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Abstract. In this paper, we will investigate a multigrid algorithm for poroelasticity
problem by a new finite element method with homogeneous boundary conditions in
two dimensional space. We choose Nédélec edge element for the displacement vari-
able and piecewise continuous polynomials for the pressure variable in the model
problem. In constructing multigrid algorithm, a distributive Gauss-Seidel iteration
method is applied. Numerical experiments shows that the finite element method
achieves optimal convergence order and the multigrid algorithm is almost uniformly
convergent to mesh size h and parameter δt on regular meshes.
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1 Introduction

General theory describing the consolidation of a porous elastic soil is very important in
application, for example, predicting the behavior of foundation resting on a saturated
clay is an important problem in foundation engineering. The foundation allows for the
occurrence of finite geometry changes and finite elastic strains during the consolidation
process. This theory of poroelasticity addresses the time-dependent coupled process be-
tween the deformation of porous materials and the fluid flow inside. The governing
equations have been cast in a rate form and laws which determine deformation and pore
fluid flow are Hookes’s law and Darcy’s law. The theoretical basis of consolidation was
established by Terzaghi [22], then, Biot generalized the theory to three dimensional tran-
sient consolidation [4, 5]. Since then, poroelastic theory has been used in a diverse range
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of science and engineering application, for instance, CO2 sequestration in environmental
engineering [14] is important applications of poroelasticity. Recently, research in poroe-
lasticity has been a surge in activity, not only because of the application described above,
but also due to emerging applications in biomechanics engineering such as biological
soft tissue modeling including arterial walls, skin, cardiac muscle and articular carti-
lage [12, 15, 20, 25].

There are extensive literatures on numerical methods for poroelasticity. The most
commonly used numerical discretization are finite element methods for the two fields
problem, for example, a continuous Galerkin (CG) element for both displacement and
pressure is studied in [13, 16]. Later, finite element method based on three fields (dis-
placement, fluid flux, pore pressure) are analyzed, for instance, couple continuous and
discontinuous Galerkin (DG) methods for the displacement with a mixed finite element
method for the flow variables are investigated in [17–19]. Also, Yi [27] studied the non-
conforming finite element for displacement and standard mixed finite element method
for pressure and velocity and Tchonkova [21] used a mixed finite element method which
seeks a solution via minimization of a least-squares functionals. Four fields formulation
with displacement, stress, pressure and flux is also studied in [26]. Meanwhile, finite
difference method on staggered mesh [7], finite volume method [2] for the problem with
discontinuous coefficients and weak Galerkin method [10] are also considered for the
poroelasticity model problems.

As mesh size becomes much smaller, the scale of discrete equation of poroelasticity
model by numerical methods becomes much larger. Therefore, efficient solver for the dis-
crete linear system is important in computing numerical solution. There are lots of stud-
ies in constructing fast solvers for poroelascitity model problem, see examples [1,3,6,9,11,
24]. Multigrid algorithm is one of the most efficient iterative scheme which can reduce the
computation of discrete equation toO(N) orO(N logN) with N being the scale of the lin-
ear system. For the poroelasticity problem, some efficient multigrid algorithm has been
designed based on finite difference method. For instance, multigrid algorithm with dis-
tributive smoothing on cartesian equidistant grids are constructed in [8,24]. Performance
of multigrid methods with two different types of smoother, the decouple smoother (dis-
tributive type) and couple smoother (Vanka type) are compared for poroelasticity model
in [9] on staggered mesh. In this work, we will study the multigrid method with decou-
pled smoother by finite element method on triangular mesh.

We will investigate the finite element method as well as the multigrid method for
poroelasticity model problem in this study. There are mainly two unknowns, displace-
ment variable uuu and pore pressure p in the poroelasticity model problems. We con-
structed the discretization method by introduce an intermediate variable ω = −divuuu.
For the discrete finite element spaces, we choose the Nédélec edge element for the dis-
placement variable and piecewise continuous Lagrange polynomials for the intermediate
variable ω as well as for pore pressure variable. Numerical results show that on regular
mesh, this discretization method achieves the optimal order in L2 norm and correspond-
ing energy norms. We also constructed the multigrid algorithm for the poroelasticity
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problem based on this finite element method. We mainly concern using the distributive
Gauss Seidel iteration as smoother in the multigrid algorithm. Numerical experiments
shows that the W-cycle multigrid algorithm with both two-step pre- and post-smoothing
is a uniform convergent algorithm to both mesh size h and parameter δt (which relates to
time step size in the model problem).

The outline of the paper is as follows. In Section 2, we will introduce the model
problem, weak formulation and the finite element method. Multigrid algorithm with
distributive Gauss Seidel iteration for the discrete system will be constructed in Section
3. In Section 4, we implement two examples and show the performance of the finite
element method as well as the multigrid algorithm numerically.

2 Model problem and finite element method

Mechanical processes in poroelasticity mainly contain two basic element: fluid flow and
deformation of elasticity body. Mathematical model for the poroelasticity are derived
from physical principles, i.e., the mass conservation and momentum balance for both
fluid and elasticity body. The momentum balance for the solid phase is give as the fol-
lowing well known equilibrium conditions for the stress tensor field σ̃:

divσ̃=− fff , (2.1)

where fff representing the external force acting on the domain Ω.
From the poroelasticity theory, the effective stress σ is defined as

σ= σ̃+cup pI, (2.2)

with cup being a positive coefficient, p being a fluid pressure and I is the identity matrix.
Let u denote the displacement variable and ε(u) be the strain tensor, the classical strain-
displacement relation is defined as

ε(u)=
1
2
(∇u+(∇u)T). (2.3)

The relation between effective stress and train tensor is presented as follows

σ=2µε(u)+λtr(ε(u))I, (2.4)

with λ, µ being Láme coefficients and tr being the trace operator.
We have the following relation

divσ̃=− fff⇔div(σ−cup p· I)=− fff
⇔−div(2µε+λtrε· I)+divcup p· I= fff
⇔−2µdivε+λdiv(tr(ε)· I)+divcup p· I= fff
⇔−2µdivε+λdiv(tr(ε)· I)+divcup p· I= fff

⇔−µdivgradu−µdiv(gradu)T−λgraddivu+cup gradp= fff
⇔−µdivgradu−(λ+µ)graddivu+cup gradp= fff .
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Denote θ as the increment of fluid volume per unit volume of soil, then,

θ= cpu divu+cpp p, (2.5)

the momentum balance of fluid satisfies the Darcy law

q=−K∇p, (2.6)

and the mass conservative law of the incompressible fluid is presented as

∂θ

∂t
=−divq+S f , (2.7)

where S f representing the flow rate from an external source.
From (2.5)-(2.7), we have the following relation

∂(cpu divu)
∂t

+
∂(cpp p)

∂t
+div(−K∇p)=S f . (2.8)

Finally, poroelasticity model problem is described as
−µdivgradu−(λ+µ)graddivu+cup gradp=− fff ,
∂(cpu divu)

∂t
+

∂(cpp p)
∂t

+div(−K∇p)=S f .
(2.9)

General boundary condition of this system is represented as

p=0 on Γp, ∇p·n=0 on Γ f , uuu=0 on Γd, σ ·n= t on Γt,

with ∂Ω= Γp∪Γ f for pressure variable and ∂Ω= Γd∪Γt for displacement variable. The
initial condition is

divuuu(0)=0 in Ω.

For simplicity, in this paper, we will consider the model problem with cup = cpu = 1,
cpp = 0 and K = κ/η in the system, where κ is the permeability of the porous skeleton
and η is the viscosity of the pore fluid. The existence and uniqueness of the solution
of this model problem was proved by Z̆enis̆ek [23]. In this work, we mainly consider
constructing uniformly convergent multigrid algorithm, therefore, we will confine our
study in numerical solution of model problem with fixed time, i.e., we treat time step
size δt as a parameter in the problem. We investigate the edge finite element method and
multigrid algorithm for following system,

−µ∆∆∆uuu−(λ+µ)∇∇·uuu+∇p= fff , (2.10a)

∇·uuu− κ

η
δt∆p= g, (2.10b)
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with δt being some constant related to the time step size. We also restrict the discussion of
the discretization method and multigrid method with homogeneous Dirichlet boundary
condition

p=0, uuu=0 on ∂Ω,

which corresponding to Γ f =Γt =0.
We first introduce some notations and spaces that used in this study. We denote (·,·)

as the inner product in L2(Ω) and Wm,q as standard Sobolev space with norm ‖·‖m,q

given by ‖v‖q
m,q=∑α≤m‖Dαv‖q

Lq(Ω)
. For q=2, we let Hm(Ω)=Wm,2(Ω), ‖·‖m=‖·‖m,2 and

‖·‖=‖·‖0,2. H1
0(Ω) be the subspace of H1(Ω) with homogenous boundary condition. Let

H(rot)={vvv|vvv∈ (L2(Ω))2, rotvvv∈L2(Ω)},
H0(rot)={vvv|vvv∈H(rot), vvv×n=0},

with n being the normal vector of the boundary. Differential operators of grad,div and
rot that used in the content are defined as follows

gradq=
( ∂q

∂x
,
∂q
∂y

)t
, curlq=

( ∂q
∂y

,− ∂q
∂x

)t
, divvvv=

∂v1

∂x
+

∂v2

∂y
, rotvvv=

∂v2

∂x
− ∂v1

∂y
,

with t on top right corner representing the transpose of a vector or matrix.
It is easy to check that the vector Laplace operator can be represented as

−∆∆∆=curlrot−graddiv.

We first introduce the intermediate variable ω=−divuuu, then, (2.10) can be presented as
following differential system

ω+divuuu=0,
µcurlrotuuu+(λ+2µ)gradω+gradp= fff ,

divuuu−δt
κ

η
divgradp= g.

The weak form of the system can be represented as: find (ω,uuu,p) ∈ H1(Ω)×H(rot)×
H1(Ω) such that

−(ω,τ)+(uuu,∇τ)=(uuu·nnn,τ)∂Ω, ∀τ∈H1(Ω),
(µ∇×uuu,∇×vvv)+((λ+2µ)∇ω,vvv)+(∇p,vvv)=( fff ,vvv)−(∇×uuu×nnn,vvv)∂Ω, ∀vvv∈H(rot),

(uuu,∇q)−
(

δt
κ

η
∇p,∇q

)
=−(g,q)+(uuu·nnn,q)∂Ω−(∇p·n,q)∂Ω, ∀q∈H1(Ω).

(2.11)

Recall the boundary condition in the model, we have

uuu=0 on ∂Ω⇔uuu·nnn=0 and uuu×nnn=0 on ∂Ω.
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The normal boundary condition of uuu is enforced weakly by dropping the right hand side
in the first equation of (2.11) and the tangential boundary condition uuu×nnn= 0 is enforce
in the strong sense, i.e., uuu ∈ H0(rot). We enforce the boundary condition of p in the
strong sense too, i.e., p∈H1

0(Ω). Then, the weak formulation (2.11) is presented to find
(ω,uuu,p)∈H1(Ω)×H0(rot)×H1

0(Ω) such that


−(ω,τ)+(uuu,∇τ)=0, ∀τ∈H1(Ω),
(µ∇×uuu,∇×vvv)+((λ+2µ)∇ω,vvv)+(∇p,vvv)=( fff ,vvv), ∀vvv∈H0(rot),

(uuu,∇q)−
(

δt
κ

η
∇p,∇q

)
=−(g,q), ∀q∈H1

0(Ω).
(2.12)

For the discrete form, we use the piecewise continuous polynomial to approximate
Sobolev spaces H1(Ω), H1

0(Ω) and Nédélec edge element to approximate the displace-
ment space. Suppose Vh, Nh, V0

h represent the discrete finite element spaces of H1(Ω),
H0(rot), H1

0(Ω), respectively. The discrete weak formulation of the system (2.12) can be
represented as finding (ωh,uuuh,ph)∈Vh×Nh×V0

h such that,


−(ωh,τ)+(uuuh,∇τ)=0, ∀τ∈Vh,
(µ∇×uuuh,∇×vvv)+((λ+2µ)∇ωh,vvv)+(∇ph,vvv)=( fff ,vvv), ∀vvv∈Nh,

(uuuh,∇q)−
(

δt
κ

η
∇ph,∇q

)
=−(g,q), ∀q∈V0

h.
(2.13)

In order to presenting the matrix form of the system, we shall describe the incidence
matrix in two-dimension in the following. Suppose Ω⊂R2 is divided by uniform or quasi
uniform triangular mesh with Nt elements, Ne edges and Nv nodes. The cells, edges and
nodes of the triangulation T are denoted generically by τi,ej and νk. For each edge ej, we
fix a tangential direction t j and normal direction nj, such that (nj,t j) are oriented like the
(x,y) axes of the coordinate system. The Nt × Ne element-edge incidence matrix R and
the Ne × Nv edge-node incidence matrix G of the triangulation T are defined as follows,

Ri,j :=


+1, if nj is directed out of element τi,
−1, if nj is directed into element τi,
0, if nj does not meet element τi.

Gj,k :=


+1, if t j is directed into node νk,
−1, if t j is directed out of node νk,
0, if t j does not meet node νk.

Note that R and G are discrete version of rot and grad operators without scaling. Then,
the continous relation rotgrad=0 implies the disrete relationshipRG=0.
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Now, the corresponding matrix form of the discrete system is:
−Mv G t Me 0

(λ+2µ)MeG µRt MtR MeG

0 G t Me −δt
κ

η
G t MeG


Wh

Uh
Ph

=

 0
Me f I
−Mvg

, (2.14)

where Mv, Me, Mt are mass matrices in H(grad), H(rot), L2(Ω) respectively.
Now, denote

B=G t Me (representing−div operator),

and we introduce the following notations as the matrix form of the operator with bound-
ary conditions:

B̃0 : Enforce the boundary condition ofutoB,
B0 : Enforce the boundary condition ofu,ptoB,
R0 : Enforce the boundary condition ofuto incidence matrixR,
C0 : Enforce the boundary condition ofpto scalar Laplace operator,
G0 : Enforce the boundary condition ofu,pto the incidence matrixG,
Mv0 : Enforce the boundary condition ofωto the mass matrixMv.

Then, after adding the boundary condition and eliminate Wh from the first equation of
system (2.14), we get the following matrix system

L=

(λ+2µ)B̃t
0M−1

v B̃0+µRt
0MtR0 Bt

0

B0 −δt
κ

η
C0

=

(
A Bt

B −Ap

)
,

where L being coefficient matrix of the system to displacement unknown vector Uh and
pressure unknown vector Ph. A, Ap are representing matrix form of vector Laplace and
scalar Laplace operators multiplied by some constants, It is obvious that the matrix form
of the model problem is a saddle point problem with both vector Laplace and scalar
Laplace operator on the diagonals. In the following, we will focus on construct the uni-
formly convergence multigrid method to mesh size h and time step size δt for this system.

3 Multigrid algorithm based on distributive Gauss Seidel
smoother

The purpose of this section is to construct uniformly convergent multigrid algorithm for
the poroelasticity model problem discretized by finite element method discussed in Sec-
tion 2. As we know, in order to design a uniformly convergent multigrid algorithm,
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smoother is a very important ingredient. In this paper, we mainly study using the de-
coupled relaxation, i.e., the distributive Gauss-Seidel, as the smoother in the multigrid
algorithm.

In order to present the distributive Gauss Seidel relaxation method, we first present
the coefficient operator matrix of the system (2.10) as L in the follows,

L =

−µ∆∆∆−(λ+µ)graddiv grad

−div
(

δt
κ

η

)
∆

,

and construct the corresponding transform operator as

M =

(
I grad

(λ+µ)div −(λ+2µ)divgrad

)
,

then, we have

L ·M =

 −µ∆∆∆ 0

−div+
(

δt
κ

η
(λ+µ)

)
∆div −divgrad+δt

κ

η
(λ+2µ)∆divgrad

.

As we can see from the continuous operator form, after multiplication by M , the result-
ing system L ·M is a block lower triangular system and theoretically we can solve the
first equation with displacement variable uuu only and then solve the second equation for
unknown pore pressure p with known displacement uuu.

The matrix form of the transform operator M is

M̄=

(
I G

−(λ+µ)M−1
v B −(λ+2µ)M−1

v BG

)
.

After enforcing the boundary condition, we have transform matrix with boundary as

M=

(
I G0

−(λ+µ)M−1
v0 B0 −(λ+2µ)M−1

v0 B0G0

)
=

(
I M12

M21 M22

)
.

Then, the transformed system with boundary condition is

LM=

(λ+2µ)B̃t
0M−1

v B̃0+µRt
0MtR0 Bt

0

B0 − δtκ
η
R0

( I G0

−(λ+µ)M−1
v0 B0 −(λ+2µ)M−1

v0 B0G0

)

≈

(λ+2µ)B̃t
0M−1

v B̃0+µRt
0MtR0−(λ+µ)Bt

0M−1
v0 B0 0

B0+
δtκ
η

(λ+µ)C0M−1
v0 B0 B0G0+

δtκ
η

(λ+2µ)C0M−1
v0 B0G0

.
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Remark 3.1. The explicit formula of (1,2) block of the matrix LM is

(λ+2µ)(B̃t
0M−1

v B̃0−Bt
0M−1

v0 B0)G0+µRt
0MtR0G0.

If no boundary condition enforced, formula in the bracket of the fist term is exact zero and
RG=0, which is the discrete form of rotgrad=0. However, after enforcing the boundary
condition, the result matrix form approximates to zero and nonzero terms appear on
boundary elements of the triangulation.

Remark 3.2. For the (1,1) block of the matrixLM, as we can see from the expression, (λ+
2µ)B̃t

0M−1
v B̃0+µRt

0MtR0−(λ+µ)Bt
0M−1

v0 B0 is exactly the discretization of vector Laplace
operator(times by µ) in the interior grid. After enforce the boundary condition of uuu,p,
this discrete block approximates to the vector Laplace operator, therefore, we will choose
smoothers that is efficient for vector Laplace for this term.

Remark 3.3. We also notice that after transformation of the system, the (2,2) block ofLM
is a fourth order operator, which makes the smoothing to this system more complicated
than the well known Stokes problem.

Now, denote T as the approximate transformed system

T =

(λ+2µ)B̃t
0M−1

v B̃0+µRt
0MtR0−(λ+µ)Bt

0M−1
v0 B0 0

B0+δt
κ

η
(λ+µ)C0M−1

v0 B0 B0G0+
δtκ(λ+2µ)

η
C0M−1

v0 B0G0


=

(
Su 0
T21 Sp

)
,

with Su being a matrix approximating vector Laplace operator and Sp being an matrix of
some fourth order operator.

The distributive Gauss Seidel iteration method for this system is represented as fol-
lows with initial guess (uuu0,p0)t,(

uuuk+1

pk+1

)
=

(
uuuk

pk

)
+vMT −1

[(
fff
g

)
−L

(
uuuk

pk

)]
, k=0,1,··· , (3.1)

with v being some relaxation parameter.
We then simplify the update process in the iteration by introducing an intermediate

step (
ru
rp

)
=

(
fff
g

)
−L

(
uuuk

pk

)
.

We split the computation ofMT −1 as(
uuuk+1

pk+1

)
=

(
uuuk

pk

)
+v

(
I 0

M21 0

)(
Su\ru

0

)
+v

(
0 M12
0 M22

)(
0

−S−1
p T21S−1

u ru+S−1
p rp

)
.



1348 L. P. Chen and Y. P. Chen / Adv. Appl. Math. Mech., 11 (2019), pp. 1339-1357

Denote (
uuuk+ 1

2

pk+ 1
2

)
=

(
uuuk

pk

)
+v

(
Su\ru

M21(Su\ru)

)
.

Notice that

g−Buuuk+ 1
2 +Ap pk+ 1

2 =−vT21S−1
u ru+rp

=v(−T21S−1
u ru+rp)+(rp−vrp).

We denote

r1
p = g−Buuuk+ 1

2 +Ap pk+ 1
2−(rp−vrp)

=v(−T21S−1
u ru+rp),

then (
uuuk+1

pk+1

)
=

(
uuuk+ 1

2

pk+ 1
2

)
+

(
M12(Sp\r1

p)

M22(Sp\r1
p)

)
.

Detail of the implementation of distributive Gauss Seidel relaxation can be repre-
sented as follows:

Algorithm 3.1. Distributive Guass Seidel relaxation.
Step 1. Form residual

ru = fff−Auuuk−Bt pk,

rp = g−Buuuk+Ap pk.

Step 2. Relaxation of velocity uuu and p by solving momentum equation:

eu =v(Su\ru),

uuuk+ 1
2 =uuuk+eu,

pk+ 1
2 = pk+M21eu.

Step 3. Form residual and relax a fourth order equation for pressure:

r1
p = g−Buuuk+ 1

2 +Ap pk+ 1
2−(rp−vrp),

ep =Sp\r1
p.

Step 4. Update uuu, p:

uuuk+1=uuuk+ 1
2 +M12ep,

pk+1= pk+ 1
2 +M22ep.
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Remark 3.4. As we have discussed the properties of the matrices Su and Sp in the trans-
formed system T in Remarks 3.2 and 3.3. Effective smoothers for matrix Su and Sp are
needed. As we know, Gauss-Seidel iterative method works pretty well for the high fre-
quency of the Laplace or vector Laplace operator. Therefore, we use the 2-step Gauss-
Seidel algorithm for the vector Laplace matrix Su. Numerical test show that Gauss-Seidel
method works very well even though the matrix Su is not exactly discrete matrix of the
vector Laplace operator because of the boundary condition.

Remark 3.5. For the fourth order matrix Sp, direct Gauss Seidel smoother does not per-
form well. While since matrix Sp is approximately the Schur complement matrix of
block system L, it determines the total performance of the distributive Gauss Seidel it-
erative methods. The good news is from the construction of matrix Sp, we find that Sp
mainly consists of two matrices that corresponding to two second order Laplace opera-
tors. Therefore, we can use the simple Gauss-Seidel algorithm for each matrix. Detail of
analysis and the algorithm is described as follows and in Algorithm 3.2.

Since

Sp =
[

Mv0+δt
κ

η
(λ+2µ)C0

]
M−1

v0 B0G0

=A1M−1
v0 A2,

where A1 = Mv0+δt κ
η (λ+2µ)C0, A2 = B0G0 and C0 is the discrete matrix of scalar

Laplace operator with boundary condition, B0,G0 are discrete matrix forms of operators
−div,grad enforced with boundary condition respectively. Then an effective smoother
can be constructed as follows:

Algorithm 3.2. An algorithm for Spep = r1
p.

1. Use two step Gauss-Seidel iterative method for system

A1eq = r1
p.

2. Multiplied by mass matrix:

eq =Mv0eq.

3. Use two-step Gauss-Seidel algorithm for system

A2ep = eq.

Since both A1, A2 are scalar Laplace operators, standard Gauss-Seidel iteration
method is good smoother for these equations.
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Remark 3.6. We here need to emphasize that the parameter v in Step 2 in the smoothing
procedure is crucial to the convergence property of the distributive Gauss Seidel iterative
method and also to the uniform convergence property of the multigrid algorithm. Values
of the parameter varies with respect to the regularity of the mesh. For uniform grid, we
choose v=0.5 in implementation.

We also study the multigrid algorithm as the right preconditioner for GMRes itera-
tive method for the poroelasticity model prolem, i.e., the GMRes method is used for the
following system (

A Bt

B −Ap

)(
A Bt

B −Ap

)−1

MG

(
f̃ff
g̃

)
=

(
fff
g

)
,

where (
uuu
p

)
=

(
A Bt

B −Ap

)−1

MG

(
f̃ff
g̃

)
and

(
A Bt

B −Ap

)−1

MG

(
f̃ff
g̃

)
,

representing applying multigrid algorithm for(
A Bt

B −Ap

)(
uuu
p

)
=

(
f̃ff
g̃

)
.

As we will see in the following numerical experiments, the preconditioned GMRes
method is almost uniformly with respect to both discretization size h and parameter δt.

4 Numerical experiments

In this section, we will implement the finite element method as well as the multigrid
algorithm for the following poroelasticity equation

−µ∆∆∆uuu−(λ+µ)graddivuuu+∇p= fff ,
divuuu−δt∆p= g,

with homogeneous Dirichlet boundary condition

uuu=0, p=0, x∈∂Ω,

with Ω=[−1,1]2. We choose parameters in (2.10) η=κ=λ=µ=1 for simplicity. Relaxation
parameter v is chosen as 0.5 in implementation. We test the following two examples, i.e.,
we choose functions fff , g such that the exact solutions of examples are as follows.

Example 4.1. The exact displacement and pore pressure are

p(x,y)= x2(x−1)2y2(y−1)2,

uuu(x,y)=
(

δt(2x2−2)(2x−1)y2(y−1)2

δtx2(x−1)2(2y2−2)(2y−1)

)
.
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Figure 1: Triangle meshe1 (left) used mesh2 (right) for test.

Example 4.2. The exact displacement and pore pressure are

p(x,y)=sin2πxsin2πy,

uuu(x,y)=
(

2δtπ(cos2πx−1)sin2πy
2δtπ(cos2πy−1)sin2πx

)
.

We only consider the performance of finite element method and multigrid algorithm
on a uniform mesh and refine the mesh uniformly. In the triangulation, we mainly choose
two kinds of meshes, one is the uniform mesh (mesh1) which is derived by uniformly re-
fining a square, see first figure of Fig. 1 and the second one (mesh2) is almost uniform,
see the second figure of Fig. 1. Lowest order Nédélec element is used for displacement
variable and piecewise linear finite element is used for pore pressure in our test. For the
multigrid algorithm with distributive Gauss Seidel iteration method, we mainly focus on
the W-cycle with two-step presmoothing and two-step postsmoothing (W(2,2)-MG) and
preconditioned flexible GMRes method with V(2,2)-MG (V-cycle multigrid method with
two-step presmoothing and two-step postsmoothing) as preconditioner. Stop criterion
of the multigrid algorithm and the preconditioned GMRes method is chosen as relative
residual error less than tolerance of 10−6. In this multigrid algorithm, we mainly concern
the iteration numbers as well as the convergence factor to different discretization mesh
sizes h and parameter δt. For the Preconditioned GMRes method, we only present the
number of iterations. Finite element package iFEM [28] is used during the implementa-
tion.

4.1 Convergence order of finite element method for the poroelasticity model

We first present the convergence order of the finite element discretization method. We
use Nédélec element for the poroelasticity model problem with different parameter δt
and uniformly refined the coarse mesh to derive the fine mesh. We first present the error
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Figure 2: Convergence order in L2 for Example 4.1 (left) and Example 4.2 (right) with δt=0.01 on mesh1 (first
row) and mesh2 (second row).

of Example 4.1, Example 4.2 in L2(Ω) norm on mesh1 and mesh2, then show the con-
vergence order of displacement uuu in H(rot) norm and pore pressure in energy norm of
H1(Ω) on both meshes. From numerical experiment results in Fig. 2, we can see that both
displacement uuu and pore pressure p have optimal order in L2(Ω) norm on both meshes,
i.e., we have

‖uuu−uuuh‖.h and ‖p−ph‖.h2.

From Fig. 3, we can also see the convergence order of uuu in norm ‖·‖rot and p in norm
‖·‖1 are optimal on the both meshes by this finite element method. On the mesh1. The
convergence order of displacement uuu in H(rot) norm is ‖uuu−uuuh‖rot.h and pressure p in
energy norm of H1 is ‖p−ph‖1.h.

4.2 Performance of multigrid algorithm and preconditioned GMRes method

In this subsection, we will display the performance of multigrid algorithm as well as
the preconditioned flexible GMRes method (without restart) for the poroelasticity prob-
lem. Distributive Gauss-Seidel iteration is used as a smoother in the multigrid algo-
rithm. Number of iterations and convergence factor (adjacent ratio of relative residual in
bracket) are shown for the multigrid algorithm. We first demonstrate results of the multi-
grid method with V-cycle for Example 4.1 on both two types of meshes. Dof in the table
representing degree of freedom which depends on mesh size h and ∗ in the table means
the method does not convergence within 200 iterations. As we will see from the numeri-



L. P. Chen and Y. P. Chen / Adv. Appl. Math. Mech., 11 (2019), pp. 1339-1357 1353

10
5

10
−5

10
−4

Number of unknowns

E
rr

or

Convergence order

 

 

||u−u
h
||

rot

C
1
N−1.0025

||p−p
h
||

1

C
2
N−0.50152

10
5

10
−2

10
−1

Number of unknowns

E
rr

or

Convergence order

 

 

||u−u
h
||

rot

C
1
N−0.50146

||p−p
h
||

1

C
2
N−0.5014

10
4

10
−4

Number of unknowns

E
rr

or

Convergence order

 

 

||u−u
h
||

rot

C
1
N−0.53785

||p−p
h
||

1

C
2
N−0.5034

10
5

10
−1

Number of unknowns

E
rr

or

Convergence order

 

 

||u−u
h
||

rot

C
1
N−0.50153

||p−p
h
||

1

C
2
N−0.50145

Figure 3: Convergence order in H(rot)−H1 for Example 4.1 (left) and Example 4.2 (right) with δt=0.01 on
mesh1 (first row) and mesh2 (second row).

cal results, the V-cycle multigrid method with two-step pre and two-step post smoothing
is an almost uniform method for large δt, see Tables 1, 2. We mainly focus on numeri-
cal results of the W-cycle multigrid algorithm as well as the V(2,2)-MG preconditioned
flexible GMRes method. As we can see from the data in Tables 3, 4 and 5, 6, W-cycle
multigrid with both two pre- and post-smoothing is an approximately uniform conver-
gent algorithm to mesh size h on both uniform meshes. We also test the W-cycle multigrid
algorithm to different parameters δt. Numerical results show that number of iterations
has a little increase when δt=100,10−6,10−8 but is uniform when δt=1,10−2,10−4. There-
fore, the multigrid method is almost uniformly convergent to the parameter δt. Same
results can also be found for the preconditioned GMRes method, see Tables 7, 8, 9 and 10.

Table 1: V(2,2)-MG with DGS smoother for Example 4.1 w.r.t different parameters h,δt on mesh1.

Dof
δt 1e+2 1e-0 1e-2 1e-4 1e-6 1e-8

16129 24(0.41) 18(0.41) 14(0.38) 12(0.31) 24(0.62) 24(0.62)
65025 27(0.45) 21(0.44) 16(0.42) 13(0.36) 81(0.88) 110(0.90)

261121 29(0.46) 23(0.46) 17(0.44) 14(0.40) * *
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Table 2: V(2,2)-MG with DGS smoother for Example 4.1 w.r.t different parameters h, δt on mesh2.

Dof
δt 1e+2 1e-0 1e-2 1e-4 1e-6 1e-8

16129 16(0.28) 12(0.28) 9(0.36) 11(0.27) 24(0.68) 25(0.62)
65025 17(0.29) 13(0.29) 10(0.29) 12(0.31) 64(0.86) 86(0.89)
261121 18(0.31) 14(0.40) 11(0.33) 12(0.33) * *

Table 3: W(2,2)-MG with DGS smoother for Example 4.1 w.r.t different parameters h, δt on mesh1.

Dof
δt 1e+2 1e-0 1e-2 1e-4 1e-6 1e-8

16129 23(0.39) 18(0.39) 13(0.37) 8(0.18) 15(0.45) 15(0.46)
65025 25(0.42) 20(0.42) 15(0.39) 8(0.2) 16(0.49) 17(0.52)

261121 26(0.43) 21(0.43) 16(0.40) 9(0.3) 15(0.45) 19(0.56)

Table 4: W(2,2)-MG with DGS smoother for Example 4.1 w.r.t different parameters h, δt on mesh2.

Dof
δt 1e+2 1e-0 1e-2 1e-4 1e-6 1e-8

16129 15(0.27) 12(0.27) 9(0.26) 7(0.09) 15(0.44) 15(0.46)
65025 16(0.28) 13(0.28) 10(0.28) 6(0.18) 16(0.47) 17(0.51)

261121 17(0.29) 13(0.29) 10(0.28) 7(0.25) 14(0.43) 19(0.55)

Table 5: W(2,2)-MG with DGS smoother for Example 4.2 w.r.t different parameters h, δt on mesh1.

Dof
δt 1e+2 1e-0 1e-2 1e-4 1e-6 1e-8

16129 23(0.39) 18(0.41) 14(0.37) 7(0.16) 12(0.45) 12(0.46)
65025 26(0.42) 20(0.42) 16(0.40) 8(0.23) 12(0.48) 13(0.52)

261121 26(0.43) 22(0.43) 17(0.41) 10(0.3) 11(0.45) 14(0.56)

Table 6: W(2,2)-MG with DGS smoother for Example 4.2 w.r.t different parameters h, δt on mesh2.

Dof
δt 1e+2 1e-0 1e-2 1e-4 1e-6 1e-8

16129 15(0.27) 12(0.27) 9(0.26) 6(0.08) 11(0.44) 12(0.46)
65025 16(0.28) 13(0.28) 10(0.28) 6(0.19) 12(0.47) 13(0.51)

261121 17(0.29) 14(0.29) 11(0.28) 7(0.24) 11(0.43) 14(0.55)

5 Conclusions

In this work, we investigate multigrid algorithm with distributive Gauss Seidel relaxation
for poroelasticity model problem by finite element method with homogeneous boundary
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Table 7: GMRes with preconditioner V(2,2)-MG for Example 4.1 w.r.t different parameters h, δt on mesh1.

Dof
δt 1e+2 1e-0 1e-2 1e-4 1e-6 1e-8

16129 14 12 10 9 11 11
65025 17 14 12 10 14 14

261121 19 15 13 11 16 17

Table 8: GMRes with preconditioner V(2,2)-MG for Example 4.1 w.r.t different parameters h, δt on mesh2.

Dof
δt 1e+2 1e-0 1e-2 1e-4 1e-6 1e-8

16129 10 8 7 8 10 10
65025 11 9 8 9 12 13

261121 13 10 9 9 14 15

Table 9: GMRes with preconditioner V(2,2)-MG for Example 4.2 w.r.t different parameters h, δt on mesh1.

Dof
δt 1e+2 1e-0 1e-2 1e-4 1e-6 1e-8

16129 14 12 10 9 12 12
65025 17 13 12 11 14 15

261121 19 15 13 12 17 18

Table 10: GMRes with preconditioner V(2,2)-MG for Example 4.2 w.r.t different parameters h, δt on mesh2.

Dof
δt 1e+2 1e-0 1e-2 1e-4 1e-6 1e-8

16129 11 8 8 8 11 11
65025 12 9 9 9 14 14

261121 13 11 10 10 16 17

conditions. Nédélec edge element and piecewise continuous Lagrange polynomial are
used for the displacement and pressure variables of the model problem. Numerical ex-
periments show that the finite element discretization method achieves optimal order and
the constructed multigrid method is uniformly convergent to both mesh sizes h and pa-
rameter δt. In our future work, we will make a theoretically convergence and stability
analysis for the finite element method as well as the multigrid algorithm.
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