{2} \right\rceil^2} + 8(d-2),$$

and the equality holds if and only if $T \cong S_{d-1}^{\lfloor \frac{n-a+1}{2} \rfloor, \lceil \frac{n-a+1}{2} \rceil}$.

Proof. For $T \in \mathcal{T}_n^{(d)}$ $(4 \le d \le n-1)$, by Lemma 2.4, we obtain $AZI(T) = AZI(T_1) > \cdots > AZI(T_{d-2})$

with equality if and only if $T \cong T_{d-2}$. Actually, $T_{d-2} \cong S_{d-1}^{|V_d|+1,n-|V_d|-d}$,

where $0 \leq |V_d| \leq \left| \frac{n-d-1}{2} \right|$. Note that $AZI(S_{d-1}^{|V_d|+1, n-|V_d|-d}) = \frac{(|V_d|+2)^3}{(|V_d|+1)^2} + \frac{(n-|V_d|-d+1)^3}{(n-|V_d|-d)^2} + 8(d-2).$

Let $t(x) = \frac{(x+1)^3}{x^2}$. Thus

$$AZI(S_{d-1}^{|V_d|+1, n-|V_d|-d}) = t(|V_d|+1) + t(n-|V_d|-d) + 8(d-2).$$

Since for $x \ge 2$,

$$t'(x) = \frac{(x+1)^2(x-2)}{x^3} \ge 0, \qquad t''(x) = \frac{6(x+1)}{x^4} > 0,$$

the function t(x) is convex increasing for $x \ge 2$.

Besides, $t(1) = 8 > t(2) = \frac{27}{4}$, and it follows that

$$t(1) + t(n-d) > t(2) + t(n-d-1) \ge \dots \ge t\left(\left\lfloor \frac{n-d+1}{2} \right\rfloor\right) + t\left(\left\lceil \frac{n-d+1}{2} \right\rceil\right).$$

eads to

It le

$$\frac{(|V_d|+2)^3}{(|V_d|+1)^2} + \frac{(n-|V_d|-d+1)^3}{(n-|V_d|-d)^2} \ge \frac{\left(\left\lfloor\frac{n-d+1}{2}\right\rfloor+1\right)^3}{\left\lfloor\frac{n-d+1}{2}\right\rfloor^2} + \frac{\left(\left\lceil\frac{n-d+1}{2}\right\rceil+1\right)^3}{\left\lceil\frac{n-d+1}{2}\right\rceil^2}$$

and the equality holds if and only if $|V_d| = \left\lfloor \frac{n-d-1}{2} \right\rfloor$. Consequently,

$$AZI(T) \ge \frac{\left(\left\lfloor \frac{n-d+1}{2} \right\rfloor + 1\right)^3}{\left\lfloor \frac{n-d+1}{2} \right\rfloor^2} + \frac{\left(\left\lceil \frac{n-d+1}{2} \right\rceil + 1\right)^3}{\left\lceil \frac{n-d+1}{2} \right\rceil^2} + 8(d-2),$$

and the equality holds if and only if $T \cong S_{d-1}^{\lfloor -2}$

Trees with Given Diameter Maximizing the ABC In-3 dex

In this section, we continue to use the marks in Section 2.

Lemma 3.1^[10] Let T be a tree with n vertices and p pendent vertices, where $2 \le p \le n-2$. $Then \; ABC(T) \leq \frac{\sqrt{2}}{2}(n-p) + (p-1)\sqrt{\frac{p-1}{p}} \; with \; equality \; if \; and \; only \; if \; T \cong S^{1,p-1}_{n-p}.$

It is known from Section 2 that

$$\begin{aligned} \mathcal{T}_{n}^{(2)} &= \{S_{n}\}, \\ \mathcal{T}_{n}^{(3)} &= \left\{S_{2}^{p-1,n-p-1} \mid 2 \leq p \leq \left\lfloor \frac{n}{2} \right\rfloor\right\}, \\ \mathcal{T}_{n}^{(n-1)} &= \{P_{n}\}. \end{aligned}$$

By simply computing, we have

$$ABC(S_n) = \sqrt{(n-1)(n-2)}, \qquad ABC(P_n) = \frac{\sqrt{2}}{2}(n-1)$$

*(*______

Note that $S_2^{p-1, n-p-1}$ $\left(2 \le p \le \lfloor \frac{n}{2} \rfloor\right)$ have exactly n-2 pendent vertices, it follows from Lemma 3.1 that

Corollary 3.1 Let $T \in \mathcal{T}_n^{(3)}$ $(n \ge 4)$. Then $ABC(T) \le \sqrt{2} + (n-3)\sqrt{\frac{n-3}{n-2}}$ with equality if and only if $T \cong S_2^{1,n-3}$.

Let $A_{ij} = \sqrt{\frac{i+j-2}{ij}}$, where *i*, *j* are positive integers. It is obvious that $A_{ij} = A_{ji}$, and the ABC index of a simple connected graph *G* can be restated as

$$ABC(G) = \sum_{1 \le i \le j \le \Delta} x_{ij} A_{ij},$$

where x_{ij} denotes the number of edges in G connecting vertices of degrees i and j, and Δ denotes the maximum degree of G.

Lemma 3.2^{[8],[9]} (1) A_{1j} is increasing for $j \ge 1$;

(2)
$$A_{2j} = \frac{\sqrt{2}}{2}$$
 for $j \ge 1$;

(3) If $i \geq 3$ is fixed, then A_{ij} is decreasing for $j \geq 1$.

Let $T \in \mathcal{T}_n^{(d)}$ be a tree with a diameter-preserve path $P_{d+1} = v_1 v_2 \cdots v_{d+1}$, where $4 \leq d \leq n-2$. Let V_i $(i = 1, \dots, d)$ be the vertices sets and T_j $(j = 1, \dots, d-2)$ be the sequences of trees with diameter d defined in Subsection 2.2.

Lemma 3.3 $ABC(T_i) \ge ABC(T_{i-1})$ with equality if and only if $V_{i+1} = \emptyset$, where $i = 2, 3, \dots, d-2$ and $4 \le d \le n-2$.

Proof. It is obvious that $ABC(T_i) = ABC(T_{i-1})$ if $V_{i+1} = \emptyset$. We need to show that $ABC(T_i) > ABC(T_{i-1})$ if $V_{i+1} \neq \emptyset$.

Case 1. i = 2.

Clearly,

$$|E(T[V_3 \cup \{v_3\}])| = |V_3|.$$

By Lemma 3.2, for any $uv \in E(T[V_3 \cup \{v_3\}])$ (since $d_u + d_v > 2$, without loss of generality, assume that $d_v > 1$), we have

 $A_{d_u,d_v} \leq A_{1,d_v} \leq A_{1,|V_3|+2} \leq A_{1,|V_2|+|V_3|+2}.$

Since $V_3 \neq \emptyset$, we know $d_{v_3} > 2$, and combining this with d_{v_2} , $d_{v_4} \ge 2$ and Lemma 3.2, we get

$$A_{d_{v_2}, d_{v_3}} \le A_{2, d_{v_3}} = A_{2, |V_2| + |V_3| + 2}, \qquad A_{d_{v_3}, d_{v_4}} \le A_{2, d_{v_4}}.$$

Consequently,

$$ABC(T_{2}) - ABC(T_{1})$$

$$= [(|V_{2}| + 1 + |V_{3}|)A_{1,|V_{2}|+|V_{3}|+2} + A_{2,|V_{2}|+|V_{3}|+2} + A_{2,d_{v_{4}}}]$$

$$- \left[(|V_{2}| + 1)A_{1,|V_{2}|+2} + \sum_{uv \in E(T[V_{3} \cup \{v_{3}\}])} A_{du, dv} + A_{dv_{2}, dv_{3}} + A_{dv_{3}, dv_{4}} \right]$$

$$\geq (|V_{2}| + 1)(A_{1,|V_{2}|+|V_{3}|+2} - A_{1,|V_{2}|+2})$$

$$> 0,$$

and the last inequality holds since $V_3 \neq \emptyset$.

Case 2. $3 \le i \le d-2$.

It can be seen that

$$|E(T[V_{i+1} \cup \{v_{i+1}\}])| = |V_{i+1}|$$

For any $uv \in E(T[V_{i+1} \cup \{v_{i+1}\}])$ (since $d_u + d_v > 2$, without loss of generality, suppose $d_v > 1$), it follows from Lemma 3.2 that

$$A_{d_u,d_v} \le A_{1,d_v} \le A_{1,|V_{i+1}|+2} \le A_{1,\sum_{t=2}^{i+1}|V_t|+2}.$$

Moreover, since $d_{v_{i+1}} \ge 2$ and $d_{v_{i+2}} \ge 2$, by Lemma 3.2 we have

$$\mathbf{l}_{d_{v_{i+1}}, d_{v_{i+2}}} \le A_{2, d_{v_{i+2}}}.$$

Then bearing in mind that $V_{i+1} \neq \emptyset$, we have

$$\begin{split} &ABC(T_i) - ABC(T_{i-1}) \\ &= \left[\left(\sum_{t=2}^{i} |V_t| + 1 + |V_{i+1}| \right) A_{1,\sum_{t=2}^{i+1} |V_t| + 2} + A_{2,d_{v_{i+2}}} \right] \\ &- \left[\left(\sum_{t=2}^{i} |V_t| + 1 \right) A_{1,\sum_{t=2}^{i} |V_t| + 2} + \sum_{uv \in E(T[V_{i+1} \cup \{v_{i+1}\}])} A_{d_u,d_v} + A_{d_{v_{i+1}},d_{v_{i+2}}} \right] \\ &\geq \left(\sum_{t=2}^{i} |V_t| + 1 \right) (A_{1,\sum_{t=2}^{i+1} |V_t| + 2} - A_{1,\sum_{t=2}^{i} |V_t| + 2} \right) \\ &> 0. \end{split}$$

This completes the proof of Lemma 3.3.

Theorem 3.1 Let
$$T \in \mathcal{T}_n^{(d)}$$
, where $4 \le d \le n-2$. Then
 $ABC(T) \le \frac{\sqrt{2}}{2}(d-1) + (n-d)\sqrt{\frac{n-d}{n-d+1}}$

with equality holding if and only if $T \cong S_{d-1}^{1,n-d}$.

Proof. For $T \in \mathcal{T}_n^{(d)}$ $(4 \le d \le n-2)$, it follows from Lemma 3.3 that $ABC(T) = ABC(T_1) \le \cdots \le ABC(T_{d-2})$

with equality if and only if $T \cong T_{d-2}$. Note that $T_{d-2} \cong S_{d-1}^{|V_d|+1,n-|V_d|-d}$, and they have exactly n-d+1 pendent vertices, where $0 \le |V_d| \le \left\lfloor \frac{n-d-1}{2} \right\rfloor$. Then by Lemma 3.1, we have

$$ABC(T) \le ABC(S_{d-1}^{|V_d|+1,n-|V_d|-d}) \le ABC(S_{d-1}^{1,n-d}) = \frac{\sqrt{2}}{2}(d-1) + (n-d)\sqrt{\frac{n-d}{n-d+1}},$$

with equality holding if and only if $|V_d| = 0$, that is, $T \cong S_{d-1}^{1,n-d}$.

Remark 3.1 From the main results of this paper (e.g. Theorems 2.1, 2.2, 3.1 and Corollary 3.1), the tree with diameter d (resp. d = 2, 3, n-2, n-1) minimizing the augmented Zagreb index and maximizing the ABC index are the same (resp. $S_n, S_2^{1,n-3}, S_{n-3}^{1,2}, P_n$). However, for general cases (excluding special n value), the tree with diameter d ($4 \le d \le n-3$) minimizing the augmented Zagreb index (that is, $S_{d-1}^{\lfloor \frac{n-d+1}{2} \rfloor, \lceil \frac{n-d+1}{2} \rceil}$) is different from that maximizing the ABC index (that is, $S_{d-1}^{l, n-d}$).

References

- [1] Todeschini R, Consonni V. Handbook of Molecular Descriptors. Weinheim: Wiley-VCH, 2000.
- [2] Furtula B, Graovac A, Vukičević D. Augmented Zagreb index. J. Math. Chem., 2010, 48: 370–380.
- [3] Estrada E, Torres L, Rodríguez L, Gutman I. An atom-bond connectivity index: Modelling the enthalpy of formation of alkanes. *Indian J. Chem.*, 1998, **37A**: 849–855.
- [4] Estrada E. Atom-bond connectivity and the energetic of branched alkanes. Chem. Phys. Lett., 2008, 463: 422–425.
- Huang Y F, Liu B L, Gan L. Augmented Zagreb index of connected graphs. MATCH Commun. Math. Comput. Chem., 2012, 67(2): 483–494.
- [6] Das K C. Atom-bond connectivity index of graphs. Discrete Appl. Math., 2010, 158: 1181– 1188.
- [7] Furtula B, Graovac A, Vukičević D. Atom-bond connectivity index of trees. Discrete Appl. Math., 2009, 157: 2828–2835.
- [8] Gan L, Hou H Q, Liu B L. Some results on atom-bond connectivity index of graphs. MATCH Commun. Math. Comput. Chem., 2011, 66: 669–680.
- [9] Xing R D, Zhou B, Du Z B. Further results on atom-bond connectivity index of trees. Discrete Appl. Math., 2010, 158: 1536–1545.
- [10] Zhou B, Xing R D. On atom-bond connectivity index. Z. Naturforsch, 2011, 66a: 61-66.
- [11] Li S, Zhang M. Sharp upper bounds for Zagreb indices of bipartite graphs with a given diameter. Appl. Math. Lett., 2011, 24: 131–137.
- [12] Pan X, Liu H, Liu M H. Sharp bounds on the zeroth-order general Randić index of unicyclic graphs with given diameter. Appl. Math. Lett., 2011, 24: 687–691.
- [13] Yang Y, Lu L. The Randić index and the diameter of graphs. Discrete Math., 2011, 311: 1333–1343.