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Abstract. In this paper, we propose an algorithm based on augmented Lagrangian

method and give a performance comparison for two segmentation models that use

the L1- and L2-Euler’s elastica energy respectively as the regularization for image seg-

mentation. To capture contour curvature more reliably, we develop novel augmented

Lagrangian functionals that ensure the segmentation level set function to be signed dis-

tance functions, which avoids the reinitialization of segmentation function during the

iterative process. With the proposed algorithm and with the same initial contours, we

compare the performance of these two high-order segmentation models and numerical-

ly verify the different properties of the two models.
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1. Introduction

Image segmentation is a typical problem in image processing, with a broad range of ap-

plications in medical image analysis, object detection, recognition, etc. It aims to partition

a given image domain into several disjoint regions, each of which describes either a mean-

ingful object or background. During the last few decades, numerous variational models

have been developed for this problem. These include the snake and active contour model

by Kass, Witkin, and Terzopoulus [17], the Mumford-Shah model [23], the geodesic active

contour model by Caselles, Kimmel, and Sapiro [7], and the Chan-Vese model [11], to

name a few. The Chan-Vese model can be regarded as a special case of the Mumford-Shah

model by confining the approximation functions to be binary functions, and an attractive

feature of the Chan-Vese model is its treatment of segmentation contours using level set

functions [25].
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Recently, in [35], we considered a modification of the Chan-Vese (CV) model by em-

ploying the Euler’s elastica energy as the regularization of segmentation contour. Euler’s

elastica energy was first seriously studied for visual perception by Mumford [22], and it has

been widely utilized as a regularizer in image inpainting [1,2,10], capturing illusory con-

tours [24,33], and image denoising [29]. Benefited from the attributes of this high-order

regularizer, the modified CV model (ECV -L2 model) presents several new features when

compared with the original CV model for image segmentation (cf. [35]): 1) automatically

connecting broken parts of objects; 2) capturing objects of large size while omitting small

ones; 3) being more suited than the CV model for keeping elongated structures.

Later on, another variant of the Chan-Vese model was discussed in [4], where the

L1 variant of Euler’s elastica was taken as the new regularization term of segmentation

contours. The most remarkable feature of this new segmentation model lies in the fact

that it privileges convex contours once a strong weight is imposed on the curvature term,

which is supported by the theorem [21] in differential geometry that the integral of the

magnitude of curvature along any closed piecewise smooth curve is greater than or equal

to 2π, and the minimum value is attained only when the closed curve is convex.

To present these two variants of the Chan-Vese model, we recall the standard Euler’s

elastica that refers to a curve Γ that minimizes the elasticity energy

E(Γ) =

∫

Γ

(a+ bκ2)ds (1.1)

among all curves satisfying some boundary conditions, where κ represents the curvature

of curves and a, b > 0 are two parameters. The L1-variant of Euler’s elastica energy can be

expressed as

E(Γ) =

∫

Γ

(a+ b|κ|)ds. (1.2)

This elastica energy linearly depends on the magnitude of curvature, which helps maintain

corners during the segmentation process, as discussed in the well-known segmentation

with depth model by Nitzberg, Mumford, Shiota [24].

By incorporating Euler’s elastica energy, those two modified Chan-Vese models can be

written in the level set setting as follows:

min
{φ,c1,c2}

E(φ, c1, c2) = min
{φ,c1,c2}

∫

Ω

( f − c1)
2H(φ) + ( f − c2)

2(1−H(φ))

+

∫

Ω

 

a+ b

�

�

�

�

∇ · ∇φ|∇φ|

�

�

�

�

2
!

|∇H(φ)|, (1.3a)

min
{φ,c1,c2}

E(φ, c1, c2) = min
{φ,c1,c2}

∫

Ω

( f − c1)
2H(φ) + ( f − c2)

2(1−H(φ))

+

∫

Ω

�

a+ b

�

�

�

�

∇ · ∇φ|∇φ|

�

�

�

�

�

|∇H(φ)|, (1.3b)
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where f : Ω→ R1, φ is a level set function whose zero contour locates the segmentation

contours, H(·) is the Heaviside function, and c1, c2 are constants. Moreover,∇·(∇φ/|∇φ|)
represents the mean curvature of level curves of φ [25]. The positive parameters a, b are

able to balance the fitting term and the Euler’s elastica energy. Just as the ECV -L2 model

(1.3a), the second one is called as the ECV -L1 model in the following contexts.

As both models incorporate Euler’s elastica energy as the regularization, they share

similar features, such as connecting broken parts of objects and putting small objects into

background. However, the difference in their exponents of curvature leads to dramatical

discrepancies in their performance:

• The ECV -L1 model is able to keep object corners, while the ECV -L2 smears them

unavoidably because of its quadratic dependence of curvature of segmentation con-

tours;

• The ECV -L1 model privileges convex contours when the curvature term is large

while the ECV -L2 model presents no such a property;

• Again due to the quadratic dependence of curvature, the ECV -L2 model is more

inclined to remove small objects than the ECV -L1 model.

Even though these segmentation models possess such interesting features, it is nontriv-

ial to develop reliable numerical schemes for those models. The main difficulties originate

from their high-order and non-convex attributes and also a precise way of capturing cur-

vature during the minimization processes of these models numerically.

Recently, lots of research works have focused on the development of fast and reliable

numerical methods for minimizing curvature based functionals, such as the multigrid algo-

rithm [6], the homotopy method [31], graph cut based algorithms [3,13], linear program-

ming method [28], and augmented Lagrangian method (ALM) based algorithms [15,27].

Specifically, augmented Lagrangian method based algorithms have been proposed to

deal with non-differentiable and/or high-order functionals in image processing [29, 30],

see also [16] for a more detailed survey on this. The merit of using ALMs lies in the fact

that the original minimization problem of non-differentiable and/or high-order functionals

can be converted to be the seek of minimizers of several lower-order functionals or sub-

problems, which can be solved either using closed-form solutions or using Fast solver like

the Fast Fourier transformation (FFT). Therefore, by utilizing ALMs, the original minimiza-

tion problem of high-order functionals becomes more tractable numerically. However, as

a trade-off, as shown in [34], the pursuit of simple form of those subproblems inevitably

leads to too many subproblems that need to be solved, which naturally raises the issue of

finding appropriate penalty parameter for each dual variable. Therefore, the difficulty of

the original problem is transferred to the choice of penalty parameters that ensure the con-

vergence to saddle points of the corresponding augmented Lagrangian functional. Based

on this argument, in [4], we proposed making use of fewer dual variables at the expense

of solving more complicated subproblems, which balances the two difficulties of dealing

with the minimization of high-order functionals and finding suitable penalty parameters of

Lagrange multipliers.



288 X. He, W. Zhu and X. C. Tai

In this work, we intend to study and compare the performance of these two segmen-

tation models numerically by designing novel ALM based algorithms. As discussed above,

one of the most important concerns of treating these elastica based models is how to reli-

ably express the curvature term. As mentioned in [4], once the coefficient of curvature is

large, it is advisable to apply the reinitialization technique [26] to restore the segmentation

function to be a signed distance function. However, an issue is often companied with the

application of this procedure, that is, how often it should be taken during the iteration. It

will be too expensive to be carried out for each iteration, and an excessive reinitialization

also prevents the propagation of segmentation contour. To avoid such an issue, we add an

extra constraint requiring the segmentation function to be signed distance functions.The

idea is very similar to but slightly different from Chunming Li et al.’s work in [19]. In [19],

they avoid the reinitialization by adding a penalization term in the energy functional. In

our work, we impose the signed distance requirement as a constraint in the optimization

problem, which will be illustrated in detail in Section 3.

To see how signed distance functions help capture curvature numerically, we consider

two different functions φ1 and φ2 but with the same zero level curve as follows:

1. φ1(x , y) = 1− ( x

a
)2 − ( y

b
)2. φ1 is defined on a 600× 400 grid lattice with its center

being the origin point, and a = 200 and b = 100.

2. φ2 is a signed distance function that shares the same positive and negative region as

φ1 and is constructed using the method in [12].

It is easy to see that φ1 is not a signed distance function. Numerical calculation shows

that the term
∫

|κφ1
||∇Hε(φ1)|d xd y = 2.03 for ε = 1.5, where Hε is a regularized ver-

sion of the Heaviside function that will be discussed later. However, similar calculation

yields
∫

|κφ2
||∇Hε(φ2)|d xd y = 6.22, which is very close to the exact value 2π, since the

zero level curve is closed and convex [21]. This simple comparison indicates that it helps

represent curvature reliably by requiring φ to be a signed distance function.

The outline of the paper is as follows. In Section 2, we provide a simple but heuristic

example to show the difference between the two elastica regularizers on the preservation

of corners. In Section 3, we propose novel augmented Lagrangian method based algo-

rithms for the ECV -L1 and the ECV -L2 segmentation models and also present the details

of solving those corresponding subproblems. In Section 4, we discuss the numerical imple-

mentation, and then present the numerical results and the comparison for the two models

by using the proposed algorithms in Section 5. Section 6 is devoted to our conclusions.

2. A geometric difference between L1 and L2-Euler’s elastica

In this section, we use a simple example to demonstrate the fact that the L1-Euler’s

elastica is able to preserve corners while the L2-Euler’s elastica will erode them inevitably.

As shown in Fig. 1, we consider a red wedge with a sharp corner, and try to calculate

the two elastica energies along the red lines, each of which has the length L. Since the

curvature is not well-defined at the corner, we just do the integrals along its smoothed
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Figure 1: A red wedge and its corner-smoothed version.

version denoted as Γr , that is, the corner part is replaced by a small circular arc that is

tangent to both red edges and has a radius r, and then let the radius r go to zero.

Note that the magnitude of curvature is zero along the red edges and is 1/r along the

yellow arc, direct calculation leads to the following:

∫

Γr

(a+ b|κ|)ds = 2a(L− r tanθ + rθ) + 2bθ , (2.1a)

∫

Γr

(a+ bκ2)ds = 2a(L− r tanθ + rθ) + 2bθ/r. (2.1b)

As r → 0, the L2-Euler’s elastica goes to ∞, which indicates that the corner may not be

preserved, while for L1-Euler’s elastica, the limit is just 2aL + 2bθ , which means that a

small value of r is allowed. From this simple calculation, another interesting phenomenon

is that with a > 0, the L1-Euler’s elastica energy gives a smaller value for a larger r > 0.

This is because that θ < tanθ for θ ∈ (0,π/2). However, as shown in Fig. 2, for the

ECV -L1 segmentation model, the L1-Euler’s elastica energy also needs to compete with

the fitting term, and therefore, how well the corner is preserved depends on how small the

parameter a is. Both facts explain the results in Fig. 2: with a small value of a, the ECV -L1

model almost keeps the corner completely, while the ECV -L2 model unavoidably removes

it.

3. Novel augmented Lagrangian method

Recently, ALMs have proved to be very successful for dealing with non-differentiable

and/or high-order functionals in image processing [16,29,30]. In this section, inspired by

our previous works [4, 35], we propose novel ALM based algorithms for the two Euler’s

elastica based segmentation models in order to compare their performance.

3.1. New augmented Lagrangian functionals

When compared with other standard methods, such as solving the associated Euler-

Lagrange equation, it becomes relatively easier to get minimizers of the original high-order
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and/or non-differential functionals by using ALMs. In fact, based on optimization theory,

finding the minimizer of the original optimization problem can be solved by finding saddle

points of the augmented Lagrangian functional. For this, one just needs to solve several

associated sub-problems alternatingly and repeatedly until all those variables converge to

steady states.

It might be tempting to establish a binary formulation of the model, but as is pointed

out in [4], when standard central difference is used for segmentation problems, it is more

accurate to measure the curvature by formulating H(φ) as a continuous function with

respect to φ than formulating H(φ) as a relaxed binary function. Moreover, the continuous

formulation requires one less auxiliary variable in the augmented functional. To this end,

as in [11], we approximate the function H(φ) by its regularized version Hε as follows:

Hε(φ) =
1

2
+

1

π
arctan

�

φ

ε

�

,

δε(φ) =
ε

π(ε2 +φ2)
,

where δε represents the derivative of Hε. In this paper, we choose ε = 1.5.

ALM is shown to be able to handle non-differential TV regularity term [30] and mean

curvature regularity term through the idea of splitting variables [29]. In this work, we

use the same split technique for the minimization of functionals (1.3a) and (1.3b) by

converting them to be the following constrained optimization problems:

min
φ,p,n,q,m,c1,c2

∫

Ω

( f − c1)
2Hε(φ) + ( f − c2)

2(1−Hε(φ)) + (a+ b|q|)δε|p|,

s.t. p =∇φ, n =
p

|p| , q =∇ · n, p =m, |m|= 1, (3.1a)

min
φ,p,n,m,c1,c2

∫

Ω

( f − c1)
2Hε(φ) + ( f − c2)

2(1−Hε(φ)) + (a+ b(∇ · n)2)δε|p|,

s.t. p =∇φ, n =
p

|p| , p =m, |m|= 1. (3.1b)

The auxiliary variables p,n, m,q are introduced in order to convert the original nonlinear

and non-convex minimization problem to be a simpler constrained optimization problem.

The main difference between the above augmented Lagrangian methods and those in the

previous works [4, 35] is the incorporation of the new constraint |p| = 1, which takes

effect through a new variable m and a new constraint p = m. The reason of adding

such a constraint is to help represent curvature more faithfully than using general level

set functions, which is supported by the “ellipse” example discussed in the introduction.

In this example, by checking the value of the integral
∫

{φ=0} |κ|ds, we found that it is far

from 2π even though the closed curve {φ = 0} is convex. However, once we require φ

to be a signed distance function, this quantity is very close to 2π, which indicates that the

curvature can be captured reliably by using signed distance functions.
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We then set up the following augmented Lagrangian dual functionals for the ECV -L1

and ECV -L2 models respectively.

L (φ, p,n,q, m, c1 , c2,λ1,λ2,λ3,λ4)

=

∫

( f − c1)
2Hε(φ) + ( f − c2)

2(1−Hε(φ)) +

∫

(a+ b|q|)δε(φ)|p|

+
r1

2

∫

|p −∇φ|2+
∫

λ1 · (p −∇φ) +
r2

2

∫

�

�

�|p|n − p|
�

�

�

2

+

∫

λ2 · (|p|n− p) +
r3

2

∫

|p −m|2+
∫

λ3 · (p −m)

+
r4

2

∫

(q−∇ · n)2 +
∫

λ4(q−∇ ·n) + δR (m), (3.2a)

L (φ, p,n, m, c1 , c2,λ1,λ2,λ3)

=

∫

( f − c1)
2Hε(φ) + ( f − c2)

2(1−Hε(φ)) +

∫

�

a+ b(∇ · n)2
�

δε(φ)|p|

+
r1

2

∫

|p −∇φ|2+
∫

λ1 · (p −∇φ) +
r2

2

∫

�

�

�|p|n − p|
�

�

�

2

+

∫

λ2 · (|p|n− p) +
r3

2

∫

|p −m|2+
∫

λ3 · (p −m) + δR (m), (3.2b)

where

R = {x ∈ R2 : |x |= 1}, δR (m) =

(

0, m ∈ R ,

+∞, m /∈ R .

Lagrangians λi are introduced to enforce the constrains.

Every term in the dual functionals above has derivatives at most of the first order. It

significantly reduces the complexity of solving the subproblems which will be presented in

the next subsection. But this does come at the cost of increasing the number of parame-

ters. Notice that ECV -L1 model involves with 6 parameters (including a and b for Euler’s

elastica) while ECV -L2 model has 5 parameters. The fact that the ECV -L1 model has one

more parameter is from the non-differentiation of the ECV -L1 model.

Finding the minimizer of the original optimization problem for ECV− L1 and ECV− L2

can be solved by finding saddle points of the augmented Lagrangian functionals. We use

the following two algorithms to find the saddle points for these two Lagrangian functionals:

In both algorithms, we simply initialize λ’s to be 0. We initialize the signed distance

function φ by the contours from the Chan-Vese model. If we choose b = 0 in the ECV − L1

and ECV − L2 models, then it reduces to the Chan-Vese model which can be turned into

a convex minimization problems as shown in [9, 32] and can be solved by fast binary

relaxation methods with Augmented Lagrangian method as in [8,30]. Also we let p,n, m

initially be 0. This helps the final contours to not be trapped near the initial contour.
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Algorithm 3.1 ALM Algorithm for L1 Model.

1. Initialize φ0, p0,n0, m0,q0,λ0
1,λ0

2,λ0
3,λ0

4, and calculate c0
1 , c0

2 .

2. For k ≥ 1, find φk, pk,nk, mk,qk, such that

(φk, pk,nk, mk,qk) = argmin L
�

ck−1
1 , ck−1

2 ,φ, p,n, m,q,λk−1
1 ,λk−1

2 ,λk−1
3 ,λk−1

4

�

.

3. Update the λ’s:

λ
k
1 = λ

k−1
1 + r1(p −∇φ),

λ
k
2 = λ

k−1
2 + r2(|p|n− p),

λ
k
3 = λ

k−1
3 + r3(p −m),

λk
4 = λ

k−1
4 + r4(q−∇ · n).

4. Update ck
1 , ck

2 .

Algorithm 3.2 ALM Algorithm for L2 Model.

1. Initialize c0
1 , c0

2 ,φ0, p0, m0,n0,λ0
1,λ0

2,λ0
3, and calculate c0

1 , c0
2 .

2. For k ≥ 1, find ck
1 , ck

2 ,φk, pk,nk, mk, such that

(φk, pk,nk, mk) = argmin L
�

ck−1
1 , ck−1

2 ,φ, p,n, m,λk−1
1 ,λk−1

2 ,λk−1
3

�

.

3. Update the λ’s:

λ
k
1 = λ

k−1
1 + r1(p −∇φ),

λ
k
2 = λ

k−1
2 + r2(|p|n− p),

λ
k
3 = λ

k−1
3 + r3(p −m).

4. Update ck
1 , ck

2 .

3.2. Minimization with the subproblems

It is difficult to solve for the optimal minimizer (φk, pk,nk, mk,qk) of the functional

L(φ, p,n, m,q, λk−1
1 ,λk−1

2 ,λk−1
3 ,λk−1

4 ) for the ECV -L1 model and (φk, pk, mk,nk) of the

functional L(φ, p,n, m, λk−1
1 ,λk−1

2 ,λk−1
3 ) for the ECV -L2 model. Instead we alternatingly

search the minimizers of sub-problems as follows to find approximate minimizers.

Throughout our experiments, to simplify the process, we let L = 1.

In order to realize the alternating algorithm above, it amounts to solving the following

subproblems alternatingly and iteratively. As stated in the alternating algorithm above,

we find optimal solutions of the subproblems with respect to one variable by fixing the

other variables. We use ǫ1 through ǫ7 to denote the minimization energy functionals of the

subproblems for the ECV -L1 model, and ǭ1 through ǭ6 to denote the minimization energy
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Algorithm 3.3 Alternating Algorithm for L1 Model.

1. At the kth step, let φ̃0 = φk−1, p̃0 = pk−1, ñ0 = nk−1, m̃0 =mk−1, q̃0 = qk−1.

2. for l = 1,2, · · · , L,

φ̃ l = argmin L �φ̃, p̃ l−1, ñ l−1, m̃ l−1, q̃l−1,λk−1
1 ,λk−1

2 ,λk−1
3 ,λk−1

4

�

,

p̃ l = argmin L �φ̃ l , p̃, ñ l−1, m̃ l−1, q̃l−1,λk−1
1 ,λk−1

2 ,λk−1
3 ,λk−1

4

�

,

ñ l = argmin L �φ̃ l , p̃ l , ñ, m̃ l−1, q̃l−1,λk−1
1 ,λk−1

2 ,λk−1
3 ,λk−1

4

�

,

m̃ l = argmin L �φ̃ l , p̃ l , ñ l , m̃, q̃l−1,λk−1
1 ,λk−1

2 ,λk−1
3 ,λk−1

4

�

,

q̃l = argmin L �φ̃ l , p̃ l , ñ l , m̃ l , q̃,λk−1
1 ,λk−1

2 ,λk−1
3 ,λk−1

4

�

,

3. φk = φ̃L, pk = p̃ L ,nk = ñL , mk = m̃ L,qk = q̃L.

Algorithm 3.4 Alternating Algorithm for L2 Model.

1. At the kth step, let φ̃0 = φk−1, p̃0 = pk−1, ñ0 = nk−1, m̃0 = mk−1.

2. for l = 1,2, · · · , L,

φ̃ l = argmin L (φ̃, p̃ l−1, ñ l−1, m̃ l−1,λk−1
1 ,λk−1

2 ,λk−1
3 ),

p̃ l = argmin L (φ̃ l , p̃ , ñ l−1, m̃ l−1,λk−1
1 ,λk−1

2 ,λk−1
3 ),

ñ l = argmin L (φ̃ l , p̃ l , ñ, m̃ l−1,λk−1
1 ,λk−1

2 ,λk−1
3 )

m̃ l = argmin L (φ̃ l , p̃ l , ñ l , m̃,λk−1
1 ,λk−1

2 ,λk−1
3 ).

3. φk = φ̃L, pk = p̃ L ,nk = ñL , mk = m̃ L.

functionals of subproblems for the ECV -L2 model.

The minimization energy functionals for the subproblems of the ECV -L1 model are:

ǫ1(φ) =

∫

�

( f − c1)
2− ( f − c2)

2
�

Hε(φ) + (a+ b|q|)|p|δε(φ)

+
r1

2
|p −∇φ|2 +λ1 · (p −∇φ),

ǫ2(p) =

∫

(a+ b|q|)δε(φ)|p|+
r1

2

∫

|p −∇φ|2 +
∫

λ1 · (p −∇φ)

+
r2

2

∫

�

�|p|n− p
�

�

2
+

∫

λ2 · (|p|n− p) +
r3

2

∫

|p −m|2+
∫

λ3(p −m),

ǫ3(n) =

∫

r4

2
(q−∇ · n)2 +λ4(q−∇ ·n) +

r2

2

�

�|p|n− p
�

�

2
+ |p|λ2 · n,

ǫ4(q) =

∫

�

a+ b|q|�δε(φ)|p|+
r4

2
(q−∇ · n)2 +λ4(q−∇ · n),
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ǫ5(m) =

∫

r3

2
|p −m|2+λ3 · (p −m) + δR(m),

ǫ6(c1) =

∫

( f − c1)
2Hε(φ),

ǫ7(c2) =

∫

( f − c2)
2
�

1−Hε(φ)
�

.

The minimization energy functionals for the subproblems of the ECV -L2 model are:

ǭ1(φ) =

∫

�

( f − c1)
2 − ( f − c2)

2
�

Hε(φ) +
�

a+ b(∇ ·n)2
�

|p|δε(φ)

+
r1

2
|p −∇φ|2+λ1 · (p −∇φ),

ǭ2(p) =

∫

�

a+ b(∇ · n)2
�

δε(φ)|p|+
r1

2

∫

|p −∇φ|2 +
∫

λ1 · (p −∇φ)

+
r2

2

∫

�

�|p|n− p
�

�

2
+

∫

λ2 · (|p|n− p) +
r3

2

∫

(p −m)2 +

∫

λ3 · (p −m),

ǭ3(n) =

∫

bδε(φ)|p|(∇ · n)2 +
r2

2

�

�|p|n − p
�

�

2
+ |p|λ2 · n,

ǭ4(m) =

∫

r3

2
|p −m|2+λ3 · (p −m) + δR (m),

ǭ5(c1) =

∫

( f − c1)
2Hε(φ),

ǭ6(c2) =

∫

( f − c2)
2
�

1−Hε(φ)
�

.

We want to remark that each of these minimization functionals only depends on one vari-

able. This means that we keep all the other unknown functions fixed and only minimize

with this variables for each of the subproblems. In the following, we supply the details on

solving these energy functional for each of these subproblems.

3.2.1. Minimizing subproblems for the ECV -L1 Model

We tackle the minimization subproblems ǫ1 through ǫ7 in this subsection. Minimizing

ǫ1,ǫ3 can be achieved by solving the corresponding Euler-Lagrange equations. We give

closed form formulas for the minimizers of ǫ4, to ǫ7. For ǫ2, we quote a theorem from [4]

which categorizes the minimizer into several cases and addresses the minimizer in each

circumstance.

The stationary point for ε1,ε3 are given by the Euler-Lagrange Equation as follows:

− r1∆φ = −
�

( f − c1)
2− ( f − c2)

2
�

ε

π(ε2 +φ2)
+

2εφ
�

a+ b|q|� |p|
π(ε2 +φ2)2

− r1∇ · p −∇ ·λ1, (3.3a)
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−∇(∇ · n) = − r2

r4

�|p|n− p
� |p| − λ2

r4

|p| −∇q− ∇λ4

r4

. (3.3b)

Details on discretization of these equations and their fast numerical solutions will be sup-

plied later.

The shrinkage formula offers a closed-form solution for the minimizer of ε4 at every

(x , y) ∈ Ω:

q(x , y) =max

� |v(x , y)| −w(x , y)

|v(x , y)| , 0

�

v(x , y)

r4

, (3.4)

where v = r4∇ ·n −λ4, w = bδ̃(φ)|p|.
Reformulate ǫ5 as

ǫ5(m) =

∫

Ω

r3

2
|m − (p + λ3

r3

)|2+ δR(m) + C ,

where C is a constant that is independent of m and

δR (m) =

(

0, |m|= 1,

+∞, |m| 6= 1.

By some elementary calculations, one can show that the minimizer m∗ of the integral of

the form
∫

Ω
|m −m0|2+ δ(m) is m∗ = m0

|m0| . Thus, the minimizer m∗ of ǫ5(m) is

m∗ =
r3p +λ3

|r3p +λ3|
.

The minimizers of ǫ6 and ǫ7 are given by

c1 =

∫

f Hε(φ)
∫

Hε(φ)
, c2 =

∫

f
�

Hε(φ)
�

∫

1−Hε(φ)
. (3.5)

As for minimizing ǫ2, due to the non-differentiable term of p, the Euler-Lagrange equation

can only be given for its regularized version. So, instead of solving the Euler-Lagrange

equation, we would like to find its minimizer directly. For this, we rewrite ǫ2 as in the

following form:

ǫ2 =

∫

λ|p|+ µ
2
|p − a|2 + (ν · p)|p|, (3.6)

where

λ=
�

a+ b|q|�δ(φ) +λ2 · n, µ = r1 + r2|n|2+ r3,

a =
r1∇φ −λ1 +λ2 −λ3+ r3m

r1 + r2|n|2 + r3

, ν = −r2n.

Let g(p) = λ|p|+ µ
2
|p − a|2 + (ν · p)|p|. If at each point (x , y) ∈ Ω, p(x , y) minimizes

the functional g, then p minimizes the the integral ǫ2(p). We refer readers to Theorem 2

in [4] for the details of finding the minimizer of g(p) at each point (x , y).
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3.2.2. Minimizing subproblems of the ECV -L2 Model

The subproblems of the ECV -L2 model are similar to subproblems of the ECV -L1 model.

The stationary point for ǭ1, ǭ3 are given by the Euler-Lagrange equation as follows:

− r1∆φ = −
�

( f − c1)
2 − ( f − c2)

2
�

ε

π(ε2 +φ2)
+

2εφ
�

a+ b(∇ ·n)2
�

|p|
π(ε2+φ2)2

− r1∇ · p −∇ ·λ1, (3.7a)

−∇�2bδ(φ)|p|(∇ · n)� = −|p|λ2− r2

�

|p|2n − |p|p
�

. (3.7b)

Details on discretization of these equations and their fast numerical solutions will be sup-

plied later.

The minimization for subproblem ǭ4 turns out to be exactly the same as ǫ5 in the

ECV -L1 model. So the minimizer is

m∗ =
r3p +λ3

|r3p +λ3|
.

The minimizer for c1, c2 in subproblem ǭ5 and ǭ6 are given in (3.5) as in Section 3.2.1.

The minimization functional for subproblem ǭ2 can be rewritten as

ǭ2 =

∫

λ|p|+ µ
2
|p − a|2 + (ν · p)|p|,

where

λ=
�

a+ b(∇ · n)2
�

δε(φ) +λ2 · n, µ = r1 + r2|n|2+ r3,

a =
r1∇φ −λ1 +λ2−λ3 + r3m

r1 + r2|n|2+ r3

, ν = −r2n.

Then by applying Theorem 2 in [4], the minimizer p can be obtained.

3.3. Initialization of φ

Since the ECV models are non-convex, different initial condition of φ could lead to

different segmentation results. To be fair for the comparison, we take the same initial

condition for both segmentation models. Specifically, we first apply the CV model to the

test images and then use the resulting contour to construct a signed distance function,

which will be the common initial φ for the two models. For this, we reformulate the CV

model using a binary function as in [20] and then relaxed it as in [9,32]. More precisely,

we let u = H(φ) and p=∇u and solve the minimizer of the following problem.

min
u∈[0,1],c1,c2

∫

Ω

( f − c1)
2u+ ( f − c2)

2(1− u) +µ|p|, s.t. p =∇u. (3.8)
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In this way, the CV model given above can be easily minimized by using ALM as in [8,30].

In our experiment, we use the same codes as were used in [4, 35] and set b = 0. We

do 20 iterations to get the initial segmentation contour, from which the initial φ can be

constructed by letting φ = u− 0.5. Based on this initial segmentation function φ, we can

calculate the initial values of c1 and c2 as follows:

c1 =

∫

f H(φ)
∫

H(φ)
, c2 =

∫

f (1−H(φ))
∫

1−H(φ)
.

4. Numerical implementation

In this section, we discuss the detail of numerical implementation of the models. Sup-

pose u : Ω → R is a given image. The image domain Ω is discretized as a M x N grid.

Denote the forward partial derivatives in x and y direction of u as ∂ +1 u, ∂ +2 u, and the

backward partial derivatives x and y direction of u as ∂ −1 u, ∂ −2 u, respectively. Imposing

periodic boundary conditions, the partial derivatives are defined as:

∂ +1 u(i, j) =

(

u(i + 1, j)− u(i, j), 1≤ i ≤ M − 1,

u(1, j)− u(M , j), i = M ,

∂ +2 u(i, j) =

(

u(i, j + 1)− u(i, j), 1≤ j ≤ N − 1,

u(i, 1)− u(i, N), j = N ,

∂ −1 u(i, j) =

(

u(i, j)− u(i − 1, j), 2≤ i ≤ M ,

u(1, j)− u(M , j), i = 1,

∂ −2 u(i, j) =

(

u(i, j)− u(i, j − 1), 2≤ j ≤ N ,

u(i, 1)− u(i, N), j = 1.

The discretization of the gradient and divergence follows naturally:

∇±u(i, j) = (∂ ±1 u(i, j),∂ ±2 u(i, j)),

∇± · v(i, j) = ∂ ±1 v1(i, j) + ∂ ±2 v2(i, j),

where vector v = (v1, v2).

First of all, we discuss the solutions of Eq. (3.3a) and Eq. (3.7a) since these two equa-

tions are very similar. Because we impose periodic boundary conditions, we can use fast

Fourier transformation (FFT) to solve the equations iteratively.

In order to avoid singularity, we add a small number δ (we let δ = 0.01). Then

discretize Eq. (3.3a) and Eq. (3.7a) as:

− r1∇− · (∇+φ(s+1)) + δ

=δ−
�

( f − c1)
2− ( f − c2)

2
�

ε

π
�

ε2 + (φ(s))2
� +

2εφ(s)
�

a+ b|q|� |p|
π
�

ε2 + (φ(s))2
�2

, (4.1a)
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− r1∇− · (∇+φ(s+1)) + δ

=δ−
�

( f − c1)
2− ( f − c2)

2
�

ε

π
�

ε2 + (φ(s)
�2
)

+
2εφ(s)

�

a+ b(∇− ·n)2
�

|p|
π
�

ε2+ (φ(s))2
�2

− r1∇− · p −∇− ·λ1, (4.1b)

where φ(s=0) is initialized as the solution in the previous loop. Both Eq. (4.1a) and Eq.

(4.1b) can be simplified as

−r1∇− · (∇+φ(s+1)) + δ = g(φ(s)),

where in Eq. (4.1a)

g(φ(s)) = δ−
�

( f − c1)
2 − ( f − c2)

2
�

ε

π
�

ε2 + (φ(s))2
� +

2εφ(s)
�

a+ b|q|� |p|
π
�

ε2 + (φ(s))2
�2
− r1∇− · p −∇− ·λ1

in Eq. (4.1b)

g(φ(s)) = δ−
�

( f − c1)
2 − ( f − c2)

2
�

ε

π
�

ε2 + (φ(s)
�2
)

+
2εφ(s)

�

a+ b(∇− · n)2
�

|p|
π
�

ε2 + (φ(s))2
�2

.

Apply FFT on both sides, then

�

−r1F (∇− · ∇+) +δ
�

F (φ(s+1)) =F
�

g(φ(s))
�

. (4.2)

Notice that

F
�

∂ ±1 φ(i, j)
�

= ±
�

e±
p−1z1

i − 1
�

F �φ(i, j)
�

,

F
�

∂ ±2 φ(i, j)
�

= ±
�

e
±p−1z2

j − 1
�

F �φ(i, j)
�

,

where z1
i
= 2π(i− 1)/M , i = 1, · · · , M , z2

j = 2π( j− 1)/N , i = 1, · · · , N .

Also notice that

∇− ·
�

∇+φ(i, j)
�

= ∂ +1 φ(i, j)− ∂ −1 φ(i, j) + ∂ +2 φ(i, j)− ∂ −2 φ(i, j).

Therefore Eq. (4.2) can be simplified to

�

−2r1(cos(z1
i ) + cos(z2

j )− 2)+ δ
�

F
�

φ(s+1)(i, j)
�

=F
�

g(φ(s)(i, j)
�

.

Applying the inverse Fourier transformation gives φ(s+1).

Now we discuss the solutions of n in both the ECV -L1 and L2 models. We use frozen

coefficient method to solve for n. The way of solving Eq. (3.3b) and Eq. (3.7b) are similar

but with slight differences. The discretization of Eq. (3.3b) and Eq. (3.7b) leads to:

− r4∇+(∇− ·n) = −r2

�|p|n− p
� |p| −λ2|p| −∇+q−∇+λ4,
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−∇+
�

2bδε(φ)|p|(∇− · n)
�

= −|p|λ2− r2

�

|p|2n − |p|p
�

.

Let D = max(i, j)(r2|p|2) in both Eq. (3.3b) and Eq. (3.7b), and in Eq. (3.7b) let c =

max(i, j)(2bδε(φ)|p|). Then the Eq. (3.3b) and Eq. (3.7b) can be solved iteratively as

following respectively:

− r4∇+
�

∇− ·n(s+1)
�

+ Dn(s+1)

=Dn(s) − r2|p|2n(s) + r2|p|p −λ2|p| −∇+q−∇+λ4, (4.3a)

− c∇+
�

∇− ·n(s+1)
�

+ Dn(s+1)

=Dn(s) −∇+
�

(c− 2bδε(φ)|p|)
�

∇− · n(s)
��

− |p|λ2− r2

�

|p|2n(s) − |p|p
�

. (4.3b)

n(s=0) is initialized as the solution in the previous loop. For Eq. (4.3a), we have the follow-

ing denotation:

ω = r4,

h = Dn(s) − r2|p|2n(s) + r2|p|p −λ2|p| −∇+q−∇+λ4.

For Eq.(4.3b), we have the following denotation:

ω= c,

h = Dn(s) − |p|λ2− r2(|p|2n(s) − |p|p)−∇+
�

(c− 2bδε(φ)|p|)(∇− · n(s))
�

.

Then each of Eq. (4.3a) and Eq. (4.3b) can be rewritten as a system of equations:

−ω
�

∂ +1 ∂
−

1 n
(s+1)
1 + ∂ +1 ∂

−
2 n

(s+1)
2

�

+ Dn
(s+1)
1 = h1, (4.4a)

−ω
�

∂ +2 ∂
−

1 n
(s+1)
1 + ∂ +2 ∂

−
2 n

(s+1)
2

�

+ Dn
(s+1)
2 = h2, (4.4b)

where vector n(s) =
D

n
(s)
1 , n

(s)
2

E

, h =



h1,h2

�

.

Apply Fourier transformation to each equation of (4.4), and at every pixel (i, j), we can

get a 2 x 2 system of equations:

�

a11 a12

a21 a22

��

F (n1)(i, j)

F (n2)(i, j)

�

=

�

F (h1)(i, j)

F (h2)(i, j)

�

,

where

a11 = −ω(2 cos(z1
i )− 2)+ D,

a12 = −ω
�

1− cos(z1
i )−

p

−1 sin(z1
i )
��−1+ cos(z2

j )−
p

−1sin(z2
j )
�

,

a21 = −ω
�

1− cos(z1
i ) +

p

−1 sin(z1
i )
��−1+ cos(z2

j ) +
p

−1sin(z2
j )
�

,

a22 = −ω
�

2 cos(z2
j )− 2

�

+ D
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with z1
i = 2π(i− 1)/M , i = 1, · · · , M , z2

j = 2π( j− 1)/N , j = 1, · · · , N . Then we can solve

for ns by means of inverse Fourier transformation.

Now we discretize q in the ECV -L1 model:

q(i, j) =max

� |v(i, j)| − bδε(φ(i, j))|p(i, j)

|v(i, j)| , 0

�

v(i, j)

r4

,

where

v(i, j) = r4

�

∂ −1 n1(i, j) + ∂ −2 n2(i, j)
�−λ4.

Furthermore, if we suppose vectors λ1 = (λ11,λ12), λ2 = (λ21,λ22), λ3 = (λ31,λ32), p =

(p1, p2), n = (n1, n2), m = (m1, m2), then we update the Lagrangian multipliers for ECV -

L1 model at each (i, j) as follows:

λk
11 = λ

k−1
11 + r1(p1 − ∂ +1 φ), λk

12 = λ
k−1
12 + r1(p2 − ∂ +2 φ),

λk
21 = λ

k−1
21 + r2(|p|n1− p1), λk

22 = λ
k−1
22 + r2(|p|n2− p2),

λk
31 = λ

k−1
31 + r3(p1 −m1), λk

32 = λ
k−1
32 + r3(p2 −m2),

λk
4 = λ

k−1
4 + r4

�

q− (∂ −1 n1 + ∂
−
2 n2)

�

.

We update the Lagrangian multipliers for ECV -L2 model at (i, j) as follows:

λk
11 = λ

k−1
11 + r1(p1 − ∂ +1 φ), λk

12 = λ
k−1
12 + r1(p2 − ∂ +2 φ),

λk
21 = λ

k−1
21 + r2(|p|n1− p1), λk

22 = λ
k−1
22 + r2(|p|n2− p2),

λk
31 = λ

k−1
31 + r3(p1 −m1), λk

32 = λ
k−1
32 + r3(p2 −m2).

5. Numerical experiments

In this section, we present the numerical results by applying the ECV -L1 and L2 models

to synthetic and real images. In each experiment, we record the initial condition of the

contour φ, the final segmentation result, residues, relative error of λ, relative error of φ

and the value of the energy function. The last four numerical records which are calculated

as in [4,29,35], are for the purpose of tracking the convergence of ALM algorithm.

Let’s denote the residues of λ’s of the ECV -L1 model as Ri and the ones of the ECV -L2

model as R̄i. At the kth iteration, the residues are calculated as follows:

Rk
1 =

1

|Ω|
�

�pk −∇φk
�

�

L1 , Rk
2 =

1

|Ω|
�

�

�

�

�pk
�

�nk − pk
�

�

�

L1
,

Rk
3 =

1

|Ω|
�

�pk −mk
�

�

L1 , Rk
4 =

1

|Ω|
�

�qk −∇ · nk
�

�

L1 ,

R̄k
1 =

1

|Ω|
�

�pk −∇φk
�

�

L1 , R̄k
2 =

1

|Ω|
�

�

�

�

�pk
�

�nk − pk
�

�

�

L1
,
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R̄k
3 =

1

|Ω|
�

�pk −mk
�

�

L1 ,

where | · |L1 denotes the L1-norm, and |Ω| is the area of the domain, with |Ω|= M x N .

We calculate the relative error of λ’s in both models as

Lk
i =

�

�λk
i −λk−1

i

�

�

L1

�

�λk−1
i

�

�

L1

;

the relative error of φ of both models as

�

�φk −φk−1
�

�

L1

�

�φk−1
�

�

L1

;

the energy of the ECV -L1 model as

∫

Ω

( f − ck
1)

2Hε(φ
k) + ( f − ck

2)
2(1−Hε(φ

k)) +

 

a+ b

�

�

�

�

�

∇ · ∇φ
k

|∇φk|

�

�

�

�

�

!

δε(φ
k)|pk|;

the energy of the ECV -L2 model as

∫

Ω

( f − ck
1)

2Hε(φ
k) + ( f − ck

2)
2(1−Hε(φ

k)) +

 

a+ b

�

∇ · ∇φ
k

|∇φk|

�2
!

δε(φ
k)|pk|,

where Hε(φ) and δε(φ) are the approximation functions of the Heaviside function H(φ)

and its derivative function δ(φ).

We first compare the performances of the algorithms proposed in this paper and the

one in [4] when they are applied for a simple synthetic image of the size 276×262 with a

convex contour, respectively. We only consider the ECV -L1 model since the energy
∫

|κ|ds

is equal to 2π for any closed convex contour, which gives us a benchmark for comparison.

To make a fair comparison, we fix the iteration of both the algorithms to be 200 and

calculate the energy
∫

|κ|ds as well as the average time spent by each of the algorithm.

For the algorithm in [4], the procedure of reinitialization [26] is conducted after each

iteration. The comparison results are shown in Table 1. From this Table, we can see that

a) our algorithm with signed-distance constraint is twice as fast as the algorithm involving

reinitialization; b) our algorithm generates φ that is close to be a signed-distance function,

while the algorithm in [4] fails to do so; c) our algorithm captures the curvature much

more accurately than the algorithm in [4]. The following parameters are used for these

experiments: for our algorithm, a = .001, b = 1.5, r1 = .3, r2 = .3, r3 = .3, r4 = .3; for

the algorithm in [4], a = .001, b = 1.5, r1 = .3, r2 = .3, r3 = .5, and moreover, for the

reinitialization, we follow the procedure discussed in [26] by solving a Hamilton-Jacobi

type equation, and in this comparison, the equation is solved by using an explicit scheme

with a step size 0.01 and 30 iterations. Note that from the plot, with the algorithm in [4],

more iterations in the reinitialization are needed to get a signed-distance function, which
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Table 1: The comparison between the proposed algorithm and the one in [4].

segmentation function φ energy
∫

|κ|ds speed(second)

our algorithm 8.13≈ 2.58π 15.76

algorithm in [4] 112.78 ≈ 35.92π 35.32

(a) L1 Segmentation (b) L2 Segmentation

0 40 80 120 160

40

80

120

160

(c) level sets using L1 model

0 40 80 120 160

40

80

120

160

(d) level sets using L2 model

Figure 2: The results for the ECV -L1 and ECV -L2 models and the level curves around the zero level set
of the corresponding segmentation function φ.

becomes more expensive numerically. Besides helping represent curvature more faithfully,

this comparison also shows that the proposed algorithm is more efficient than the one

in [4].

In Fig. 2, we apply the ECV -L1 and ECV -L2 models for a synthetic image of an in-

complete disk with a quarter part missing by using the proposed algorithms. This example

clearly shows one major difference between the two models: the L1 model preserves almost
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(a) L1 Segmentation (b) L2 Segmentation

Figure 3: ECV-L1 model parameters: a = 0.001, b = 1, r1 = 0.5, r2 = 0.4, r3 = 0.1, r4 = 8. ECV-L2 model
parameters: a = 0.001, b = 1, r1 = 0.5, r2 = 0.3, r3 = 0.5.

completely the corner near the center, while the L2 model smears it, which is consistent to

the discussion in Section 2. Moreover, to check whether the constraint of keeping |p| = 1

is effective, we present the level curves around the zero level set of the segmentation func-

tion φ for both cases. The plots show that near the segmentation contour the function φ

presents equally distributed level curves, which help capture curvatures reliably.

We then test real images for the two models. These numerical examples give us insights

on the similarities and discrepancies of their performances.

We begin with an image of a kid holding a tray shown in Fig. 3. The white tray has

a sharp contrast compared with the rest of the image. ECV-L1 and L2 models both select

the tray as the foreground while the rest as the background. However the details differ

significantly. The corners of the tray are mostly preserved by ECV-L1 model, while none of

the corners is kept by ECV-L2 model.

We then perform our algorithms on a brain blood vessel image as shown in Fig. 4. The

image is severely contaminated by the noise, and if the CV model is applied with a relatively

small length parameter, it will lead to fuzzy segmentation boundaries. To avoid this, we

here chose a relatively large length parameter and thus obtained smooth segmentation

contours. Due to the low grey intensity contrast, blood vessels cannot be connected by the

CV model and several isolated tiny curves present as parts of the segmentation contour.

As a contrast, both the ECV -L1 and L2 models are able to smooth out the edges and

automatically join those broken parts of vessels. This example indicates that both models

are capable of connecting boundaries to restore meaningful blood vessels, and also prohibit

those tiny closed curves as segmentation contours.

The segmentation results in Fig. 4 for both models look somewhat similar. However

there exists some subtle difference. As shown in Fig. 5(a) and Fig. 5(b), we see that corners

are preserved by the L1 model but not L2 model, which is suggested by our analysis in

Section 2. Moreover, in Fig. 5(c) and Fig. 5(d), the segmentation of the L1 model covers

a few more pixels than that of the L2 model. Notice the tip of the vessel is very narrow.

If L2 model were to cover the tip, it would need an arc of a circle with small radius and

lead to a large value of energy. However for the ECV -L1 model, covering the tip gives the

same value for the elastica term, but brings down the fitting term value. Therefore, this
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(a) Original Image (b) CV Segmentation (c) L1 Segmentation (d) L2 Segmentation

Figure 4: ECV -L1 model parameters: a = 0.001, b = 0.8, r1 = 0.1, r2 = 0.3, r3 = 0.1, r4 = 0.5. ECV -L2

model with parameters a = 0.001, b = 5, r1 = 0.1, r2 = 0.3, r3 = 1.2.

(a) (b) (c) (d)

Figure 5: Zoomed in segmentations: (a)(c) are the results from the L1 model, (b)(d) are the results
from the L2 model.

discrepancy demonstrates that the L1 model is more suitable for keeping sharp corners of

contour than the L2 model.

To check whether the iteration of the proposed algorithms for the two models converges

to saddle points of their augmented Lagrangian functionals, in Fig. 6, we list the plots of

the relative residuals, relative errors of the Lagrange multipliers, relative error of φk, and

the energy versus iteration for this example. These plots show that there is a tendency that

saddle points can be approached.

In Fig. 7, we perform the algorithms on an image of a kid wearing a hat. In the sense

of size the main object in this image is the hat. But the hat is partially occluded by the

kid. With only the length regularity, the CV model separates the hat and several small

objects from the rest of the background, and in the mean time the shape of the hat is

undermined from the occlusion. Our results from the ECV -L1 and L2 models give up

the smaller objects and treat them as the background. Both models offer “guesses” of the

occluded part of the hat. The result by the L1 model is closer to the disocclusion of human

perception, and it has considerably less wavy or less inward at the missing part of the hat

when compared with the result obtained by the L2 model. The geometric property of the

integration
∫

|κ|ds determines that the L1 model prefers convex contour [4, 14, 21], and

the ultimate segmentation is close to being convex for a large enough curvature parameter

b. We may understand the curvy disocculsion of the L2 model under a slight different

setting. If we clamp the two ends of a curve with free length and fixed tangent directions

at the end points, then the curve that minimizes the energy
∫

κ2ds is part of the so called
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Figure 6: The plots of residuals, relative errors of λ and φ, as well as the energy for the blood vessel
example by applying the ECV -L1 model (left column) and the ECV - L2 (right column). The vertical
axes are all in the base-e logarithmic scales.

rectangular elastica [5,18].

In our final example as shown in Fig. 8, the models are applied to the image with a
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(a) Original Image (b) CV Segmentation

(c) ECV -L1: Segmentation (d) ECV -L2: Segmentation

Figure 7: ECV -L1 model parameters: a = 0.001, b = 90, r1 = 3, r2 = 43, r3 = 9, r4 = 24. ECV -L2 model
parameters: a = 0.001, b = 1000, r1 = 5, r2 = 1, r3 = 1.

(a) Original Image (b) CV Segmentation (c) L1 Segmentation (d) L2 Segmentation

Figure 8: ECV -L1 parameters: a = 0.001, b = 40, r1 = 1, r2 = 8, r3 = 1, r4 = 2. ECV -L2 parameters:
a = 0.001, b = 40, r1 = 0.2, r2 = 6.5, r3 = 3.

standing mushroom. With a relatively large curvature parameter b, both models extract

the mushroom cap from the mushroom stem and the background. Notice that the stem is

relatively slim and a sharp turn presents along the contour if the stem is preserved. These

two facts lead to a large energy for both models, and therefore only the cap is kept in order

to achieve a low energy. However, by carefully studying the two resulting contours, one

can see that the one by the L1 model is more closer to a convex contour than that of the L2

model, which shows that the L1 model is more sensitive to the convexity of contour. To see

how the curvature term affects the smoothness and convexity of segmentation contours,
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Figure 9: The left column presents segmentations using the ECV -L1 model for the “hat” image with
different values of b, while the right one lists the corresponding separate zero-contours. Note that the
integral

∫

|κ|ds is calculated along the contour of “hat”.

we present numerical experiments for the “hat” image with different values of b for both

models. We also measure the curvature term
∫

|κ|ds for the ECV -L1 model by using the

resultingφ. As shown in Fig. 9, we set the curvature coefficient b = 1, 10, 90 for the ECV -

L1 model, and the corresponding curvature term equals 74.07, 20.08, 13.09, respectively.

These results justify that once the parameter b is larger, the obtained segmentation contour

becomes more closer to be a convex closed curve and the quantity
∫

|κ|ds also drops.

Similarly, in Fig. 10, when the ECV -L2 model is applied, the larger the parameter b is,

the more the notch near the boy’s neck will be restored. However, even with a relatively

large parameter b = 1000, the segmentation still presents concave part near the neck,

which demonstrates the major features of the two models. In fact, we may see more if we

zoom in these contours. As shown in Fig. 11, the same part of Fig. 9(a) and Fig. 9(b) is
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Figure 10: The left column presents segmentations using the ECV -L2 model for the “hat” image with
different values of b, while the right one lists the corresponding separate zero-contours.

taken and enlarged. One can find that for the ECV -L1 model the chopped segmentation

contours are oscillating and shaky when b = 1, and while b increases to 10, those tiny

wavy parts are completely suppressed. This is mainly due to the term
∫

|κ|ds, since the

curvature κ = dθ/ds, where θ describes the angle between the tangent line of contour

and the positive horizontal axis [21], and therefore the oscillation of contour will lead to

large value of
∫

|κ|ds. However, as shown in Fig. 11 for the ECV -L2 model, even for b =

100, the chopped contours still present oscillations. This comparison again illustrates the

discrepancy of the two models in their sensitiveness of convexity of segmentation contour.

Moreover, from Fig. 11, one can see that when b = 1, besides the contour of “hat”, the

ECV -L1 model also keeps a small ellipse-like curve around the boy’s elbow, however, with

the same value of b, this segmentation contour is missing completely for the ECV -L2

model, which indicates another important difference between the two models: the ECV -

L2 model is more prone to removing small objects than the ECV -L1 model.
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Figure 11: The comparison of zoomed-in details for the ECV -L1 and ECV -L2 models with different
values of b. The left column lists the segmentation results for both models, and the right one shows the
zoomed-in contours prescribed in those green windows. For the ECV -L1 model, when b changes from
b = 1 to b = 10, the contour is stretched out and oscillations are well suppressed, while for the ECV -L2

model, even for b = 100, it still allows those oscillations of contours. This difference is mainly due to
the special feature of the L1-Euler’s elastica, which penalizes those oscillations.
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6. Conclusions

In this paper, we propose novel ALM based algorithms for the ECV -L1 and L2 segmen-

tation models in order to compare their performance. When compared with our previous

work [4], we introduced a new constraint that requires the segmentation function to be

a signed distance function, which helps avoid the utilization of reinitialization procedure

during the iteration. By applying the proposed algorithms, the analytical differences, that

is, the preference of convex contour and preservation of corners, are justified. Moreover,

the zoomed in results also demonstrate that once the curvature parameter is chosen large,

the ECV -L1 is more inclined to remove small oscillations than the ECV -L2 model. Be-

sides these difference, as shown in [4, 35], both models are able to connect broken parts

automatically and are more suitable to keep elongated structures than the CV model.
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