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Abstract. We present the finite difference/element method for a two-dimensional
modified fractional diffusion equation. The analysis is carried out first for the time
semi-discrete scheme, and then for the full discrete scheme. The time discretiza-
tion is based on the L1-approximation for the fractional derivative terms and the
second-order backward differentiation formula for the classical first order deriva-
tive term. We use finite element method for the spatial approximation in full dis-
crete scheme. We show that both the semi-discrete and full discrete schemes are
unconditionally stable and convergent. Moreover, the optimal convergence rate is
obtained. Finally, some numerical examples are tested in the case of one and two
space dimensions and the numerical results confirm our theoretical analysis.
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1 Introduction

The time fractional derivative is a useful tool for modeling anomalous subdiffusion [17,
18], e.g., the time fractional diffusion equation

∂u(x, t)
∂t

= µ 0D1−β
t ∆u(x, t) + f (x, t), x ∈ Ω, t ∈ [0, T], (1.1)

where ∆ is the usual Laplace operator and 0 < β < 1, µ is a positive constant; 0D1−β
t

denotes the Riemann-Liouville fractional derivative of order 1 − β

0D1−β
t v(t) =

1
Γ(β)

∂

∂t

∫ t

0

v(τ)
(t − τ)1−β

dτ.
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For further investigating the less anomalous subdiffusion behavior of diffusion pro-
cesses, a modified time fractional diffusion equation was proposed by introducing a
secondary time fractional derivative acting on the diffusion operator [11, 21, 22]

∂u(x, t)
∂t

=
(
µ0Dt

1−β + ν0Dt
1−γ

)
∆u(x, t) + f (x, t), x ∈ Ω, t ∈ [0, T], (1.2)

where 0 < β, γ ≤ 1, µ and ν are positive constants. The quantity u is defined as a
concentration or probability density function for the particles suspended in the liquid
on a bounded domain Ω. For the particles described by (1.2), the relation between the
mean square displacement of x(t) of the diffusion particles and the time t is

⟨x2(t)⟩ = 2dµ

Γ(β + 1)
tβ +

2dν

Γ(γ + 1)
tγ, (1.3)

instead of

⟨x2(t)⟩ = 2dµ

Γ(β + 1)
tβ,

corresponding to (1.1). In (1.3), the mean square displacement of x(t) is dominated
by larger power for short times while for longer times it is dominated by the smaller
power.

There are already some important progresses for the numerical solutions of the
one-dimensional case of the time fractional diffusion equation (1.1), e.g., the finite dif-
ference method [4, 6, 10, 23–25]; Lin and Xu discuss the spectral method [14] with the
convergence rate O(τ2−β + τ−1N−m), and Jiang and Ma analyze the finite element
method [9] and show that the optimal convergent rate O(τ2−β + N−m) can be ob-
tained, where m measures the regularity of the solution in space. Liu et al. study
the finite element method for the one-dimensional case of (1.2) [16] with the conver-
gent rate O(τ + τ−1N−m). Here we further discuss the finite element method for (1.2)
by using the L1 approximation [5, 14] to discretize the time fractional derivatives and
show that the optimal convergent rate O(τ1+min {β,γ} + N−m) is obtained. Instead of
designing the numerical scheme straightforwardly, we first transform the Eq. (1.2) into

∂u(x, t)
∂t

=
(
µD1−β

∗ + νD1−γ
∗

)
∆u(x, t) + µ

∆u(x, 0)
Γ(β)t1−β

+ ν
∆u(x, 0)
Γ(γ)t1−γ

+ f (x, t), x ∈ Ω, t ∈ [0, T], (1.4)

where the relation between the Caputo fractional derivative and the Riemann-Liouville
fractional derivative is used, given as [19]

0D1−ϑ
t v(t) = D1−ϑ

∗ v(t) +
v(0)

Γ(ϑ)t1−ϑ
, 0 < ϑ ≤ 1,
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and the Caputo fractional derivative of order 1 − ϑ is defined by

D1−ϑ
∗ v(t) =

1
Γ(ϑ)

∫ t

0

∂τv(τ)
(t − τ)1−ϑ

dτ, 0 < ϑ ≤ 1. (1.5)

The initial-boundary conditions of (1.4) are given as

u(x, 0) = u0(x), x ∈ Ω; u(x, t)|∂Ω = 0, 0 < t < T. (1.6)

The theoretical analysis is carried out first for the time discretization scheme, and then
for the full discrete scheme. We show that both the semi-discrete and full discrete
schemes are unconditionally stable and convergent. In the analysis of the numeri-
cal scheme, we assume that problem (1.4), (1.6) has a unique and sufficiently smooth
solution.

The rest of the paper is organized as follows. In Section 2, the semi-discrete scheme
is presented for the problem (1.4)-(1.6), and the stability and convergence analysis of
the semi-discrete scheme are performed. The full discrete scheme is constructed by
using the finite element method to discretize the spacial variables in Section 3, and
the detailed stability analysis and error estimates are provided. Section 4 makes the
numerical experiments to verify the theoretical results and some physical simulations
are also carried out to further show the robustness of the schemes. We conclude this
paper with some discussions in the last section.

2 Semi-discrete scheme and its theoretical analysis

We begin this section by introducing several necessary notations, concepts, and basic
facts about the functional spaces endowed with standard norms and inner products
that will be used in the subsequent discussions [1]

H1(Ω) :=
{

v ∈ L2(Ω), Dαv ∈ L2(Ω), |α| ≤ 1
}

,

H1
0(Ω) :=

{
v ∈ H1(Ω), v|∂Ω = 0

}
,

Hm(Ω) :=
{

v ∈ L2(Ω), Dαv ∈ L2(Ω) for all |α| ≤ m
}

,

where Ω ⊂ Rd, α is a d-tuple of non-negative integers αi, the length of α is given by
|α| := ∑d

i=1 αi, Dαv denotes the usual partial derivative (∂/∂x1)
α1 · · · (∂/∂xd)

αd v. Here
we consider the case d = 2. The standard inner products of L2(Ω) and H1(Ω) are
defined, respectively, by

(u, v) =
∫

Ω
uvdx, (u, v)1 = (u, v) + (∇u,∇v),

and the corresponding norms are defined as

∥v∥0 = (v, v)
1
2 , ∥v∥1 = (v, v)

1
2
1 , |v|1 = (∇v,∇v)

1
2 .
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The norm ∥ · ∥m of the space Hm(Ω) is defined by

∥v∥m =
(

∑
0≤|α|≤m

∥Dαv∥2
0

) 1
2
.

In the present paper, instead of using the above standard H1-norm, we use the follow-
ing weighted H1-norm

∥v∥w,1 =
[
∥v∥2

0 +
β̃ + γ̃

2
|v|21

] 1
2
, (2.1)

where

β̃ =
4µτβ

Γ(1 + β)
, γ̃ =

4ντγ

Γ(1 + γ)
, (2.2)

and τ is the time stepsize, and 0 < β, γ ≤ 1. It is easy to prove that the weighted
H1-norm defined by (2.1) is equivalent to the standard H1-norm.

Now, let’s first discretize the time fractional derivatives of (1.4)

D1−β
∗ ∆u(x, tn+1) =

1
Γ(1 + β)τ1−β

[
∆u(x, tn+1) +

n−1

∑
j=0

(aj+1 − aj)∆u(x, tn−j)

− an∆u(x, 0)
]
+ rn+1

β , (2.3)

where aj = (j + 1)β − jβ, tn = nτ and∣∣rn+1
β

∣∣ ≤Cτ1+β, (2.4)

here C is a constant depending on ∂2
t ∆u (see, e.g., [15]). In a similar way, we have

D1−γ
∗ ∆u(x, tn+1) =

1
Γ(1 + γ)τ1−γ

[
∆u(x, tn+1) +

n−1

∑
j=0

(bj+1 − bj)∆u(x, tn−j)

− bn∆u(x, 0)
]
+ rn+1

γ , (2.5)

where bj = (j + 1)γ − jγ and

|rn+1
γ | ≤ Cτ1+γ, (2.6)

C is a constant depending on ∂2
t ∆u. Furthermore, we use the second-order backward

differentiation formula to discretize the first order time derivative

∂u(x, t)
∂t

∣∣∣
t=tn+1

=
3u(x, tn+1)− 4u(x, tn) + u(x, tn−1)

2τ
+O(τ2), n ≥ 1, (2.7)
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and for the first step

∂u(x, t)
∂t

∣∣∣
t=t1

=
u(x, t1)− u(x, t0)

τ
+O(τ), n = 0. (2.8)

For convenience, we introduce a mesh function {gj}j≥0, and define the fractional dif-

ference operator Lβ
t by [15]

Lβ
t gn+1 =

1
Γ(1 + β)

n

∑
j=0

aj
gn+1−j − gn−j

τ1−β
, n ≥ 0, (2.9)

and Lγ
t by

Lγ
t gn+1 =

1
Γ(1 + γ)

n

∑
j=0

bj
gn+1−j − gn−j

τ1−γ
, n ≥ 0, (2.10)

and the difference operator

L1
t gn+1 =


3gn+1 − 4gn + gn−1

2τ
, n ≥ 1,

g1 − g0

τ
, n = 0.

(2.11)

Combining (1.4) with (2.9)-(2.11) leads to, for n ≥ 0,

L1
t u(x, tn+1) =(µLβ

t + νLγ
t )∆u(x, tn+1) +

µ

Γ(β)(n + 1)1−βτ1−β
∆u(x, 0)

+
ν

Γ(γ)(n + 1)1−γτ1−γ
∆u(x, 0) + f (x, tn+1) + rn+1, (2.12)

where

rn+1 = rn+1
1 + µrn+1

β + νrn+1
γ and rn+1

1 =
(∂u(x, t)

∂t

)∣∣∣
t=tn+1

−L1
t u(x, tn+1);

obviously rn+1
1 = O(τ2) for n ≥ 1, and rn+1

1 = O(τ) for n = 0. Denoting the approxi-
mation of u(x, tn) by un and omitting the truncation error, we obtain the semi-discrete
scheme of (1.4), for n ≥ 0,

L1
t un+1 = (µLβ

t + νLγ
t )∆un+1 +

µ

Γ(β)(n + 1)1−βτ1−β
∆u0

+
ν

Γ(γ)(n + 1)1−γτ1−γ
∆u0 + f n+1. (2.13)

More concretely, (2.13) is

3un+1 − 4un + un−1

2τ
=

µ

Γ(1 + β)τ1−β

[
∆un+1 +

n−1

∑
j=0

(aj+1 − aj)∆un−j − an∆u0
]

+
ν

Γ(1 + γ)τ1−γ

[
∆un+1 +

n−1

∑
j=0

(bj+1 − bj)∆un−j − an∆u0
]

+
µ

Γ(β)(n + 1)1−βτ1−β
∆u0 +

ν

Γ(γ)(n + 1)1−γτ1−γ
∆u0 + f n+1, n ≥ 1, (2.14)
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and for n = 0

u1 − u0

τ
=

µ

Γ(1 + β)τ1−β
(∆u1 − ∆u0) +

ν

Γ(1 + γ)τ1−γ
(∆u1 − ∆u0)

+
µ

Γ(β)τ1−β
∆u0 +

ν

Γ(γ)τ1−γ
∆u0 + f 1. (2.15)

According to (1.6), we supplement (2.14) and (2.15) with the initial and boundary con-
ditions as {

u0(x) = u0(x), x ∈ Ω,
un+1(x)|∂Ω = 0, n ≥ 0.

(2.16)

Then the weak formulations of (2.14) and (2.15) with the boundary condition (2.16)
are: for n ≥ 1, find un+1 ∈ H1

0(Ω), such that for all v ∈ H1
0(Ω)

2(3un+1 − 4un + un−1, v) =β̃
[
− (∇un+1,∇v) +

n−1

∑
j=0

(aj − aj+1)(∇un−j,∇v) + an(∇u0,∇v)
]

+ γ̃
[
− (∇un+1,∇v) +

n−1

∑
j=0

(bj − bj+1)(∇un−j,∇v) + bn(∇u0,∇v)
]

− β̃n+1(∇u0,∇v)− γ̃n+1(∇u0,∇v) + 4τ( f n+1, v), (2.17)

and for n = 0, find u1 ∈ H1
0(Ω) such that for all v ∈ H1

0(Ω)

(u1 − u0, v) =− β̃

4
(∇u1 −∇u0,∇v)− γ̃

4
(∇u1 −∇u0,∇v)− β̃1

4
(∇u0,∇v)

− γ̃1

4
(∇u0,∇v) + τ( f 1, v), (2.18)

where

β̃n+1 =
4µτβ

Γ(β)(n + 1)1−β
, γ̃n+1 =

4ντγ

Γ(γ)(n + 1)1−γ
, n ≥ 0. (2.19)

Next, based on the ideas developed in [7,14,15], we will carry out the stability analysis
of the semi-discrete scheme (2.17). Before this we give the following lemma which will
be used later.

Lemma 2.1 (see [15]). For the coefficients β̃, β̃n+1 and γ̃, γ̃n+1 defined in (2.2) and (2.19),
we have

β̃an+1 ≤ β̃n+1 ≤ β̃an, γ̃bn+1 ≤ γ̃n+1 ≤ γ̃bn, ∀n ≥ 0. (2.20)

The main stability results for the semi-discrete scheme (2.17)-(2.18) is given in the
following theorem.
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Theorem 2.1. The semi-discrete scheme (2.17)-(2.18) is unconditionally stable in the sense
that for all τ > 0, the following inequality holds

En+1 ≤ E1 +
8C2

ΩTτ

β̃n+1 + γ̃n+1
max
1≤j≤n

∥ f j+1∥2
0, n ≥ 1, (2.21)

where

En = ∥un∥2
0 + ∥2un − un−1∥2

0 +
β̃

2

n

∑
j=0

aj|un−j|21 +
γ̃

2

n

∑
j=0

bj|un−j|21, n ≥ 1, (2.22)

and CΩ given in (2.24) depends only on the domain Ω; moreover, for (2.18), we have

∥u1∥2
0 +

β̃

4

1

∑
j=0

aj|u1−j|21 +
γ̃

4

1

∑
j=0

bj|u1−j|21

≤∥u0∥2
0 +

β̃

4
a0|u0|21 +

γ̃

4
b0|u0|21 +

4C2
Ωτ2

β̃1 + γ̃1
∥ f 1∥2

0. (2.23)

Proof. For the initial step, choosing v = u1 in (2.18) leads to

∥u1∥2
0 ≤ 1

2
∥u0∥2

0 +
1
2
∥u1∥2

0 −
β̃

4
|u1|21 −

γ̃

4
|u1|21 +

β̃ − β̃1

8
|u0|21 +

β̃ − β̃1

8
|u1|21

+
γ̃ − γ̃1

8
|u0|21 +

γ̃ − γ̃1

8
|u1|21 + τ( f 1, u1).

Thus, using the Poincare inequality [20]

∥u1∥0 ≤ CΩ|u1|1, (2.24)

we get

∥u1∥2
0 +

β̃

4
|u1|21 +

γ̃

4
|u1|21 +

β̃1

4
|u0|21 +

γ̃1

4
|u0|21

≤∥u0∥2
0 +

β̃

4
|u0|21 +

γ̃

4
|u0|21 −

β̃1 + γ̃1

4
|u1|21 + 2τ∥ f 1∥0∥u1∥0

≤∥u0∥2
0 +

β̃

4
|u0|21 +

γ̃

4
|u0|21 −

β̃1 + γ̃1

4
|u1|21 + 2CΩτ∥ f 1∥0|u1|1

≤∥u0∥2
0 +

β̃

4
|u0|21 +

γ̃

4
|u0|21 −

β̃1 + γ̃1

4
|u1|21 +

4C2
Ωτ2

β̃1 + γ̃1
∥ f 1∥2

0 +
β̃1 + γ̃1

4
|u1|21

=∥u0∥2
0 +

β̃

4
|u0|21 +

γ̃

4
|u0|21 +

4C2
Ωτ2

β̃1 + γ̃1
∥ f 1∥2

0,

which reaches (2.23).
For n ≥ 1, choosing v = un+1 in (2.17), and using the relation [8, 15]

2(3un+1 − 4un + un−1, un+1)

=∥un+1∥2
0 − ∥un∥2

0 + ∥2un+1 − un∥2
0 − ∥2un − un−1∥2

0 + ∥un+1 − 2un + un−1∥2
0, (2.25)
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we obtain

∥un+1∥2
0 − ∥un∥2

0 + ∥2un+1 − un∥2
0 − ∥2un − un−1∥2

0 + ∥un+1 − 2un + un−1∥2
0

=− β̃|un+1|21 + β̃
n−1

∑
j=0

(aj − aj+1)(∇un−j,∇un+1) + β̃an(∇u0,∇un+1)

− γ̃|un+1|21 + γ̃
n−1

∑
j=0

(bj − bj+1)(∇un−j,∇un+1) + γ̃bn(∇u0,∇un+1)

− β̃n+1(∇u0,∇un+1)− γ̃n+1(∇u0,∇un+1) + 4τ( f n+1, un+1)

≤− β̃|un+1|21 +
β̃

2

n−1

∑
j=0

(aj − aj+1)|un−j|21 +
β̃

2

n−1

∑
j=0

(aj − aj+1)|un+1|21

− γ̃|un+1|21 +
γ̃

2

n−1

∑
j=0

(bj − bj+1)|un−j|21 +
γ̃

2

n−1

∑
j=0

(bj − bj+1)|un+1|21

+
β̃an − β̃n+1

2
|u0|21 +

β̃an − β̃n+1

2
|un+1|21 +

γ̃bn − γ̃n+1

2
|u0|21 +

γ̃bn − γ̃n+1

2
|un+1|21

+ 4τ( f n+1, un+1)

=− β̃|un+1|21 +
β̃

2

n−1

∑
j=0

aj|un−j|21 −
β̃

2

n

∑
j=1

aj|un+1−j|21 +
β̃

2
(1 − an)|un+1|21

− γ̃|un+1|21 +
γ̃

2

n−1

∑
j=0

bj|un−j|21 −
γ̃

2

n

∑
j=1

bj|un+1−j|21 +
γ̃

2
(1 − bn)|un+1|21

+
β̃an − β̃n+1

2
|u0|21 +

β̃an − β̃n+1

2
|un+1|21 +

γ̃bn − γ̃n+1

2
|u0|21 +

γ̃bn − γ̃n+1

2
|un+1|21

+ 4τ( f n+1, un+1)

≤ β̃

2

n

∑
j=0

aj|un−j|21 +
γ̃

2

n

∑
j=0

bj|un−j|21 −
β̃

2

n+1

∑
j=0

aj|un+1−j|21 −
γ̃

2

n+1

∑
j=0

bj|un+1−j|21

− β̃n+1

2
|un+1|21 −

γ̃n+1

2
|un+1|21 + 4CΩτ∥ f n+1∥0|un+1|1

≤ β̃

2

n

∑
j=0

aj|un−j|21 +
γ̃

2

n

∑
j=0

bj|un−j|21 −
β̃

2

n+1

∑
j=0

aj|un+1−j|21 −
γ̃

2

n+1

∑
j=0

bj|un+1−j|21

− β̃n+1 + γ̃n+1

2
|un+1|21 +

8C2
Ωτ2

β̃n+1 + γ̃n+1
∥ f n+1∥2

0 +
β̃n+1 + γ̃n+1

2
|un+1|21

=
β̃

2

n

∑
j=0

aj|un−j|21 +
γ̃

2

n

∑
j=0

bj|un−j|21 −
β̃

2

n+1

∑
j=0

aj|un+1−j|21 −
γ̃

2

n+1

∑
j=0

bj|un+1−j|21

+
8C2

Ωτ2

β̃n+1 + γ̃n+1
∥ f n+1∥2

0, (2.26)

where Lemma 2.1 is used. Removing the last term on the left hand side of (2.26) and
rearranging the inequality, we obtain
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En+1 ≤En +
8C2

Ωτ2

β̃n+1 + γ̃n+1
∥ f n+1∥2

0 ≤ E1 +
n

∑
j=1

8C2
Ωτ2

β̃ j+1 + γ̃j+1
∥ f j+1∥2

0

≤E1 +
8C2

Ωtnτ

β̃n+1 + γ̃n+1
max
1≤j≤n

∥ f j+1∥2
0.

Hence the proof is complete. �

Corollary 2.1. The semi-discrete scheme (2.17)-(2.18) is unconditionally stable in H1-norm,
and for all τ > 0, the following inequality holds

∥un∥w,1 ≤ C
(
∥u0∥w,1 + T1−max{β,γ}/2 max

1≤j≤n
∥ f j∥0

)
, n ≥ 1. (2.27)

Proof. In view of (2.22), and using the elementary inequality (a + b)2 ≤ 2(a2 + b2),
∀a, b ∈ R, we have

E1 =∥u1∥2
0 + ∥2u1 − u0∥2

0 +
β̃

2

1

∑
j=0

aj|u1−j|21 +
γ̃

2

1

∑
j=0

bj|u1−j|21

≤9∥u1∥2
0 + 2∥u0∥2

0 +
β̃

2

1

∑
j=0

aj|u1−j|21 +
γ̃

2

1

∑
j=0

bj|u1−j|21

≤2∥u0∥2
0 + 9

(
∥u0∥2

0 +
β̃

4
a0|u0|21 +

γ̃

4
b0|u0|21 +

4C2
Ωτ2

β̃1 + γ̃1
∥ f 1∥2

0

)
≤11

(
∥u0∥2

0 +
β̃

4
a0|u0|21 +

γ̃

4
b0|u0|21 +

4C2
Ωτ2

β̃1 + γ̃1
∥ f 1∥2

0

)
≤11

(
∥u0∥2

ω,1 +
4C2

Ωτ2

β̃1 + γ̃1
∥ f 1∥2

0

)
.

It follows from (2.21) that

∥un∥ω,1 ≤ C
(
∥u0∥ω,1 +

√
Tτ

β̃n + γ̃n
max
1≤j≤n

∥ f j∥2
0

)
, n ≥ 2. (2.28)

By elementary computations, for n ≥ 1, we have
ν

µ
β̃n ≤ γ̃n, if 0 < γ ≤ β < 1,

µ

ν
γ̃n ≤ β̃n, if 0 < β ≤ γ < 1.

(2.29)

Therefore
Tτ

β̃n + γ̃n
≤ Tτ

(1 + ν/µ)β̃n
=

Γ(β)n1−βTτ

(1 + ν/µ)τβ
≤ Γ(β)

(1 + ν/µ)
T2−β, if 0 < γ ≤ β < 1,

Tτ

β̃n + γ̃n
≤ Tτ

(1 + µ/ν)γ̃n
=

Γ(γ)n1−γTτ

(1 + µ/ν)τγ
≤ Γ(γ)

(1 + µ/ν)
T2−γ, if 0 < β ≤ γ < 1.

(2.30)
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Combining (2.28) and (2.30) leads to (2.27) for n > 1. For n = 1, by (2.23), we have

∥u1∥2
w,1 ≤ 2

(
∥u0∥2

w,1 +
4C2

Ωτ2

β̃1 + γ̃1
∥ f 1∥2

0

)
,

and then use (2.30) again, we reach (2.27) for n = 1. The proof is completed. �
Next, we estimate the error of the semi-discrete scheme (2.17)-(2.18).

Theorem 2.2. Let u be the exact solution of (1.4)-(1.6) and {un}n≥0 be the solution of (2.17)-
(2.18) with the initial condition given in (2.16), then we have

∥u(·, tn)− un∥w,1 ≤ CT1−max{β,γ}/2τ1+min{β,γ}, n ≥ 1, (2.31)

where C is a constant independent of T and τ.

Proof. Let en = u(·, tn)− un, and note that e0 = 0. For n = 0, by (2.18), we have

(e1 − e0, v) = − β̃

4
(∇e1 −∇e0,∇v)− γ̃

4
(∇e1 −∇e0,∇v)− β̃1

4
(∇e0,∇v)

− γ̃1

4
(∇e0,∇v) + τ(r1, v). (2.32)

Taking v = e1 in (2.32), we get

∥e1∥2
0 = − β̃

4
|e1|21 −

γ̃

4
|e1|21 + (τr1, e1)

≤ − β̃

4
|e1|21 −

γ̃

4
|e1|21 +

1
2
∥τr1∥2

0 +
1
2
∥e1∥2

0. (2.33)

Thus

∥e1∥w,1 ≤ τ∥r1∥0 ≤ Cτ2. (2.34)

Let

εn := ∥en∥2
0 + ∥2en − en−1∥2

0 +
β̃

2

n

∑
j=0

aj|en−j|21 +
γ̃

2

n

∑
j=0

bj|en−j|21, n ≥ 1.

By (2.17), we get

2(3en+1 − 4en + en−1, v)

=β̃
[
− (∇en+1,∇v) +

n−1

∑
j=0

(aj − aj+1)(∇en−j,∇v) + an(∇e0,∇v)
]

+ γ̃
[
− (∇en+1,∇v) +

n−1

∑
j=0

(bj − bj+1)(∇en−j,∇v) + bn(∇e0,∇v)
]

− β̃n+1(∇e0,∇v)− γ̃n+1(∇e0,∇v) + 4τ(rn+1, v), n ≥ 1. (2.35)
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Taking v = en+1 in (2.35), we get

∥en+1∥2
0 − ∥en∥2

0 + ∥2en+1 − en∥2
0 − ∥2en − en−1∥2

0 + ∥en+1 − 2en + en−1∥2
0

=− β̃|en+1|21 + β̃
n−1

∑
j=0

(aj − aj+1)(∇en−j,∇en+1) + β̃an(∇e0,∇en+1)− γ̃|en+1|21

+ γ̃
n−1

∑
j=0

(bj − bj+1)(∇en−j,∇en+1) + γ̃bn(∇e0,∇en+1)− β̃n+1(∇e0,∇en+1)

− γ̃n+1(∇e0,∇en+1) + 4τ(rn+1, en+1)

≤− β̃|en+1|21 +
β̃

2

n−1

∑
j=0

(aj − aj+1)|en−j|21 +
β̃

2

n−1

∑
j=0

(aj − aj+1)|en+1|21

− γ̃|en+1|21 +
γ̃

2

n−1

∑
j=0

(bj − bj+1)|en−j|21 +
γ̃

2

n−1

∑
j=0

(bj − bj+1)|en+1|21

+
β̃an − β̃n+1

2
|e0|21 +

β̃an − β̃n+1

2
|en+1|21 +

γ̃bn − γ̃n+1

2
|e0|21

+
γ̃bn − γ̃n+1

2
|en+1|21 + 4τ(rn+1, en+1)

=− β̃|en+1|21 +
β̃

2

n−1

∑
j=0

aj|en−j|21 −
β̃

2

n

∑
j=1

aj|en+1−j|21 +
β̃

2
(1 − an)|en+1|21

− γ̃|en+1|21 +
γ̃

2

n−1

∑
j=0

bj|en−j|21 −
γ̃

2

n

∑
j=1

bj|en+1−j|21 +
γ̃

2
(1 − bn)|en+1|21

+
β̃an − β̃n+1

2
|e0|21 +

β̃an − β̃n+1

2
|en+1|21 +

γ̃bn − γ̃n+1

2
|e0|21

+
γ̃bn − γ̃n+1

2
|en+1|21 + 4τ(rn+1, en+1)

=
β̃

2

n

∑
j=0

aj|en−j|21 +
γ̃

2

n

∑
j=0

bj|en−j|21 −
β̃

2

n+1

∑
j=0

aj|en+1−j|21 −
γ̃

2

n+1

∑
j=0

bj|en+1−j|21

− β̃n+1 + γ̃n+1

2
|en+1|21 + 4τ(rn+1, en+1). (2.36)

Thus, rearranging (2.36), we obtain

εn+1 ≤ εn − β̃n+1 + γ̃n+1

2
|en+1|21 + 4τ(rn+1, en+1)

≤ εn +
8C2

Ωτ2

β̃n+1 + γ̃n+1
∥rn+1∥2

0

≤ ε1 +
8C2

ΩTτ

β̃n+1 + γ̃n+1
max
1≤j≤n

∥rj+1∥2
0.

By (2.34), we have

ε1 ≤ Cτ4.
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Then from (2.30), we obtain

εn+1 ≤ CT2−max{β,γ}τ2+2 min{β,γ}.

Thus, we arrive at the conclusion for n ≥ 1. �

3 Full discrete scheme and its theoretical analysis

In this section, we consider the finite element approximation for the derivative with
respect to the space variable. Suppose that Th is a triangulation of Ω, he is the element
diameter, and h = max{he}. Then, we associate Th with the space Sm

h ⊂ H1
0(Ω), which

is composed of piecewise polynomials of degree at most m, m ≥ 1, that vanish on the
entire boundary ∂Ω. Now, we can obtain the finite element approximations of (2.17)
and (2.18): for n ≥ 1, find un+1

h ∈ Sm
h such that

2(3un+1
h − 4un

h + un−1
h , vh)

=β̃
[
− (∇un+1

h ,∇vh) +
n−1

∑
j=0

(aj − aj+1)(∇un−j
h ,∇vh) + an(∇u0

h,∇vh)
]

+ γ̃
[
− (∇un+1

h ,∇vh) +
n−1

∑
j=0

(bj − bj+1)(∇un−j
h ,∇vh) + bn(∇u0

h,∇vh)
]

− β̃n+1(∇u0
h,∇vh)− γ̃n+1(∇u0

h,∇vh) + 4τ( f n+1, vh), ∀vh ∈ Sm
h , (3.1)

and for n = 0, find u1
h ∈ Sm

h such that

(u1
h − u0

h, vh) =− β̃

4
(∇u1

h −∇u0
h,∇vh)−

γ̃

4
(∇u1

h −∇u0
h,∇vh)−

β̃1

4
(∇u0

h,∇vh)

− γ̃1

4
(∇u0

h,∇vh) + τ( f 1, vh), ∀vh ∈ Sm
h . (3.2)

For the full discrete scheme, we also have the unconditional stability result as follows.

Theorem 3.1. The full discrete scheme (3.1)-(3.2) is unconditionally stable, i.e., for all τ > 0,
the following inequality holds

∥un
h∥w,1 ≤ C

(
∥u0

h∥w,1 + T1−max{β,γ}/2 max
1≤j≤n

∥ f j∥0

)
. (3.3)

The proof of Theorem 3.1 is similar to that of Theorem 2.1, so it is omitted here.
Next, we intend to estimate the error of the full discrete scheme (3.1)-(3.2). First,

we introduce the standard H1-orthogonal projection operator Pm
1,h : Hs+1(Ω) → Sm

h as

(∇Pm
1,h φ,∇vh) = (∇φ,∇vh), ∀φ ∈ Hs+1(Ω), s ≥ 1, ∀vh ∈ Sm

h . (3.4)

For the above H1-orthogonal projection, we have the following result. And we would
use the notation l = min{m, s} hereafter.
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Lemma 3.1. For the H1-orthogonal projection operator Pm
1,h introduced in (3.4), we have

∥φ − Pm
1,h φ∥w,1 ≤ C(hl+1 + τmin{β,γ}/2hl)|φ|l+1, (3.5)

for φ ∈ H1
0(Ω) ∩ Hs+1(Ω), s ≥ 1, where C is a positive constant independent of h, τ and φ.

By the definition of the weighted H1-norm and the standard estimates for the stan-
dard H1-orthogonal projection operator, it is easy to prove the estimates (3.5). Fur-
thermore, we introduce the following lemma, which will be used in the estimate of
the error of the full discrete scheme.

Lemma 3.2. Let

rn+1
Pm

1,h
=


u(x,t1)−u(x,t0)

τ − Pm
1,hu(x,t1)−Pm

1,hu(x,t0)

τ , for n = 0,
3u(x,tn+1)−4u(x,tn)+u(x,tn−1)

2τ − 3Pm
1,hu(x,tn+1)−4Pm

1,hu(x,tn)+Pm
1,hu(x,tn−1)

2τ , for n ≥ 1.
(3.6)

Then the following estimates hold

∥rn+1
Pm

1,h
∥0 ≤

{
C(hl+1 + τ), n = 0,
C(hl+1 + τ2), n ≥ 1.

(3.7)

The proof of this lemma follows the idea in [9]. Below we just give a sketch of the
proof.

Proof. For n = 0,

∣∣∣r1
Pm

1,h

∣∣∣ =∣∣∣u(x, t1)− u(x, t0)

τ
−

Pm
1,hu(x, t1)− Pm

1,hu(x, t0)

τ

∣∣∣
≤
∣∣∣u(x, t1)− u(x, t0)

τ
− ∂u(x, t1)

∂t

∣∣∣+ ∣∣∣∂u(x, t1)

∂t
− Pm

1,h
∂u(x, t1)

∂t

∣∣∣
+

∣∣∣Pm
1,h

∂u(x, t1)

∂t
−

Pm
1,hu(x, t1)− Pm

1,hu(x, t0)

τ

∣∣∣
≤C(τ + hl+1), (3.8)

and for n ≥ 1,∣∣∣rn+1
Pm

1,h

∣∣∣ =∣∣∣3u(x, tn+1)− 4u(x, tn) + u(x, tn−1)

2τ
−

3Pm
1,hu(x, tn+1)− 4Pm

1,hu(x, tn) + Pm
1,hu(x, tn−1)

2τ

∣∣∣
≤
∣∣∣3u(x, tn+1)− 4u(x, tn) + u(x, tn−1)

2τ
− ∂u(x, tn+1)

∂t

∣∣∣+ ∣∣∣ ∂u(x, tn+1)

∂t
− Pm

1,h
∂u(x, tn+1)

∂t

∣∣∣
+

∣∣∣Pm
1,h

∂u(x, tn+1)

∂t
−

3Pm
1,hu(x, tn+1)− 4Pm

1,hu(x, tn) + Pm
1,hu(x, tn−1)

2τ

∣∣∣
≤C(τ2 + hl+1). (3.9)

Then we reach the conclusion (3.7). �
With the above two lemmas, an weighted H1-error estimate between the exact so-

lution and the solution of the full discrete scheme (3.1)-(3.2) is derived in the following
theorem.
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Theorem 3.2. Let u be the exact solution of (1.4)-(1.6), and {un
h}n≥0 be the solution of the

full discrete scheme (3.1)-(3.2). Assume that u(·, t) ∈ Hs+1(Ω), for all t ∈ [0, T], s ≥ 1, then
we have the following error estimate

∥u(·, tn+1)− un+1
h ∥w,1

≤CT1−max{β,γ}/2(τ1+min{β,γ} + hl+1 + τmin{β,γ}/2hl), n ≥ 0, (3.10)

where C is a constant independent of τ, h and T.

Proof. For convenience, we denote Un = u(·, tn). Let

en
h = Un − un

h , en
h = Un − Pm

1,hUn, ẽn
h = Pm

1,hUn − un
h , n ≥ 0.

It is obvious that
en

h = en
h + ẽn

h .

Without loss of generality, in the following we assume ẽ0
h = 0.

For n = 0, rearranging (3.2) leads to

(u1
h, vh) +

β̃ + γ̃

4
(∇u1

h,∇vh)

=(u0
h, vh) +

β̃ + γ̃ − β̃1 − γ̃1

4
(∇u0

h,∇vh) + τ( f 1, vh). (3.11)

By the definition of the H1-orthogonal projection in (3.4) and (2.12), for the case n = 0,
we have

(U1, vh) +
β̃ + γ̃

4
(∇Pm

1,hU1,∇vh)

=(U0, vh) +
β̃ + γ̃ − β̃1 − γ̃1

4
(∇Pm

1,hU0,∇vh) + τ( f 1, vh) + τ(r1, vh). (3.12)

Letting

en+1
Pm

1,h
(vh) =

 −
(
r1

Pm
1,h

, vh
)
, for n = 0,

−
(
rn+1

Pm
1,h

, vh
)
, for n ≥ 1,

(3.13)

and subtracting (3.12) by (3.11), we get

(ẽ1
h, vh) +

β̃ + γ̃

4
(∇ẽ1

h,∇vh)

=(ẽ0
h, vh) +

β̃ + γ̃ − β̃1 − γ̃1

4
(∇ẽ0

h,∇vh) + τe1
Pm

1,h
(vh) + τ(r1, vh). (3.14)

Taking vh = ẽ1
h in (3.14) and since ẽ0

h = 0, we get

∥ẽ1
h∥2

0 +
β̃ + γ̃

4
|ẽ1

h|21 = τe1
Pm

1,h
(ẽ1

h) + τ(r1, ẽ1
h). (3.15)
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Then by the Lemma 3.2, we obtain

∥ẽ1
h∥w,1 ≤ Cτ(hl+1 + τ). (3.16)

Therefore, using the triangle inequality ∥e1
h∥w,1 ≤ ∥ē1

h∥w,1 + ∥ẽ1
h∥w,1 and Lemma 3.1,

the conclusion (3.10) is proved for n = 0.
For n ≥ 1, we first rearrange (3.1) as

2(3un+1
h − 4un

h + un−1
h , vh) + β̃(∇un+1

h ,∇vh) + γ̃(∇un+1
h ,∇vh)

=β̃
[ n−1

∑
j=0

(aj − aj+1)(∇un−j
h ,∇vh) + an(∇u0

h,∇vh)
]

+ γ̃
[ n−1

∑
j=0

(bj − bj+1)(∇un−j
h ,∇vh) + bn(∇u0

h,∇vh)
]

− β̃n+1(∇u0
h,∇vh)− γ̃n+1(∇u0

h,∇vh) + 4τ( f n+1, vh), ∀vh ∈ Sh. (3.17)

Similarly, from (2.12) we have

2(3Un+1 − 4Un + Un−1, vh) + β̃(∇Un+1,∇vh) + γ̃(∇Un+1,∇vh)

=β̃
[ n−1

∑
j=0

(aj − aj+1)(∇Un−j,∇vh) + an(∇U0,∇vh)
]

+ γ̃
[ n−1

∑
j=0

(bj − bj+1)(∇Un−j,∇vh) + bn(∇U0,∇vh)
]

− β̃n+1(∇U0,∇vh)− γ̃n+1(∇U0,∇vh) + 4τ( f n+1, vh) + 4τ(rn+1, vh), ∀vh ∈ Sh. (3.18)

Subtracting (3.18) by (3.17), we obtain

2
(
3ẽn+1

h − 4ẽn
h + ẽn−1

h , vh
)
+ β̃(∇ẽn+1

h ,∇vh) + γ̃(∇ẽn+1
h ,∇vh)

=β̃
n−1

∑
j=0

(aj − aj+1)(∇ẽn−j
h ,∇vh) + γ̃

n−1

∑
j=0

(bj − bj+1)(∇ẽn−j
h ,∇vh) + (β̃an − β̃n+1)(∇ẽ0

h,∇vh)

+ (γ̃bn − γ̃n+1)(∇ẽ0
h,∇vh) + 4τen+1

Pm
1,h

(vh) + 4τ(rn+1, vh), ∀vh ∈ Sm
h . (3.19)

Taking vh = ẽn+1
h in (3.19), we obtain

∥ẽn+1
h ∥2

0 + ∥2ẽn+1
h − ẽn

h∥
2
0 − ∥ẽn

h∥
2
0 − ∥2ẽn

h − ẽn−1
h ∥2

0 + ∥ẽn+1
h − 2ẽn

h + ẽn−1
h ∥2

0

≤− β̃

2

n+1

∑
j=0

aj|ẽ
n+1−j
h |21 +

β̃

2

n

∑
j=0

aj|ẽ
n−j
h |21 −

γ̃

2

n+1

∑
j=0

bj|ẽ
n+1−j
h |21 +

γ̃

2

n

∑
j=0

bj|ẽ
n−j
h |21

− β̃n+1 + γ̃n+1

2
|ẽn+1

h |21 + 4τ|en+1
Pm

1,h
(ẽn+1

h )|+ 4τ|(rn+1, ẽn+1
h )|. (3.20)

Let

εn = ∥ẽn
h∥2

0 + ∥2ẽn
h − ẽn−1

h ∥2
0 +

β̃

2

n

∑
j=0

aj|ẽ
n−j
h |21 +

γ̃

2

n

∑
j=0

bj|ẽ
n−j
h |21.
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By (3.20) and Lemma 3.2, we get

εn+1 ≤ εn − β̃n+1 + γ̃n+1

2
|ẽn+1

h |21 + 4τ|en+1
Pm

1,h
(ẽn+1

h )|+ 4τ|(rn+1, ẽn+1
h )|

≤ ε1 +
CTτ

β̃n+1 + γ̃n+1
(h2l+2 + τ2+2 min{β, γ}), ∀n ≥ 1.

Therefore, combining with (3.16), we obtain

∥ẽn
h∥2

1 ≤ CT2−max{β,γ}(h2l+2 + τ2+2 min{β,γ}), ∀n ≥ 0.

Consequently, by the triangle inequality and Lemma 3.1, we obtain the conclusion
(3.10) for n ≥ 1, and this completes the proof. �

4 Numerical example

In this section, we present some numerical results to confirm the performance of our
numerical scheme and the convergence rate obtained in Section 3. For the finite ele-
ment space Sm

h , we only consider the piecewise-linear case, i.e., m = 1.

4.1 One-dimensional case

Example 4.1. Consider the following one-dimensional modified fractional diffusion
equation [16]:

∂u(x, t)
∂t

= (0D1−β
t + 0D1−γ

t )
∂2u(x, t)

∂x2 + f (x, t), x ∈ [0, π], t > 0,

u(0, t) = u(π, t) = 0, t > 0,
u(x, 0) = 0, x ∈ [0, π],

(4.1)

where the inhomogeneous term

f (x, t) = 2t sin x
(

1 +
1

Γ(2 + β)
tβ +

1
Γ(2 + γ)

tγ
)

.

Then the exact solution of (4.1) is

u(x, t) = t2 sin(x).

The weighted H1-norm is measured by (2.1). TCR is the abbreviation for the theo-
retical convergence rate.

In Table 1, we make the space step size h sufficiently small, i.e., h = 1/1000. Then,
the last two terms in the convergence results in (3.10) are both negligible and we can
verify the convergence rate O(τ1+min{β,γ}) in the weighted H1-norm. And, it is ob-
vious that the numerical results coincide with theoretical analysis very well. In Table
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Table 1: h = 1/1000, ∥u(·, tn)− un
h∥w,1 at t = 1.

τ β = 0.9, γ = 0.1 rate β = 0.6, γ = 0.5 rate
1/10 6.5804E-002 2.1928E-002
1/20 2.7886E-002 1.2386 6.5181E-003 1.7503
1/40 1.2217E-002 1.1907 2.0125E-003 1.6955
1/80 5.4661E-003 1.1603 6.7074E-004 1.5852
TCR 1.1000 1.5000

Table 2: τ = 1/10000, ∥u(·, tn)− un
h∥w,1 at t = 1.

h β = 0.9, γ = 0.1 rate β = 0.6, γ = 0.5 rate
π/10 1.0419E-001 2.1437E-002
π/20 5.2030E-002 1.0018 1.0245E-002 1.0652
π/40 2.6007E-002 1.0004 5.0618E-003 1.0172
π/80 1.3002E-002 1.0002 2.5233E-003 1.0043
TCR 1.0000 1.0000

Table 3: τ = h, ∥u(·, tn)− un
h∥w,1 at t = 1.

τ β = 0.9, γ = 0.1 rate β = 0.6, γ = 0.5 rate
1/100 5.9645E-003 2.2347E-003
1/150 3.8161E-003 1.1014 1.3295E-003 1.2808
1/200 2.7836E-003 1.0966 9.2060E-004 1.2776
1/250 2.1807E-003 1.0939 6.9258E-004 1.2754
TCR 1.0500 1.2500

2, we present the weighted H1-norm errors in the approximations to the solution u
at t = 1 and the corresponding convergence rates. For this computation, we fix the
time step size τ = 1/10000 as we expect to obtain first order accuracy in space in the
weighted H1-norm. The numerical results confirm our expectation.

In order to verify the third term O(τmin{β,γ}/2hl) of the error estimate given in
(3.10), in Table 3, we take τ = h and present the weighted H1-norm errors in the
approximations to the solution u at t = 1. It can be seen that the convergence rate is in
well agree with the estimate.

4.2 Two-dimensional case

Example 4.2. Consider the following two-dimensional modified fractional diffusion
equation:

∂u(x, t)
∂t

= (0D1−β
t + 0D1−γ

t )∆u(x, t) + f (x, t), x ∈ Ω = [0, 1]× [0, 1], t > 0,

u|∂Ω = 0, t > 0,
u(x, 0) = 0, x ∈ Ω,

(4.2)

where

f (x, t) = 2t sin(2πx1) sin(2πx2)
(

1 +
8π2

Γ(2 + β)
tβ +

8π2

Γ(2 + γ)
tγ
)

.
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Table 4: Nx1 = Nx2 = 60, ∥u(·, tn)− un
h∥∞ at t = 1.

τ β = 0.9, γ = 0.1 rate β = 0.6, γ = 0.5 rate
1/4 1.0845E-001 4.4277E-002
1/8 5.1301E-002 1.0800 1.5547E-002 1.5099
1/16 2.3594E-002 1.1206 4.8176E-003 1.6902
1/32 1.0420E-002 1.1791 1.6120E-003 1.5795
TCR 1.1000 1.5000

Table 5: τ = 1/10000, ∥u(·, tn)− un
h∥∞ at t = 1.

Nx1 = Nx2 β = 0.9, γ = 0.1 rate β = 0.6, γ = 0.5 rate
4 3.9245E-001 3.9218E-001
8 9.9316E-002 1.9824 9.9200E-002 1.9831
16 2.5480E-002 1.9627 2.5461E-002 1.9621

TCR 2.0000 2.0000

Then the exact solution of (4.2) is

u(x, t) = t2 sin(2πx1) sin(2πx2).

We apply our full discrete scheme with a uniform spatial mesh with 2(Nx1 × Nx2)
triangles and Nx1 = Nx2 . Table 4 and Table 5 are devoted to verify the convergence rate
for Example 4.2. However, here, we use the discrete maximum norm ∥ · ∥∞ defined as

∥u(·, tn)− un
h∥∞ = max

zj

{
|u(zj, tn)− uh(zj, tn)|

}
,

where zj denotes the vertexes of the triangles.

Example 4.3. Consider the following two-dimensional modified fractional diffusion
equation:

∂u(x, t)
∂t

= (0D1−β
t + 0D1−γ

t )∆u(x, t), x ∈ Ω = [−1, 1]× [−1, 1], t > 0,

u|∂Ω = 0, t > 0,

u(x, 0) =
1

2πσ2 exp
(
−

x2
1 + x2

2
2σ2

)
, x ∈ Ω.

(4.3)

In Fig. 1, we plot the surface of the solution of (4.3) at t = 0.1. In each row, the
value of β is fixed and the value of γ is chosen to be 0.9, 07, 0.5, respectively. While
for each column, the value of γ is fixed and the value of β is chosen to be 0.9, 07, 0.5,
respectively. Observing the peak heights in the figures of the same row, we notice that
as the decrease of the value of γ, the peak height increases. In each column, the same
phenomenon is observed. This means that the solution decays slower for smaller β or
γ. Observing the subfigures which are symmetrical with respect to the diagonal line
β = γ, we find that the peck heights in these subfigures are the same, which imply
that β and γ in (4.3), or (1.2), play the equal-counterpart roles.
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Figure 1: The surface of u(x, t) with Nx1 = Nx2 = 40, τ = 1/100, σ = 0.1.

In Fig. 2, we also plot the surface of the solution of (4.3) at t = 0.1, but choose
different values of β, γ with that in Fig. 1. This time, in each row, the value of β is
fixed and the value of γ is chosen to be 0.9, 0.5, 0.1, respectively. In each column,
the same thing is done. Observing the peak heights in the figures in each row, we
notice that: in the first and second rows, the similar phenomenon as that in Fig. 2 is
observed; However, in the third row, i.e., β = 0.1, a striking difference is that the peak
height first decreases then increases as the value of γ decreases. In each column, the
same phenomenon is observed.

In Fig. 3, we plot the evolution of the solution at time t = 0.01, 0.1, 1.0 with τ =
1/1000, and Fig. 4 displays the evolution of its profiles. When β = γ, the Eq. (1.2)
reduces to the traditional fractional diffusion equation. Observing the peak heights
in Fig. 4 or those in different rows in Fig. 3, we find that, initially the solution of the
modified fractional diffusion equation with β = 0.9, γ = 0.7 decays faster than the
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Figure 2: The surface of u(x, t) with Nx1 = Nx2 = 40, τ = 1/100, σ = 0.1.

solution of the traditional one with β = γ = 0.9 while slower than the traditional one
with β = γ = 0.7. But as time goes by, the solution of the modified fractional diffusion
equation begin to decay slower than that of the traditional one with β = γ = 0.9 and
faster than the traditional one with β = γ = 0.7. It means that, with different values of
β and γ, the modified fractional diffusion equation displays a crossover phenomenon,
see [11].

5 Concluding remarks

We have designed the finite difference/element methods for a two-dimensional mod-
ified fractional diffusion equation. The detailed and delicate error estimates and sta-
bility analysis are performed. Optimal convergent order and unconditionally stability
are obtained. The extensive numerical experiments confirm our theoretical results and
illustrate the robustness of the numerical algorithm and some physical observations
are displayed.
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Figure 3: The surface of u(x, t) with Nx1 = Nx2 = 16, τ = 1/1000, σ = 0.1.
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