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Abstract. In this paper, a nonlinear boundary value problem in a three dimensional
thin domain with Tresca’s friction law is considered. The small change of variable
z = x3/¢ transforms the initial problem posed in the domain () into a new problem
posed on a fixed domain () independent of the parameter e. As a main result, we
obtain some estimates independent of the small parameter. The passage to the limit
on g, permits to prove the results concerning the limit of the weak problem and its
uniqueness.
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1 Introduction

In this work, we consider a nonlinear boundary value problem governed by partial dif-
ferential equations which describe the evolution of linear elastic materials in a bounded
domain Qf C R3 with Tresca’s friction law over a portion of the border and Dirichlet
boundary conditions on the top and the lateral parts. However, this time we consider a
nonlinear term |u|fu®, p=p—2 for p>1. Thus we shall give the analogue of [3], where
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the authors gave the existence and the uniqueness of a non-Newtonian and incompress-
ible fluid with stress tensor of; = —pé;j+2pu|D (u?) "~2d;j(uf), in a thin domain and the
extension of [5,9]. Before stating the scientific context and our results, we first intro-
duce some notations used in the paper. The boundary I'* of the domain is assumed to
be Lipschitz continuous so that the unit outward normal # exists almost everywhere on
I'¥. The boundary of the domain is composed of three portions: w the bottom of the do-
main, I'] the upper surface, and I'] the lateral surface. Similar studies have been made
by several authors but with the usual boundary conditions, we cite for example: In [7], ].
L. Lions studied theoretically a problem governed by the Laplace equation with Dirich-
let boundary conditions. He proved the existence of a solution based essentially on the
method of compactness, and the uniqueness of the solution by imposing conditions on
the data. In [9], the authors, studied the similar nonlinear hyperbolic boundary value
problem governed by partial differential equations which describe the evolution of the
linear elastic materials but with Dirichlet-Neumann usual boundary conditions. They
used the techniques of [7, 8] for a particular problem by replacing the elasticity equation
by the Laplace operator and with the Neumann boundary conditions. The study of the
asymptotic analysis of the same problem but in the particular case where p =1 has been
considered in [5]. In the last few years, some research papers have been written dealing
with the asymptotic analysis of an incompressible fluid in a three-dimensional thin do-
main, when one dimension of the fluid domain tends to zero, (see e.g., [1,3,4]) and the
references cited therein. More recently, the authors in [2] have studied the asymptotic
analysis of a dynamical problem of isothermal elasticity with non linear friction of Tresca
type but without the intervention of the nonlinear term. In [10] they studied the asymp-
totic behaviour of a dynamical problem of non-isothermal elasticity materials. The paper
is structured as follows. In Section 2 we present some notations and give the problem
statement and variational formulation. In Section 3 we use the asymptotic analysis, in
which the small parameter is the height of the domain. We establish some estimates,
independent on the parameter . These estimates will be useful in order to prove the con-
vergence of the displacement toward the expected function. In Section 4, we investigate
the convergence results of the limit weak problem and its uniqueness.

2 Problem statement and variational formulation

Let w be a fixed bounded domain of R® of equation x3 =0. We suppose that w has a
Lipschitz continuous boundary and is the bottom of the domain. The upper surface T
is defined by x3 =¢h(x) =¢eh(x1,x2). We introduce a small parameter ¢, that will tend to
zero, and a function /1 on the closure of w such that 0 < fimin <h(x) <hmax, for all (x,0) in
w. We study the asymptotic behaviour of an elasticity in the domain:

O ={(x, x3) €R’: (x,0) ew, 0<x3<eh(x)},

and I its boundary : ['* =T UT; U@, where T is the lateral boundary.
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Thus, the classical formulation of the mechanical problem is written as follows:
Problem P1 Find a displacement field u¢: Q) — R3 such that

oot
a—;—i—\uS\PuS—l-ﬁ:O, where p=p—2, p>1 in QF, (2.1a)
i
Uf}(ue):2;4dij(u€)+)&dkk(us)5i]- in OF, (2.1b)
£=0 on I7, (2.10)
ut=g, with g3=0 on T7Y, (2.1d)
ut-n=0 on w, (2.1e)
08| <k® = ué=s,
|0%| =k¢ = 3B>0, such that 1 =s— o<, on @ 219
where
1 ,0ut  Ous
ff=fih<ics, §=(gih<ics, ¢, k5, 4; and d(“8)25<a—x; a—x:)’

respectively, the body forces, the vector function, such that f re§-ndo =0, the stress field,
friction coefficient, the symbol of Kronecker and the symmetric deformation velocity
tensor. Furthermore, the Eqgs. (2.1a) and (2.1b) represent respectively, the equilibrium
equation, the elastic behavior law. The formulae (2.1c) and (2.1d) are the displacement
boundary conditions, in which n = (1n9,12,13) denotes the unit outward normal vector
on I'*. Finally, condition (2.1e) represents the contact with Tresca’s friction law given by
Eq. (2.1f).

Now, to proceed with the variational formulation, we need the following functions
spaces:

ovt
(Wlf”(QS))3:{ve(L”(QS))3:a—?€L”(QS), for 1<p<coand ij=123}.
]

WS’P(QS) is the closure of D(Qf) in W7 (Q¥). The dual space of W&’p(ﬂg) is W=11(0)f),
where p~1+471=1. Let

Wil (OF) = {p e WP () :p=0 on T{UTE}.

Due to (2.1¢) it is well known that there exists a function G¢ (see [1]) such that
Gie (WMP(0¥))?, Gf=g on T

To get a weak formulation, we introduce the closed convex set

K*={ve(W"P(Q¥))*:v=0 on I, v=g on I} and v-n=0 on w}.
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For every element uf € (W' (Q)¥))% we denote by u¢, and u the normal and the tan-
gential components of u° on the boundary w given by:

e __ ¢ e __ ¢ e .
Uy =utn, UL =u;—iy-n;.
Also, for a regular function ¢¢, we define its normal and tangential components by

oy =(0"-ni)-nj, oy =0j-n;—(0y)n;.
By standard calculations, the variational formulation of the Problem P1 is given by:

Problem P2 Find a displacement field u® € K such that
a(ut,@—ut)+B(u',ut, @ —us) + [*(¢) = J*(u°) = (f* p—u), Voek',  (22)
where

(u,0) 2;4/ ij(w)dij(0)dx'+A | div(u)div(v)dx’,

0Oe
:/kS]v—s]dx, VUEHI(QS) ,
w

B(ue,v):/ |uf|Putody’,
Qs
v):/ frodx!, Yoe H'(QF)3.
QS

We also denote by the nonlinear operator

(A@S),p)=a(u,¢)+B(u",p). (2.3)
Lemma 2.1. Problems P1 and P2 are equivalent.

Proof. The proof is similar to [5] for p=1. O

The existence and uniqueness results of the weak solution to the Problem P2 is ob-
tained in the following theorem.
Theorem 2.1. Assuming that f € L1(Q¥)3, k¢ is a positive function in L®(w) and h€ L®(w)N
CY(w), there exists a unique solution u € K¢ to Problem P2.

Proof. The Problem P2 is still written

Find u® € K€ such that
‘) +51<e< )

a(u,—u)+B(us,¢p—u)+j(¢) - (u
P())?,

S (e, e

where Jk: is the function given by
P 0, if vEKE,
K71 400, if v Ke.

The proof is based on the nonlinear operators theory (see for example [7]): It is enough to
show that the operator A given by (2.3) is bounded coercive semicontinuous and strictly
monotone, and that J*+Jk: is a convex and proper functional. O
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3 Transposing of the Problem P1

We shall now focus our attention on the asymptotic analysis for the Problem P1. For this,
we transform this problem into an equivalent problem on a domain ) independent of
the parameter ¢ via the rescaling z=x3 /¢ (as in [1]). So, for (x,x3) in OO, we have (x,z) in

Q:{(x,z)E]R3, (x,0)ew and 0<z<h(x)},

and we denote by I'=@UI'; UT'y its boundary, then we define the following functions in
O

05(x,z) =e u§(x,x3) and 05(x,z)=uf(x,x3), i=1,2, (3.1a)
k=ekt, f(x,z)=e*f(x,x3) and g(x,z)=g"(x,x3), (3.1b)
Gi(x,z) =Gj(x,x3), i=12, and G3(x,z) =¢ 1G3<X,X3). (3.1¢)

Let
K—{qoé (WP (O ))3'q0:(q01,g02,q03), q):é on I'MUT., ¢-n=0 on w},
{906 Wlp Q))2 (I_) (P1/§02)/ qoi:éi on F]UFL, izllzl}l
(

vzz{v:(vl,vz) (LP(Q))?: aaz

where V, is the Banach space with norm

e

i=1

€LP(Q), i=1,2, on rl},

dv;

Dk

Assuming (3.1), then problem (2.2) leads to the following form:

Find uf € K, such that
a(h€,¢—10°)+ B(ag, o —f) + J (@) — J (11€) (3.2)
. R

where

B(11f,— 1) =€ Z/Q\ Pt (¢i— )dx’dz—i—ep“/ |5 |° 05 (p3 —15)dx'dz,

ong O\ 9
NE A E) — 02 _ I\ 2
a(ll,g—i) =pe ‘]Z_:/<8x]+8xi)8xj

o ,005\ 9
+MZ/ <Bz te Bxi)az(q) ;) dxdz

(¢i—17)dxdz
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8

+ yez Z/ az'

, 015\ 9 e
—3) a—(qo —115)dxdz

In the next, we will obtain first estimates on 71¢. These estimates will be useful in order to
prove the convergence of i1° toward the expected function.

Theorem 3.1. Under the same assumptions as in Theorem 2.1, there exists a constant C inde-
pendent of € such that
au3 2 /100

LP(Q +Z(‘ az

i=1

, 0115 |P
+[¢
LP(Q) ox; lLr(Q)

) <C. (3.3)

‘ ax] LP(Q az

1<ij<2
Proof. Let u® be a solution to the problem (2.2). We deduce
a(ut,u) <a(u, @) = B(u*u)+B(uS, @)+ (9) = J*(u) + (fu) = (f9), VoK~
As B(uf,u®) >0 and J¢(u®) is positive, (since k >0), we have
a(u ) <a(uf,9)+ B, 9)+ I (9) + (F ) — (), Vpek-.
From Korn'’s inequality, there exists a constant Cx >0 independent of ¢, such that
a(u®,u®) >2uCg|Vut Z”(Q)'
By the Holder inequality and the Young inequality, we obtain

a(uelq))S/Qszy]dij(ue)Hdi]-(q))]dxdx3+)&/m|div(u€)]]div(q))|dxdx3

S(/E(WZCK)%M&(MS)D (/Q ! (%)%|dij(q’)|dXdX3)

(pCk)?

—I—(/()E(%Q);\div(ue)\)(/ﬂc (”’”fK) ’|dio(g)|dxdxs)

Ck p i g
ST ’dij<u€) LP () + N ‘dl] ((P) Li(Q)

(3.4)

q
—I—H—CK/ ]div(ue)\pdxdx3+A7q |div(¢)|Tdxdxs
4 Qs p JOe

K
<” V[ ey +

q(pCx
MCK / |Vuf|Pdxdxs+
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Then
2291 U AT

e
g(pCx)? (LB

(1, 9) | < SpCx V|l e+ IVollia

by the Poincaré inequality, we obtain
’Me ’Lp(Qe) < Ehmax | Vut |Lp(Qe) .

We have by the Young inequality and (3.6):

==

_1 C
f¥ Lo |4 | r ey < (ehmax (1pCk2) p’f€|m(0€))<(yp K) ’V”€’LP(06)>

2
uCk o 1 (HPCKN T e
S T ’Vu zp(Qg) + (Ehmax)qq ( 2 ) ’f L‘l Qf
e

C
Pl 9710 < K190 g+ () (F2) P 0,

On the other hand, by the Holder, Young and Poincaré inequalities, we obtain

|B(“€r¢)|§/ﬂg<(%)%]¢]> ((%)%hﬂ(p—l))d}c
SPU,:T)E 917t thax/ |uf|Pdx

EMmax

#Cx
ST’V” LP(Q&)+

14 ’VWU Qa
P(z;elhmj;)'7

If p<gq then
r
Nmax
’ /¢)’<M k\V“ Lp(Qe)‘i'qi’v(P’Lq Q8
p(H5E)

Using (3.4)-(3.8) and choosing ¢ = G*, we have

220-1y AT Il s ka
HCkW” LP(Q S( 7+ 7+ 7T )’VG& L1 (0
O\ q(pC)?  q(HG)F p(H%) @

25 h?nax \fg
q(.”PCk) La(r)
As s _aep g ous |p paa;-?p .
‘ ‘f L(0) ’f Lr(€x) and % LP(Qe):E oz LP(QE)’ =12

197

(3.5)

(3.6)

(3.7a)

(3.7b)

(3.8)

(3.9)
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then we multiply (3.9) by ¢?~! we deduce (3.3), with

P
4 22‘1*1]/[ A Phax ]/lck
- [( ot (&Ck)%—i- &Ck)% )WG’m Qe]

HC q(PCk) g p(*4
4 max
uCy q(VPCk)q m“ Q)
which completes the proof. O

4 The limit problem

Theorem 4.1. Under the same assumptions of Theorem 3.1, there exists iy € V,, i=1,2, such

that
15 harpoonup uy (1<i<2) weakly in V, (4.1a)
e
ea—ui harpoonup 0 (1<i,j<2) weakly in LP(Q)), (4.1b)
Xj
e e harpoonup 0 weakly in LP(Q)), (4.1c)
€ % harpoonup 0 (1<i<2) weakly in LF(Q)). (4.1d)

Proof. From the inequality (3.3) there exists a fixed constant C which does not depend on
e such that

a AE
I <, i=12
az L2(Q)
Using the above estimate and the Poincaré inequality in the domain (), we deduce (4.1a).
Also (4.1b)-(4.1d) follows from (3.3). O
Theorem 4.2. With the same assumptions of Theorem 3.1, iI* satisfy
Z / o 0 )dxdz+ (9 )> i _aY), Veell(K),  (42a)
=Ja oz az = :
%0r 4
— U= 822 =fi, for i=1,2, in L1(Q). (4.2b)

Proof. The variational inequality (3.2) can be written as:

4 2
ZI €)+\e /dzv dzv(cf)—ﬁs)dx’dz—i—ezZ/ |08 |P 0% (;— 105 )dxdz
2

i=

et / 125]° 05 (3 — 15 dxdz -+ (B 2 & te(f,ds—15),
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where

By the Theorem 4.1, we have

hmZI 21/0 LS (i),

S—)O

lim / efapdxdz=0,

limsZZ/ |05 |P 08 (¢; — 115 )dxdz =0,

e—0 i

limeP*! /Q |05]° 15 (p3 — 115 ) dxdz =0.

e—0

And as | is convex and lower semicontinuous i.e.,

lim(inf/ I%]ﬁs—s\dx> z/lz\ﬁ*—s]dx,
e—0 w w

2
}42/ az Bz (@i— 7 )dxdz+](¢ ZE

We now choose in the variational inequality (4.3)

we obtain

bi=ur+v;, peW,"(Q), i=12,
to get

;i .
;/ az 0z 54Xz _g/Qfﬂ/szxdz.

Pr=0and ¢; € Wé’p (Q)) the following equality:

0 aﬁ;" .
—/ s ¥>1/Jidxdz—/0fil/)idxdz,

aZ %

5 L—f, fori=12, in W M(Q),

199

(4.3)

Using now the Green formula, we deduce first with ¥; =0 and ¥, € Wé’p (Q), then

(4.4a)

(4.4b)
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and as f; € L7(Q), then (4.4) is valid in L7(Q). O

Theorem 4.3. Under the same hypothesis of Theorem 3.1 we have the following inequality

/k|¢+s*—s|—|s*—s]dx—/yf*tpdxzo, Ve (LM (w))?, (4.52)

{ u|t*| <k—s*=s,

|t | =k—3B>0, such that s*=s+pt* (4.5b)

where

on*
0z

Ak

(x,0) and s*(x)=0"(x,0).

Also the limit fonction 01* and s* satisfy the following weak form of the Reynolds equation

/ F——s —|-/ (x,2) dz ng( )dx=0, VYpecWP(w), (4.6)

where

F(x):%/ohP(x,z)dz—%F(x,h) and P(x,z):/oz/ogﬁ(x,a)dgdoc.

Proof. For the demonstration, it is enough to follow the same techniques of [1, 3] in the
case of fluid. O

Theorem 4.4. The solution u* in V; of inequalities (4.2a)-(4.2b) is unique.

Proof. Let 4! and 42 be two solutions of (4.2a). Then

2oron 9, ed . 2 .
”;/Qgg(%—ui) X Z”(G")—J(“z)_;(ﬂ,% a;), (4.7a)
2 ron? 9 " R ,
' i_zl/gg oz (91— )dxdz+](9) =] (1) 2 ) (fir @i = 1), (4.7b)

2
Zi/ o a4 )~ ] ]) = Y-, (4.8a)

2/ a2 3 Z)dxdz+](ﬁ1)_](ﬁz)>§:(f. al— 2 (4.8b)
g aZ aZ Ui o= v e .

i=1
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By summing the two inequalities (4.8a) and (4.8b), we obtain

i/aﬁ}a( dd+2/ 017)dxdz >0,
”izlgaz oz T T az Bz e
i/ 9 =) 2 (! — #?)dxdz <0
yi:lﬂaz i Ui\ =Y,
this implies:
o .1 .2
y‘g(ul_ )LZ(Q)_O.

By the Poincaré inequality, we get

2
— 2|y, <c|—(a} —? =0.
ja} v, <c| o (0} ~a?) ey =0
So
o' =n?.
This completed the proof. O
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