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Abstract. In this paper, a generalized multivariate fractional Taylor’s and Cauchy’s
mean value theorem of the kind

f (x,y)=
n

∑
j=0

Djα f (x0,y0)

Γ(jα+1)
+Rα

n(ξ,η),

f (x,y)−
n
∑

j=0

Djα f (x0,y0)
Γ(jα+1)

g(x,y)−
n
∑

j=0

Djαg(x0,y0)
Γ(jα+1)

=
Rα

n(ξ,η)
Tα

n (ξ,η)
,

where 0< α≤ 1, is established. Such expression is precisely the classical Taylor’s and
Cauchy’s mean value theorem in the particular case α=1. In addition, detailed expres-
sions for Rα

n(ξ,η) and Tα
n (ξ,η) involving the sequential Caputo fractional derivative

are also given.
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1 Introduction

The ordinary Taylor’s formula has been generalized by many authors. Riemann [1] had
already written a formal version of the generalized Taylor’s series:

f (x+h)=
∞

∑
m=−∞

hm+r

Γ(m+r+1)
(D−(m+r)

a f )(x), (1.1)

where D−(m+r)
a is the Riemann-Liouville fractional integral of order m+r.
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Afterwards, Watanable [2] obtained the following relation:

f (x)=
n−1

∑
k=−m

(x−x0)
α+k

Γ(α+k+1)
(Dm+r

a f )(x0)+Rn,m, (1.2)

with m<α,a≤ x0< x, and

Rn,m =(D−(α+n)
x0 Dα+n

a f )(x)+
1

Γ(−α−m)

∫ x0

a
(x−t)−α−m−1(Dα−m−1

a f )(t)dt,

where Dα+n
a is the Riemann-Liouville fractional derivative of order α+n.

On the other hand, a variant of the generalized Taylor’s series was given by Dzherbashyan
and Nersesyan [3]. For f having all of the required continuous derivatives, they obtained

f (x)=
m−1

∑
k=0

(D(αk) f )(0)
Γ(1+αk)

xαk +
1

Γ(1+αm)

∫ x

0
(x−t)αm−1(D(αm) f )(t)dt, (1.3)

where 0<x,α0,α1,...,αm is an increasing sequence of real numbers such that 0<αk−αk−1≤
1,k=1,...,m and D(αm) f = I1−(αk−αk−1)

0 D1+αk−1
0 f .

Under certain conditions for f and α∈ [0,1], Trujillo et al. [4] introduce the following
generalized Taylor’s mean value theorem:

f (x)=
n
∑

j=0

cj(x−a)(j+1)α−1

Γ((J+1)α) +Rn( f ;ξ),

Rn( f ;ξ)= (D(n+1)α
a f )(ξ)

Γ((n+1)α+1) ·(x−a)(n+1)α, a≤ ξ≤ x,

cj =Γ(a)[(x−a)1−αDjα
a f )(a+), j=0,1,...,n

(1.4)

and the sequential fractional Riemann-Liouville derivative is denoted by

Dnα
a =Dα

a ·Dα
a ·...·Dα

a (n−times).

Recently, Odibat and Shawagfeh [5] obtain a new generalized Taylor’s mean value
theorem of this kind

f (x)=
n

∑
j=0

(x−a)jα

Γ(jα+1)
(Djα

a f )(a)+
(D(n+1)α

a f )(ξ)
Γ((n+1)α+1)

(x−a)(n+1)α (1.5)

with a≤ ξ≤ x, where Djα is the sequential fractional Caputo derivative.
In 2005, Pecaric et al. [6] deduced the Cauchy type mean value theorem for the se-

quence fractional Riemann-Liouville derivative from known mean value theorem of the
Lagrange type.
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Theorem 1.1 ([6]). Let α∈ [0,1], and let f ,g∈C(a,b] such that

Dα
a f ,Dα

a g∈C[a,b]

whereDα
a g(x) ̸=0 for every x∈ [a,b].

Then for every x∈ [a,b], there is a ξ(a≤ ξ≤ x) such that

f (x)−[(x−a)1−α f (x)](a+)(x−a)α−1

g(x)−[(x−a)1−αg(x)](a+)(x−a)α−1 =
Dα

a f (ξ)
Dα

a g(ξ)
. (1.6)

Theorem 1.2 ([6]). Let α∈ [0,1] and n∈N, and D(n+1)α
a g(x) ̸=0 for every x∈ [a,b]. Let f be a

continuous function on (a,b] satisfying each of the following conditions:
(i) Djα

a f ∈C(a,b] and Djα
a f ∈a Iα[a,b] for j=1,...,n.

(ii) D(n+1)
a f is continuous on [a,b].

(iii) If α<1/2, then, for each j∈1,...,n such that (j+1)α≤1, D(j+1)α
a f (x) is γ -continuous

at x= a for some γ (1−(j+1)α≤γ≤1) or a-singular of order α.
Then for every x∈ [a,b], there is a ξ(a≤ ξ≤ x) such that

Rn( f ;x,a)
Rn(g;x,a)

=
D(n+1)α

a f (ξ)

D(n+1)α
a g(ξ)

, (1.7)

where Rn is defined by

Rn( f ;x,a)= f (x)−
n

∑
j=0

cj(x−a)(j+1)α−1

Γ((j+1)α)
,

cj =Γ(a)[(x−a)1−αDjα
a f )(a+), j=0,1,...,n;

Rn(g;x,a)= g(x)−
n

∑
j=0

cj(x−a)(j+1)α−1

Γ((j+1)α)
,

dj =Γ(a)[(x−a)1−αDjα
a g)(a+), j=0,1,...,n.

There are also some papers on multivariate fractional Taylor’s formula. In 2006, Ju-
marie [7] had given the following Multivariate fractional Taylor Series

f (x+h,y+l)= Eα(hαDα
x)Eα(lαDα

y) f (x,y)
= Eα(lαDα

y)Eα(hαDα
x) f (x,y)=Eα[(hDx+lDy)

α] f (x,y), (1.8)

where Eα(x) denotes the Mittage-Leffler function defined by the expression [10–18]

Eα(x)=
∞

∑
k=0

xk

Γ(αk+1)
.
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But I am afraid Eq. (1.6) is incorrect, since its proof is based on the following equality

Eα[(u+v)α]=Eα(uα)Eα(vα), (1.9)

which seems incorrect unless α=1.
In 2009, Anastassiou [8], [9, p.276] obtained an important result on multivariate frac-

tional Taylor’s formula via the Caputo fractional derivative. The fractional remainder is
expressed as a composition of two Riemann-Liouville fractional integrals.

Theorem 1.3 ([8], [9]). Let f ∈Cn(Q), Q compact and convex ⊂Rk, k≥2; here γ≥1 such that
n=[γ]. For fixed x0,z∈Q , then

f (z)= f (x0)+
k

∑
i=1

(zi−x0i)
∂ f (x0)

∂xi
+

n−1

∑
l=2

{
k
∑

i=1
[(zi−x0k)

∂
∂xi

]l f }(x0)

l!

+
1

Γ(γ)

∫ 1

0
(1−t)γ−1D−(n−γ)

0

{ k

∑
i=1

[(zi−x0k)
∂

∂xi
]n f }(x0+t(z−x0))

}
dt. (1.10)

However, there is less paper on the developments on multivariate fractional Taylor’s
and Cauchy type mean value theorem, the fractional reminder is expressed as the La-
grange reminder term. In this paper, we will give new kind of multivariate fractional
Tayor’s and Cauchy’s mean value theorem via the sequence Caputo fractional deriva-
tive.

In order to establish fractional Taylor’s and Cauchy’ mean value theorem, the main
idea seems that how to give the suitable definition of fractional integral and derivative of
function with multivariate. In this paper, we will give a appropriate definition of fraction-
al integral and derivative of function with multivariate, then derive a kind of multivariate
fractional Taylor’s and Cauchy’s mean value theorem via the sequence Caputo fraction-
al derivative. The organization of the work is set out as followings: Several definitions
and propositions are given in Section 2; Fractional Taylor’s and fractional Cauchy’s mean
value theorem with one variable via the sequence Caputo fractional derivative are pre-
sented in Section 3; and finally, multivariate fractional Taylor’s and Cauchy’s mean value
theorem are obtained in Section 4.

2 Definitions and propositions

For the concept of fractional derivative we will adopt Caputo’s definition which is a mod-
ification of the Riemann-Liouville definition and has the advantage of dealing properly
with initial value problems in which the initial conditions are given in terms of the field
variables and their integer order which in the case in most physical processes. More
detailed information on fractional calculus may be found in these books [10–18].
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Definition 2.1 ([5,19]). A function f (x)(x≥0) is said to be in the space Cα(α∈R) if it can
be written as f (x)= xp f1(x) for p>α where f1(x) is continuous in [0,∞), and it is said to
be in the space C(m)

α if f (m)∈Cα,m∈N.

Definition 2.2 ([7–14]). Let f (x) ∈ Cα(a,∞), the Riemann-Liouville integral operator of
order α>0 is defined as

(D−α
a f )(x)=

1
Γ(α)

∫ x

a
(x−t)α−1 f (t)dt,x> a.

Definition 2.3 ([7–14]). Let f (x)∈C(m)
α (a,∞), the Caputo fractional derivative of f (x) of

order α>0 is defined as

(Dα
a f )(x)=(Dα−m

a f (m))(x)=
1

Γ(m−α)

∫ x

a

f (m)(t)

(x−t)α+1−m dt

for m−1<α≤m,m∈N,x≥ a.

Proposition 2.1 ([7–14]). Let D−α
a be Riemann-Liouville integral operator of order α>0,

Dα
a be Caputo fractional derivative operator of order α>0,0<α≤1, Dα

a f (x)∈C(a,b)], then

[D−α
a Dα

a f ](x)= f (x)− f (a).

In order to derive fractional Taylor’s formula and Cauchy formula of a function with
multivariate, we will first give the following integrate definition of a function f (x,y),
(x,y)∈D, where D⊂R2 is a compact and convex domain.

Definition 2.4. Let (x0,y0),(x,y)∈D, ∆x= x−x0,∆y=y−y0,0≤ s≤1, and f (x,y)∈C(D),
define

(D−1 f )(x0+s∆x,y0+s∆y)=
∫ s

0
f (x0+t∆x,y0+t∆y)dt, (2.1)

when s=1, define

(D−1 f )(x,y)=
∫ 1

0
f (x0+t∆x,y0+t∆y)dt. (2.2)

Proposition 2.2. Let k∈N, and (x0,y0),(x,y)∈D, ∆x= x−x0,∆y=y−y0,0≤ s≤1, then

(D−k f )(x0+s∆x,y0+s∆y)=
1

(k−1)!

∫ s

0
(s−t)k−1 f (x0+t∆x,y0+t∆y)dt. (2.3)

Proof. By Definition 2.4, we have

(D−2 f )(x0+s∆x,y0+s∆y)

=
∫ s

0
D−1 f (x0+t∆x,y0+t∆y)dt=

∫ s

0
dt

∫ t

0
f (x0+u∆x,y0+u∆y)du

=
∫ s

0
du

∫ s

u
f (x0+u∆x,y0+u∆y)dt=

∫ s

0
(s−u) f (x0+u∆x,y0+u∆y)du.
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By induction, it is not hard to prove that

(D−k f )(x0+s∆x,y0+s∆y)=
1

(k−1)!

∫ s

0
(s−t)k−1 f (x0+t∆x,y0+t∆y)dt.

Now we can define fractional integral of f (x,y) of order γ.

Definition 2.5. Let γ∈R+, (x0,y0),(x,y)∈D, ∆x= x−x0,∆y=y−y0,0≤ s≤1, define

(D−γ f )(x0+s∆x,y0+s∆y)=
1

Γ(γ)

∫ s

0
(s−t)γ−1 f (x0+t∆x,y0+t∆y)dt, (2.4)

when s=1, define

(D−γ f )(x,y)=
1

Γ(γ)

∫ 1

0
(1−t)γ−1 f (x0+t∆x,y0+t∆y)dt. (2.5)

For convenience, let us set

φ(t)= f (x0+t∆x,y0+t∆y).

Then we have

Proposition 2.3. Let (x0,y0),(x,y)∈D, ∆x= x−x0,∆y=y−y0,0≤ s≤1, then

(D−γ f )(x0+s∆x,y0+s∆y)

=
1

Γ(γ)

∫ s

0
(s−t)γ−1 f (x0+t∆x,y0+t∆y)dt=(D−γ φ)(s), (2.6)

(D−γ f )(x,y)=
1

Γ(γ)

∫ 1

0
(1−t)γ−1 f (x0+t∆x,y0+t∆y)dt=(D−γ φ)(1). (2.7)

By Proposition 2.3, it is easy to see that

Proposition 2.4. Let α,β∈R+, then

D−αD−β f (x0+s∆x,y0+s∆y)=D−(α+β) f (x0+s∆x,y0+s∆y),

D−αD−β f (x,y)=D−(α+β) f (x,y).

Definition 2.6. If n∈N, define

Dn f (x0+s∆x,y0+s∆y)=(∆x
∂

∂x
+∆y

∂

∂y
)n f (x0+s∆x,y0+s∆y), (2.8)

Dn f (x,y)=(∆x
∂

∂x
+∆y

∂

∂y
)n f (x,y). (2.9)
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Definition 2.7. Let µ > 0, and let n be the smallest integer exceeding µ, we define the
fractional derivative of f of order µ as following

(Dµ f )(x0+s∆x,y0+s∆y)=(Dµ−nDn f )(x0+s∆x,y0+s∆y), (2.10)
(Dµ f )(x,y)=(Dµ−nDn f )(x,y). (2.11)

From Definition 2.7, it is easy to know

Proposition 2.5. Let φ(s)= f (x0+s∆x,y0+s∆y), then

Dn f (x0+s∆x,y0+s∆y)= φ(n)(s), (2.12)

Dn f (x,y)= φ(n)(1),Dn f (x0,y0)= φ(n)(0). (2.13)

By Proposition 2.4 and Proposition 2.5, we can obtain

Proposition 2.6. Let µ∈R+, then

(Dµ f )(x0+s∆x,y0+s∆y)=(Dµ φ)(s), (2.14)
(Dµ f )(x,y)=(Dµ φ)(1),(Dµ f )(x0,y0)=(Dµ φ)(0). (2.15)

3 Fractional Taylor’s and Cauchy’s mean value theorem with one
variable

In this section, we will give fractional Taylor’s mean value theorem and Cauchy’s mean
value theorem involving the sequential Caputo fractional derivative with one variable.

Let us begin with basic fractional Lagrange’s mean value theorem.

Lemma 3.1 (Fractional Lagrange’s mean value theorem). Suppose that f (x)∈C[a,b] and
Dα

a f (x)∈C[a,b], for 0≤α≤1, then we have

f (b)− f (a)=
1

Γ(α+1)
Dα

a f (ξ)(b−a)α (3.1)

with a≤ ξ≤b.

Proof. In view of Proposition 2.1, we have

f (b)− f (a)= [D−α
a Dα

a f ](b)=
1

Γ(α)

∫ b

a
(b−τ)α−1[Dα

a f ](τ)dτ

= [Dα
a f ](ξ)

1
Γ(α)

∫ b

a
(b−τ)α−1dτ=[Dα

a f ](ξ)
(b−a)α

Γ(α+1)
.

From Lemma 3.1, It is easy to obtain fractional Rolle’s mean value theorem which is
useful in the next.
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Lemma 3.2 (Fractional Rolle’s mean value theorem). Suppose that f (x)∈C[a,b], Dα
a f (x)∈

C[a,b], for 0≤α≤1, and f (a)= f (b), then there exists ξ∈ (a,b), such that

Dα
a f (ξ)=0. (3.1)

Now we can derive fractional Cauchy’s mean value theorem with one variable.

Theorem 3.1 (Fractional Cauchy’s mean value theorem). Suppose that f (x),g(x)∈C[a,b]
and Dα

a f (x),Dα
a g(x)∈C[a,b], where Dα

a g(x) ̸=0 for 0≤α≤1.
Then we have

f (b)− f (a)
g(b)−g(a)

=
Dα

a f (ξ)
Dα

a g(ξ)
(3.2)

with a≤ ξ≤b.

Proof. Set
F(x)= [ f (b)− f (a)][g(x)−g(a)]−[ f (x)− f (a)][g(b)−g(a)],

then F(a) = F(b) = 0, in view of fractional Rolle’s mean value Lemma 3.2, so that there
exists ξ∈ (a,b), such that

Dα
a F(ξ)=0.

Therefore, we have

[ f (b)− f (a)]Dα
a g(ξ)−Dα

a f (ξ)[g(b)−g(a)]=0,

Theorem 3.1 is completed.

Theorem 3.2 (Fractional Taylor’s mean value theorem). Suppose that Dkα
a f (x)∈C[a,b] for

k=0,1,...,m+1, where 0<α≤1, then we have

f (b)=
m

∑
k=0

(Dkα
a f )(a)

Γ(kα+1)
(b−a)kα+

(D(m+1)α
a f )(ξ)

Γ((m+1)α+1)
(b−a)(m+1)α (3.3)

with a≤ ξ≤b, where Dkα
a f is sequential Caputo fractional derivative.

Theorem 3.2 have also been established in [5] (see (1.5) in Section 1), here we give
another kind of method by the use of fractional Cauchy’s mean value Theorem 3.1.

Proof. By the use of fractional Cauchy’s mean Theorem 3.1, we can obtain

f (b)−
m
∑

k=0

(Dkα
a f )(a)

Γ(kα+1) (b−a)kα

(b−a)(m+1)α

Γ((m+1)α+1)

=

(Dα
a f )(ξ1)−

m
∑

k=1

(Dkα
a f )(a)

Γ((k−1)α+1) (ξ1−a)(k−1)α

(ξ1−a)mα

Γ(mα+1)

=

(D2α
a f )(ξ2)−

m
∑

k=2

(Dkα
a f )(a)

Γ((k−2)α+1) (ξ2−a)(k−2)α

(ξ2−a)(m−1)α

Γ((m−1)α+1)

= ···= (Dmα
a f )(ξm)−(Dmα

a f )(a)
(ξm−a)α

Γ(α+1)

=(D(m+1)α
a f )(ξm+1),
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where a6ξk6b,k=1,··· ,m+1.
So that we have

f (b)=
m

∑
k=0

(Dkα
a f )(a)

Γ(kα+1)
(b−a)kα+

(D(m+1)α
a f )(ξm+1)

Γ((m+1)α+1)
(b−a)(m+1)α.

The proof of Theorem 3.2 is completed.

Theorem 3.3 (Fractional Cauchy’s mean value theorem). Suppose that Dkα
a f (x),Dkα

a g(x)∈
C[a,b] for k=0,1,...,m+1, where Dkα

a g(x) ̸=0,0≤α≤1.
Then we have

f (b)−
m
∑

k=0

(Dkα
a f )(a)

Γ(kα+1) (b−a)kα

g(b)−
m
∑

k=0

(Dkα
a g)(a)

Γ(kα+1) (b−a)kα
=

(D(m+1)α
a f )(ξ)

(D(m+1)α
a g)(ξ)

. (3.4)

Proof. By the use of fractional Cauchy’s mean Theorem 3.1, we have

f (b)−
m
∑

k=0

(Dkα
a f )(a)

Γ(kα+1) (b−a)kα

g(b)−
m
∑

k=0

(Dkα
a g)(a)

Γ(kα+1) (b−a)kα

=

(Dα
a f )(ξ1)−

m
∑

k=1

(Dkα
a f )(a)

Γ((k−1)α+1) (ξ1−a)(k−1)α

(Dα
a g)(ξ1)−

m
∑

k=1

(Dkα
a g)(a)

Γ((k−1)α+1) (ξ1−a)(k−1)α
,

and

(Dα
a f )(ξ1)−

m
∑

k=1

(Dkα
a f )(a)

Γ((k−1)α+1) (ξ1−a)(k−1)α

(Dα
a g)(ξ1)−

m
∑

k=1

(Dkα
a g)(a)

Γ((k−1)α+1) (ξ1−a)(k−1)α
=

(D2α
a f )(ξ2)−

m
∑

k=2

(Dkα
a f )(a)

Γ((k−2)α+1) (ξ2−a)(k−2)α

(D2α
a g)(ξ2)−

m
∑

k=2

(Dkα
a g)(a)

Γ((k−2)α+1) (ξ2−a)(k−2)α

= ···= (Dmα
a f )(ξm)−(Dmα

a f )(a)
(Dmα

a g)(ξm)−(Dmα
a g)(a)

=
(D(m+1)α

a f )(ξm+1)

(D(m+1)α
a g)(ξm+1)

,

where a6ξk6b,k=1,··· ,m+1. The proof of Theorem 3.3 is completed.

Remark 3.1. (1) Theorem 3.1 and Theorem 3.3 are essentially new, which are the analogy
to Theorem 1.1 and Theorem 1.2 via sequential fractional Riemann-Lionville derivative
in Section 1.

(2) Set g(x)= (x−a)(m+1)α

Γ((m+1)α+1) , then Theorem 3.3 reduces to Theorem 3.2.

4 Fractional multivariate Taylor’s formula and Cauchy’s formula

In this section, we discuss fractional Taylor’s formula and Cauchy’s formula with multi-
variate. First, We discuss multivariate fractional Taylor’s formula and Cauchy’s formula
with the Lagrange remainder term.
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Theorem 4.1 (Multivariate fractional Taylor’s mean value theorem ). Let D be a compact
and convex domain, (x0,y0),(x,y)∈D⊂R2, and Dkα f (x,y)∈C(D),k=0,1,...,m+1. Then

f (x,y)=
m

∑
k=0

Dkα f (x0,y0)

Γ(kα+1)
+

D(m+1)α f (ξ,η)
Γ((m+1)α+1)

, (4.1)

where ξ = x0+θ(x−x0)= x0+θ∆x,η= y0+θ∆y,(0< θ<1) and Dkα f (x0,y0),D(n+1)α f (ξ,η)
are defined in Section 2.

Proof. In Theorem 3.2, replacing function f by φ, and setting a=0,b=1, yield

φ(1)=
m

∑
k=0

φ(kα)(0)
Γ(kα+1)

+
φ((m+1)α)(θ)

Γ((m+1)α+1)
, (0< θ<1). (4.2)

On the other hand, set φ(t) = f (x0+t(x−x0),y0+t(y−y0)), and by Proposition 2.6, we
have

φ(1)= f (x,y), φ(kα)(0)=Dkα f (x0,y0), φ((m+1)α)(θ)=D(m+1)α f (ξ,η). (4.3)

Substituting (4.3) into Eq. (4.2), then the proof of Theorem 4.1 is completed.

Theorem 4.2 (Multivariate fractional Cauchy’s mean value theorem). Let D be a compact
and convex domain, (x0,y0),(x,y)∈D, and Dkα f (x,y), Dkα f (x,y)∈C(D), k=0,1,...,m+1;
D(m+1)αg(x,y) ̸=0. Then we have

f (x,y)−
m
∑

k=0

Dkα f (x0,y0)
Γ(kα+1)

g(x,y)−
m
∑

k=0

Dkαg(x0,y0)
Γ(kα+1)

=
D(m+1)α f (ξ,η)
D(m+1)αg(ξ,η)

, (4.4)

where ξ= x0+θ(x−x0)= x0+θ∆x,η=y0+θ∆y,(0< θ<1).

Proof. In Theorem 3.3, replacing function f by φ, g by ψ and setting a=0,b=1, then we
get

φ(1)−
m
∑

k=0

φ(kα)(0)
Γ(kα+1)

ψ(1)−
m
∑

k=0

ψ(kα)(0)
Γ(kα+1)

=
φ(m+1)α(θ)

ψ(m+1)α(θ)
. (4.5)

On the other hand, set φ(t)= f (x0+t(x−x0),y0+t(y−y0)),ψ(t)=g(x0+t(x−x0),y0+
t(y−y0)), by Proposition 2.6, we have

φ(1)= f (x,y), φ(kα)(0)=Dkα f (x0,y0), φ((n+1)α)(θ)=D(n+1)α f (ξ,η), (4.6)

ψ(1)= f (x,y), ψ(kα)(0)=Dkα f (x0,y0), ψ((n+1)α)(θ)=D(n+1)α f (ξ,η). (4.7)

Substituting (4.6) and (4.7) into Eq. (4.5), then the proof of Theorem 4.2 is completed.
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Now, we set
φ(t)= f (x1+t∆x1,...,xn+t∆xn),

where ∆x1=y1−x1,∆x2=y2−x2,...,∆xn =yn−xn.
We can obtain the following proposition by a process analogous to Proposition 2.6.

Proposition 4.1. Let (x1,...,xn),(y1,...,yn) ∈ D, where D ⊂ Rn is a compact and convex
domain, then

(Dµ f )(x1+s∆x1,...,xn+s∆xn)=(Dµ φ)(s), (4.8)
(Dµ f )(y1,...,yn)=(Dµ φ)(1),(Dµ f )(x1,...,xn)=(Dµ φ)(0). (4.9)

By a process analogous to Theorem 4.1 and Theorem 4.2, we can obtain the following
theorems.

Theorem 4.3 (Multivariate fractional Taylor’s mean value theorem). Suppose that Dkα
a f are

continuous in D⊂Rn, for k=0,1,...,m+1, where 0≤α≤1, then we have

f (y1,...,yn)=
m

∑
k=0

Dkα f (x1,...,xn)

Γ(kα+1)
+

D(m+1)α f (ξ1,...,ξn)

Γ((m+1)α+1)
, (4.10)

where ξi = xi+θ(yi−xi),i=1,...,n,0< θ<1.

Theorem 4.4 (Multivariate fractional Cauchy’s mean value theorem). Suppose that Dkα
a f ,

Dkα
a g are continuous in D, for k=0,1,...,m+1, where D(m+1)α

a g ̸=0,0≤α≤1, then we have

f (y1,...,yn)−
m
∑

k=0

Dkα f (x1,...,xn)
Γ(kα+1)

g(y1,...,yn)−
m
∑

k=0

Dkαg(x1,...,xn)
Γ(kα+1)

=
D(m+1)α f (ξ1,...,ξn)

D(m+1)αg(ξ1,...,ξn)
, (4.11)

where ξi = xi+θ(yi−xi),i=1,...,n.

Next let us discuss fractional Cauchy’s formula and Cauchy’s formula with integral
remainder term.

Lemma 4.1. Suppose that φ(kα)(t)∈C[0,1] for k=0,1,...,m+1, where 0<α≤1, then we have

φ(t)=
m

∑
k=0

φkα(0)
Γ(kα+1)

tkα+
1

Γ((m+1)α)

∫ t

0
(t−τ)(m+1)α−1φ(m+1)α(τ)dτ, (4.12)

when t=1, then

φ(1)=
m

∑
k=0

φkα(0)
Γ(kα+1)

+
1

Γ((m+1)α)

∫ 1

0
(1−τ)(m+1)α−1 φ(m+1)(τ)dτ. (4.13)
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Proof. By Laplace Transform, we have

L{ 1
Γ((m+1)α)

∫ t

0
(t−τ)(m+1)α−1φ(m+1)(τ)dτ}(s)

= L{D−(m+1)αD(m+1)α φ(t)}(s)
= s−(m+1)αL{D(m+1)α φ(t)}(s)

= s−(m+1)α[s(m+1)α φ̂(s)−
m

∑
k=0

s(m−k)α φkα(0)]

= φ̂(s)−
m

∑
k=0

φkα(0)
skα+1 .

By inverse Laplace Transform, we obtain

1
Γ((m+1)α)

∫ t

0
(t−τ)(m+1)α−1 φ(m+1)(τ)dτ= φ(t)−

m

∑
k=0

φkα(0)
Γ(kα+1)

tkα,

φ(1)=
m

∑
k=0

φkα(0)
Γ(kα+1)

+
1

Γ((m+1)α)

∫ 1

0
(1−τ)(m+1)α−1φ(m+1)(τ)dτ.

The proof of Lemma 4.6 is completed.

The following theorem can be obtained directly from Lemma 4.1 and Proposition 4.1.

Theorem 4.5 (Multivariate Taylor’s formula with integral reminder term). Suppose that
Dkα

a f are continuous in D⊂Rn, for k=0,1,...,m+1, where 0≤α≤1, then we have

f (y1,...,yn)=
m

∑
k=0

Dkα f (x1,...,xn)

Γ(kα+1)
(4.14)

+
1

Γ((m+1)α)

∫ 1

0
(1−t)(m+1)α−1D(m+1)α f (x1+s(y1−x1),...,xn+s(yn−xn))ds.

From Theorem 4.7, we have

Theorem 4.6 (Multivariate Cauchy’s formula with integral reminder term). Let Suppose
that Dkα

a f , Dkα
a g are continuous in D⊂Rn, for k=0,1,...,m+1, where 0<α≤1, then we have

f (y1,...,yn)−
m
∑

k=0

Dkα f (x1,...,xn)
Γ(kα+1)

g(y1,...,yn)−
m
∑

k=0

Dkαg(x1,...,xn)
Γ(kα+1)

=

∫ 1
0 (1−t)(m+1)α−1D(m+1)α f (x1+s(y1−x1),...,xn+s(yn−xn))ds∫ 1
0 (1−t)(m+1)α−1D(m+1)αg(x1+s(y1−x1),...,xn+s(yn−xn))ds

. (4.15)
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Remark 4.1. Theorem 4.5 is the analogy to Theorem 1.3 via Caputo fractional derivative
in Section 1.

Last, let us consider some special cases in Theorem 4.5.
(1) When n=0,0<α<1, then we get

f (y1)=
m

∑
k=0

Dkα f (x1)

Γ(kα+1)
+

1
Γ((m+1)α)

∫ 1

0
(1−t)(m+1)α−1D(m+1)α f (x1+t(y1−x1))dt. (4.16)

Now from Definition 2.5 we have

(D−ν f )(y)=
1

Γ(ν)

∫ 1

0
(1−t)ν−1 f (x1+t(y−x1))dt, (ν∈R+)

it is easy to verify that

(D−ν f )(y)=(y−x1)
−ν 1

Γ(ν)

∫ y

x1

(y−τ)ν−1 f (τ)dτ=(y−x1)
−ν[D−ν

x1
f ](y),

where [D−ν
x1

f ](y) is Riemann-Liouville integral.
Similarily, from Definition 2.7 and Proposition 2.6, we can obtain

(Dµ f )(y)=(y−x1)
µ[Dµ

x1 f ](y), (4.17)

where [Dµ
x1 f ](y) is Caputo fractional derivative.

Therefore, combining formula (4.16) with (4.17), we obtain fractional Taylor’s formula
with integral reminder via sequence fractional Caputo derivative:

f (y1)=
m

∑
k=0

(y1−x1)
kα

Γ(kα+1)
[Dkα

x1
f ](x1)+

1
Γ((m+1)α)

∫ y1

x1

(y1−τ)(m+1)α−1D(m+1)α
x1 f (τ)dτ.

(4.18)
(2) When n=0,α=1, the fractional Taylor’s formula reduced to the classical Taylor’s

formula

f (y1)=
m

∑
k=0

(y1−x1)
k

k!
f k(x1)+

1
m!

∫ y1

x1

(y1−τ)m f (m+1)(τ)dτ.

Further, let m=0, it reduced to the well-known Newton-Leibnitz’s fundamental theorem
of calculus f (y1)= f (x1)+

∫ y1
x1

f ′(τ)dτ.
(3) When n>1,α=1, from Definition 2.5, we have

f (y1,...,yn)=
m

∑
k=0

1
k!
(∆x1

∂

∂x1
+...+∆xn

∂

∂xn
)k f (x1,...,xn)

+
1

m!

∫ 1

0
(1−t)mDm+1 f (x1+t∆x1,...,xn+t∆xn)dt,

which is the classical Taylor’s formula with multivariate.
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(4) Let α=1,m=0 in Theorem 4.7, then we can get

f (y1,...,yn)= f (x1,...,xn)+∫ 1
0 (∆x1

∂
∂x1

+...+∆xn
∂

∂xn
) f (x1+t∆x1,...,xn+t∆xn)dt,

which is the famous Hadamard formula.
(5) By the use of Cauchy’s mean value theorem of integrals, we have∫ 1

0
(1−t)(m+1)α−1D(m+1)α f (x1+s(y1−x1),...,xn+s(yn−xn))ds

= D(m+1)α f (x1+θ(y1−x1),...,(xn+s(yn−xn))
∫ 1

0
(1−t)(m+1)α−1ds

=
(D(m+1)α

a f )(ξ1,···ξn)

(m+1)α
,

where ξi=xi+θ(yi−xi),0<θ<1. Then we can also obtain multivariate fractional Taylor’s
mean value Theorem 4.3 (see (4.10)) from Theorem 4.5.

5 Conclusion

We have presented multivariate fractional Taylor formulas and multivariate fraction-
al Cauchy mean value formulas with remainders in the form of either fractional order
derivatives or integrals, respectively, in the sense of sequential Caputo fractional order
0< α≤ 1) derivative. When α= 1, these formulas can be reduced to the classical Taylor
formula and Cauchy mean value formula, respectively. The obtained formulas may be
useful in fractional vector calculus which is an important tool for describing processes in
complex media, non-local materials and distributed systems in multi-dimensional space.
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