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Abstract. In this paper, we introduce a physics-based nonlinear preconditioned In-
exact Newton Method (INB) for the multiphysical simulation of fractured reservoirs.
Instead of solving the partial differential equations (PDE) exactly, Inexact Newton
method finds a direction for the iteration and solves the equations inexactly with fewer
iterations. However, when the equations are not smooth enough, especially when lo-
cal discontinuities exits, and when proper preconditioning operations are not adopted,
the Inexact Newton method may be slow or even stagnant.

As pointed out by Keyes et al. [1], multi-physical numerical simulation faces sev-
eral challenges, one of which is the local-scale nonlinearity and discontinuity. In this
work, we have proposed and studied a nonlinear preconditioner to improve the per-
formance of Inexact Newton Method. The nonlinear preconditioner is essentially a
physics-based strategy to adaptively identify and eliminate the highly nonlinear zones.

The proposed algorithm has been implemented into our fully coupled, fully im-
plicit THM reservoir simulator (Wang et al. [2, 3]) to study the effects of cold water
injection on fractured petroleum reservoirs. The results of this work show that after
the implementation of this nonlinear preconditioner, the iterative solver has become
significantly more robust and efficient.

AMS subject classifications: 60-08

Key words: Physics-based nonlinearity-elimination, Inexact Newton method, thermal-hydraulic-
mechanical simulation, restricted additive Schwarz approach, parallel reservoir simulation.

∗Corresponding author. Email addresses: gohych@gmail.com (S. Wang), appythy@gmail.com (H. Tang),
cyin@chuanqing.com (C. Yin), diyuan@mech.pku.edu.cn (Y. Di), ywu@mines.edu (Y.-S. Wu),
yonghong.wang@cnpcusa.com (Y. Wang)

http://www.global-sci.com/ 244 c©2019 Global-Science Press



H. Tang et al. / Commun. Comput. Phys., 25 (2019), pp. 244-265 245

1 Introduction

Newton’s method is a broad range of iterative methods for nonlinear programming.
Starting from an initial guess, Newton’s method computes the search direction based on
the gradient of the given function. Once the search direction is determined, the searching
step can be calculated by multiple approaches, including line-search and directly com-
puting from residuals (Newton-Raphson method).

Exact Newton’s method solves the problem iteratively until the residual is smaller
than a pre-set criteria. In petroleum reservoir simulation, exact Newton-Raphson (NR)
method is widely adopted. Inexact Newton’s method (IN), on the other hand, solves the
problem inexactly. Compared to exact Newton’s method, IN requires less computation
time, but may have poorer numerical stability. The Inexact Newton Method with Back-
tracking (INB) is an appealing approach for large scale numerical simulation. INB solves
a nonlinear system approximately within each iteration. It can save much computational
time spent that would otherwise be used for the linear solver. However, one of the draw-
backs of the INB algorithm is that it is not as robust as Newton-Raphson algorithm (NR)
in certain cases, as reported by other researchers [4–6]. For INB algorithm, it has been
proven by Kelley [7] that if the target nonlinear equation is continuously differentiable
and there is a limit point at which the Jacobian matrix is nonsingular, then the INB will
converge at that limit point. With the existence of local discontinuities, the target equa-
tion is no longer continuously differentiable and the more the discontinuities, the farther
the system is away from a continuously differential condition. Therefore as the number
of local discontinuities increases, INB may suffer from convergence problems. Global-
ization techniques [8, 9] help improve the numerical performance of IN, but they cannot
fully resolve the convergence issue, as reported by Knoll and Keyes [10].

For several types of reservoir simulation problems, such as water-oil displacement,
nonlinearity exists only in a small portion of the entire field. This local nonlinearity will
dramatically slow down the convergence of INB solvers. For the INB method, if the
local nonlinearity is too high, the iteration will tend to be stagnant. Therefore, to guar-
antee the robustness of the INB, a nonlinear preconditioner is typically required, such as
the Additive Schwarz Preconditioned Inexact Newton (ASPIN), as proposed by Cai and
Keyes [11]. Additive Schwarz (AS) [12] method is essentially a domain decomposition
approach. It subdivides the problem domain into several sub-domains and solves the
sub-space problem separately in parallel. For non-overlapping AS, there is no commu-
nication among subdomains. For overlapping AS, neighboring subdomains exchange
boundary conditions with each other. Cai and Sarkis [13] brought out the Restricted Ad-
ditive Schwarz method, which has less communication among processors and better the
numerical stability.

Recently, ASPIN has been applied to groundwater and oil simulation problems by
(Skogestad et al. [14] and Liu et al. [15], respectively. ASPIN has been shown to be able to
improve the convergence rate for highly heterogeneous reservoir simulation problems.
As far as we know, there have very few attempts to adopt the nonlinearity elimination
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(NE) technique to precondition reservoir simulation problems that have high nonlinear-
ity on parts of the computational domain. H. Yang et al. [16] used the active-set reduced-
space method to eliminate the nonlinearity caused capillary pressure and relative perme-
ability in two-phase flow which was different from this paper in both model and algo-
rithmic point of view.

In this work, we propose another type of preconditioned INB method to deal with
the local nonlinearity problems. We aim to eliminate the local discontinuity to enhance
the numerical performance of the INB algorithm. Nonlinearity elimination techniques
for INB have been studied by Hwang et al. [17, 18] with Computational Fluid Dynam-
ics (CFD) problems. In this work, we will introduce an adaptive nonlinearity elimination
(ANE) algorithm. This ANE algorithm adopts a physics based criterion to choose a highly
nonlinear region out of the computational domain and eliminates the local nonlinearity
before the start of INB. The highly nonlinear region can be adaptively chosen in each time
step. Hwang et al. [18] first proposed such combined ANE-INB approach and applied it
to the solution of the transonic full potential equation. In their work, the target equation is
in steady state. In this work, we will implement ANE-INB into a transient reservoir simu-
lation problem. We will investigate the performance of ANE-INB in the study of coupled
THM behavior of fractured reservoirs, in particular for the elastic-plastic responses of
fractures induced by cold water injection into oil/gas reservoirs. Moreover, as our simu-
lator is massively parallel, we implement a restricted Schwarz nonlinear preconditioner
to balance the nonlinearity. The restricted Schwarz preconditioner can be conveniently
implemented in an existing code with little additional communication and computation.

2 Problem description

2.1 Governing equations

Firstly, to study the coupled thermal-hydraulic-mechanical (THM) processes of fractured
reservoirs, a massively parallel simulator has been developed. The simulator is based
on the framework of MSFLOW-MP [19] and is able to simultaneously solve the coupled
thermal-hydraulic-mechanical behaviors of fractured reservoirs. The governing equation
for hydraulic and thermal flow is as follows:

dMk

dt
=∇·~Fk+qk. (2.1)

In our simulator, k = 1 refers to the hydrocarbon component; k = 2 refers to the water
component; k = 3 refers to the heat (energy) component. In the above equation, q is
the sink/source term, M is the conserved component in-place, and F is the flux. For
water/oil equations, the mass component in-place is

Mk=φ∑
β

Sβρβ, (2.2)
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where φ is the rock porosity; Sβ and ρβ are the saturation and density of phase, respec-
tively. The flux term is given by

−→
F k=1,2

β =−K
Krβρβ

µβ

(

∇Pβ−ρβg
)

, (2.3)

where K is the absolute permeability; Pβ is the pressure of phase β; Krβ and µβ are the
relative permeability and viscosity of phase β, respectively; and g is the gravitational
acceleration vector. The heat flux term includes conduction and convection,

~Fk=3=−

[

(1−φ)KR+φ∑
β

SβKβ

]

∇T+∑
β

hβ
~Fβ, (2.4)

where KR and Kb are thermal conductivity of the rock and the liquid phase, β, respec-
tively; ~Fβ is the liquid flux term used in the oil/water equation; T is temperature; and
hβ is enthalpy of liquid phase β. The accumulation term for the heat equation is the
following,

Mκ =(1−φ)ρRCRT+φ∑
β

Sβρβuβ, (2.5)

where ρR and CR are the density and heat capacity of rock, respectively, and uβ is the
internal energy of liquid phase β.

For the mechanical simulation, we start from the following displacement equation for
a thermo-poroelastic material [3],

α∇P+3βK∇T+(λ+G)∇(∇·~u)+G∇2
~u+~F=0, (2.6)

where α is the Biot’s coefficient, λ is the Lame’s parameter, G is the shear modulus, ~F is
the body force and ~u is the displacement vector.

The normal stresses appearing in Hooke’ law for a linear thermo-poro-elastic material
are

σkk−
(

αP+3βK
(

T−Tre f

))

=λεv+2Gεkk, k= x,y,z, (2.7)

where σkk is the normal stress along the kth direction, β is the thermal expansion coeffi-
cient, Tre f is a reference temperature, and εv is the volumetric strain, the summation of
normal strain εkk over the three directions

εv= εxx+εyy+εzz. (2.8)

We introduce the mean stress σm as follows,

σm =
σxx+σyy+σzz

3
. (2.9)

Then, after several steps of derivation [3], we arrive at the governing mean stress equa-
tion,

3(1−ν)

(1+ν)
∇2σm+∇·~F=

2(1−2ν)

(1+ν)

(

α∇2P+3βK∇2T
)

. (2.10)
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The program solves two fluid flow equations, one thermal equation and one stress equa-
tion simultaneously within each time step. Therefore, the thermal-hydraulic-mechanical
process is solved fully coupled. The primary variables are the water phase pressure, the
water phase saturation, the temperature and the mean stress.

2.2 Integral Finite Difference (IFD) method

We use Integral Finite Difference (IFD) method to solve the governing equations. By
integrating each PDE over a representative element volume (REV), we get the following
integrated governing equation,

d

dt

∫

Vn

MkdVn =
∫

Γn

~Fk ·~ndΓn+
∫

Vn

qkdVn. (2.11)

Using the IFD method, the governing equations are discretized as the following general
form,

(

V i+1Mk,i+1−V iMk,i
)

∆t
=∑

m

AnmFk
nm+qk. (2.12)

The details of the simulator framework and this IFD implementation can be found in
[2, 20]. The above equation is solved by our proposed nonlinear solvers, to be described
in a later session.

2.3 Fracture aperture change induced by cold water injection

When cold water is injected into fracture reservoirs, the matrix rock shrinks due to the
thermal change and the fracture aperture, which is directly related to permeability, thus
increases. Therefore, to quantify the above coupled thermal-hydraulic-mechanical effects
is the key to the accurate prediction of the production performance of fracture reservoirs
with cold water injection wells.

Ghassemi and Kumar [21] presented semi-analytical solution of the deformation of
one single fracture in a geothermal reservoir subject to the similar THM process. Rutqvist
et al. [22] and Kim et al. [23] developed sequentially/iteratively coupled numerical ap-
proaches to simulate the multiphysical effects. In this work, we use the semi-analytical
correlation of the fracture aperture change proposed by Wang et al. [3], as follows. Con-
sider the dual continua matrix-fracture system (Fig. 1). We focus on a matrix block sur-
rounded by fractures of length Li on the i-th direction. The temperature and pressure
in the fractures are kept constant as Pf and Tf , respectively. The initial temperature and
pressure of the matrix block are Pm0 and Tm0, respectively. For a 1-D problem, and ignor-
ing leak-off into the matrix block, the temperature distribution inside the matrix rock can
be solved analytically from the governing heat equation as [24]

Tm=Tf +
∞

∑
n=1

4
(

Tini−Tf

)

(2n−1)π
sin

[

(2n−1)π

Li
x

]

e
−

KR
ρRCR

(2n−1)2π2

L2
i

t
, (2.13)
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Figure 1: Conceptual model of fracture-matrix network.

where Tmi is the initial temperature of the system and Li is the fracture spacing.

We obtain the displacement distribution inside the matrix block using an analytical
solution. We rewrite the displacement equation in three dimensions as follows,

α
∂P

∂x
+3βK

∂T

∂x
+(G+λ)

(∂2ux

∂x2
+

∂2uy

∂x∂y
+

∂2uz

∂x∂z

)

+G
(∂2ux

∂x2
+

∂2ux

∂y2
+

∂2ux

∂z2

)

+Fx =0, (2.14)

α
∂P

∂y
+3βK

∂T

∂y
+(G+λ)

( ∂2ux

∂x∂y
+

∂2uy

∂y2
+

∂2uz

∂y∂z

)

+G
(∂2uy

∂x2
+

∂2uy

∂y2
+

∂2uy

∂z2

)

+Fy=0, (2.15)

α
∂P

∂z
+3βK

∂T

∂z
+(G+λ)

( ∂2ux

∂x∂z
+

∂2uy

∂y∂z
+

∂2uz

∂z2

)

+G
(∂2uz

∂x2
+

∂2uz

∂y2
+

∂2uz

∂z2

)

+Fz =0. (2.16)

In this work, the thermal changed induced by the leak-off effect is ignored. The 1-D
version of the governing displacement equation with respect to matrix block can then be
rewritten as

3βK
∂T

∂x
+(2G+λ)

∂2ux

∂x2
=0. (2.17)

At the boundary and the center, the rock displacement satisfies the following boundary
conditions,

∆σxx =−k f ux−∆Pf , x= Li/2, (2.18)

ux=0, x=0, (2.19)

where k f is the ’stiffness’ of the fracture, which quantifies the resistance of the fracture
with respect to thermal-induced displacement.
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With the governing equations and boundary conditions, the displacement at the fracture-
matrix interface can be obtained as

ui

(

Li

2

)

=
−
(

p f −p f ,0

)

+β
(

Tm−Tm,0

)

Em
1−2v

Em
1−2v +k f Li/2

·
Li

2
. (2.20)

In the above equation, i refers to a certain direction. The fracture aperture change ∆bi is

∆bi =−2∆ui

(

Li

2

)

. (2.21)

Therefore, the fracture aperture change can be expressed as

∆bi =

(

p f −p f ,0

)

−β(Tm−Tm,o)
Em

1−2v
Em

1−2v+k f Li/2
·Li. (2.22)

Fracture permeability can be calculated using the cubic law as

K f i=Ci
(bi0+∆bi)

2

12Li
, (2.23)

where Ci is a parameter to correlate between the mechanical aperture (mechanical open-
ing) and the hydraulic aperture (conductive opening). In this work, Ci is set to be 1,
meaning the mechanical opening is fully conductive. The choice of Ci will not quali-
tatively affect our analysis. The correlation between the aperture and permeability can
also be applied to cases where the fractures have elastic-plastic resistance. When treated
as elastic-plastic material, the fracture has different stiffness within the elastic and plas-
tic zone. When deformation is relatively small, the fracture has elastic behaviors with
constant elastic stiffness. The fracture becomes plastic material, when the entire fracture
aperture variation exceeds a certain ’breaking’ criteria. In this work, the deformation at
which fracture breaks is set to be 1 mm (3.2*10−3 ft). Within the elastic zone, the resis-
tance of the fracture is set to be 16 GPa/m (250000 psi/ft.). Within the plastic zone, the
resistance of the fracture is set to be 1 GPa/m (16000 psi/ft), as shown in Fig. 2.

With the above fracture properties, for a typical reservoir with a fracture spacing of
20 inches (0.508 m), the fracture aperture change curve of each grid block is similar to the
curve shown in Fig. 3.

As shown in Fig. 3, once the elastic-plastic transition point is reached, the fracture
stiffness suddenly drops, resulting in discontinuity of the fracture permeability. The frac-
ture aperture rapidly increases by 200% to 300% and exceeds the elastic region. Because
of the cubic law, the fracture permeability will increase accordingly by one order of mag-
nitude. The above change of fracture permeability takes place within the time period of
less than one day, which is smaller than the usual time step in reservoir simulation.

To simulate the cold water injection problem, we have to deal with a coupled THM
problem and so far no satisfactory linear preconditioner has been developed for thermal
problems. In this sense we aim to improve the nonlinear solver.
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Figure 2: Curve showing the elastic-plastic deformation of the fracture. Blue line: fracture stiffness curve. Red
line: fracture resistance curve.

Figure 3: Elastic-plastic fracture aperture change. The arrow indicates the transition point from elastic defor-
mation region to plastic deformation region.

3 Description of algorithm

As described above, certain local discontinuity exists in the cold water injection problem.
In this section, we describe the nonlinearity elimination Inexact Newton method. Sup-
pose the THM coupled nonlinear system is obtained by rearranging the term in Eq. (2.12),
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as

F(x)=0, (3.1)

where F is the rearranged governing equation system and x is the primary variable de-
scribed in Section 2.1.

3.1 Restriction of highly nonlinear region

For each time step, we use the primary variables from the previous time step as the initial
guess. Within each time step, local nonlinearity is eliminated before Inexact Newton
iteration step to smooth the nonlinear equations. All grid blocks, S, are divided into two
sets: grid blocks with high nonlinearity Sh and grid blocks with low nonlinearity Sl

S=Sh
⋃

Sl. (3.2)

Based on the grid blocks, the problem can be divided accordingly into two subdomains
as

Vh=
{

v|v=(v1,··· ,vn)
T ∈Rn |vi =0 if i /∈Sh

}

, (3.3)

V l =
{

v|v=(v1,··· ,vn)
T ∈Rn |vi =0 if i /∈Sl

}

. (3.4)

Then two restrictors Rh and Rl are introduced, which restrict the entire system to sub-
domains with higher nonlinearity and lower nonlinearity respectively. Rh : Rn →Vh is a
transformation that eliminates the low nonlinearity region and keeps only the high non-
linearity region. Rl : Rn →V l, on the other hand, keeps only the low nonlinearity region.
In this sense, Rh and Rl divides the original problem into two subspace problems

FSh (x)=RhF(x) , (3.5)

FSl (x)=RlF(x) . (3.6)

The formulation of Rh and Rl is similar to that used in [18].
Then we solve the subspace problem

FSh (Rhx+Ch)=0. (3.7)

In the above equation, Ch is the local correction. Then we combine all subspace correc-
tions and update the primary variables as x=Rhx+Ch.

In this way, the local nonlinearity is eliminated by the above restriction before the
start of nonlinear iterations. This local nonlinearity elimination step can be viewed as a
preliminary nonlinear preconditioner. As observed by Hwang et al. [18], this preliminary
elimination process in average requires much less iterations, compared to the INB step.
This step eliminates the local nonlinearity within a small region of the whole domain. The
region can be adaptively chosen using physics-based criteria that measures the severity of



H. Tang et al. / Commun. Comput. Phys., 25 (2019), pp. 244-265 253

the nonlinearity. In our problem, we use the rock deformation as the criteria, which will
be explained in details in the example section. This method can also been used in other
situations such as the existence of strong contrast of reservoir properties by changing
the criteria for high nonlinearity [25]. Since the number of highly nonlinear grid blocks
is typically much smaller compared to the total number of grid blocks, the subspace
problem can be simulated by one or two processors and without an elaborate domain
partitioning. With the preliminary preconditioner, the nonlinearity can be eliminated
more efficiently, as shown below.

3.2 Inexact Newton with backtracking

After the preliminary nonlinearity elimination, we solve the resulting nonlinear system
using restricted Schwarz Preconditioned Inexact Newton with Backtracking method. We
first describe the INB [17, 18]. Within the kth iteration, INB solves the system J(xk)sk =
−R(xk) approximately and update xk as

xk = xk+λksk (3.8)

until
∥

∥

∥
R
(

xk
)

+λk J−1
(

xk
)

R
(

xk
)
∥

∥

∥
≤η

∥

∥

∥
R
(

xk
)
∥

∥

∥
, (3.9)

where λk is the damping (line-search) parameter ranging from 0 to 1. It shortens the
Newton steps to enhance the robustness of the iteration. η is the forcing term. If η is 0
(or round-off error), INB reduces to exact Newton method. In this work, η is set to be
constant as 10−4.

3.3 Restricted Schwarz preconditioning

The restricted Schwarz preconditioning step is called between two INB steps. We parti-
tion the grid domain into N non-overlapping subdomains S0

i ,

N
⋃

i=1

S0
i =S. (3.10)

The above domain partition can be conducted by existing packages. In this work we use
METIS [26]. Then, we define the 1-level overlapping subdomain S1

i . For S1
i , every two

subdomains overlap with each other with 1-level, which means each subdomain has a
’rim’ locating inside its neighboring subdomains.

After defining the subdomains, we can define restrictors R0
i and R1

i which restricts
the nonlinear system on S to a subdomain S0

i and S1
i , respectively. A restrictor drops

off the component outside its according subdomain and only keeps those components
belonging to the according subdomain. Note here unlike Sh and Sl, these N subdomains
will not adaptively change during the simulation. In this sense, compared to the NE step
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which is of very small scale, the restricted Schwarz preconditioning step is to balance the
nonlinearity for massive parallel computing

F1
i (x)=R1

i F(x) . (3.11)

Each subdomain solves the local problems approximately in parallel using INB method,

F1
i

(

xk+v1
i

)

=0, (3.12)

where v1
i is the correction for subdomain i. Neighboring subdomains exchange bound-

ary conditions. In this process the information on the overlapping part of each pair of
subdomains is dropped. Such treatment is called the restricted Schwarz method. It has
been observed by Cai and Li [27] that the restricted Schwarz method maintains faster
convergence rate while has less communication. The formulation of restricted Schwarz
method is as follows

xk =
N

∑
i=1

R0
i

(

xk+v1
i

)

. (3.13)

In this step, the stopping criteria is set as follows. For each type of equation, j (j=1,2,3,4)
evaluate the norm of the residual

∥

∥R1
1,j

(

xk
)∥

∥ to
∥

∥R1
N,j

(

xk
)∥

∥.

Let
∥

∥R1
m,j

(

xk
)∥

∥=max
{∥

∥R1
i,j

(

xk
)∥

∥|1≤ i≤N
}

, therefore
∥

∥R1
m,j

(

xk
)∥

∥ is the largest resid-

ual of the j-th type of equation among all the subdomains. The nonlinearity is balanced
only when

∥

∥

∥
R1

m,j

(

xk
)
∥

∥

∥
<ρj

∥

∥

∥
R
(

xk
)
∥

∥

∥
for j=1,2,3,4; m=1,2,··· ,N, (3.14)

where the parameter ρj is tolerance, chosen by the user. Based on our observation, be-
tween 0.6 to 0.8 yields best performance. In this work, ρj is set as 0.75. This nonlinearity
balance step can be viewed as a preconditioner that is implemented between two INB
steps.

To briefly sum up, our approach implements a nonlinearity elimination precondi-
tioner to preliminarily reduce the local discontinuity and a restricted Schwarz precondi-
tioner called between INB steps to balance the nonlinearity among all processors. The
primary purpose of the nonlinearity elimination preconditioner is to improve the con-
vergence performance of the INB method. We aim to achieve a balance between the fast
speed of INB method and the good convergence of NR method.

By conducting these operations, we aim to eliminate the effect of local discontinuity
from global iterations to improve the robustness of INB. A flowchart of this proposed
algorithm showing all operations is as shown in Fig. 4.
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Figure 4: Flowchart of INB-ANE, showing the sequence of all operations within one time step.
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4 Numerical results

4.1 Problem setup

In this section, we use the proposed preconditioned INB solver to solve a reservoir scale
problem. The problem setup of the numerical case is as follows. One cold water injector
and one production well locate symmetrically at the middle of the two boundaries of a
fractured reservoir. The size of the reservoir is 762.00 m*762.00 m*152.00 m. The reservoir
is divided into 80*80*15= 96000 structured grid blocks. Cold water is injected for five
years at a constant rate of 1.0 kg/s (545 bbl/d) from the injection well. The production
well is producing at a constant bottom hole pressure of 3.0 MPa. The reservoir is 3 km
in depth. The vertical in-situ stress is estimated from the density of caprock, which is
assumed to be sandstone.

Therefore, the vertical in-situ stress vz is 73.50 MPa, the minimum horizontal stress
vmin, hor and maximum horizontal stress vmax, hor are both set to be 51.45 MPa, which is
70% of the vertical in-situ stress. The rock properties are listed in Table 1. We will inves-
tigate the numerical performance of INB-ANE with different combinations of injection
temperature, initial fracture permeability and breaking criteria. 8 cases have been run,
the input parameters of which are shown in Table 2. Each case is run by 8 processes in
parallel. Note here we treat the fracture permeability as an isotropy diagonal vector. In
the following simulations, the cap rock is not modelled and the rock properties shown in
Table 1 are for fractured rock only.

Figure 5: Conceptual model of the cold water injection problem.
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Table 1: List of input properties of the rock.

Properties Values Units

Initial permeability of the matrix Kmx =Kmy =1.0*10−15 m2

Kmz=1.0*10−15

Initial porosity of the matrix 0.15 dimensionless

Initial porosity of the fracture 0.001 dimensionless

Young’s modulus 16.0 GPa

Fracture spacing 0.5 m

Poisson’s ratio 0.25 dimensionless

Biot’s coefficient 1.0 dimensionless

Initial pore pressure 25.0 MPa

Initial temperature 368 K

Linear thermal expansion coefficient 11.6 10−6 m/(m·K)

Thermal conductivity of dry rock 1.0 W/(m·K)

Heat capacity of rock 1000 J/(kg·K)

Density of rock 2.5 103 kg/m3

vz 73.50 MPa

vmin, hor 51.45 MPa

Elastic resistance 12.0 GPa

Plastic resistance 0.7 GPa

Table 2: Input parameters for Case 1 to 8.

Case index Injection Initial fracture Breaking criteria

Temperature (K) permeability (m2) (transition aperture) (*10−6)

1 288.00 1.00*10−11 200.00

2 288.00 1.00*10−11 250.00

3 288.00 5.00*10−12 200.00

4 288.00 5.00*10−12 250.00

5 298.00 1.00*10−11 200.00

6 298.00 1.00*10−11 250.00

7 298.00 5.00*10−12 200.00

8 298.00 5.00*10−12 250.00

4.1.1 Criteria for determining high nonlinearity zone

The nonlinearity elimination criteria determines the high nonlinearity zone. In this prob-
lem, the nonlinearity is mainly the local discontinuity introduced by the failure of the
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fractured material. We set the nonlinearity elimination criteria based on the relationship
between the deformation (aperture change) ∆b and the critical (breaking) deformation
∆bc of the fractured material as follows. For a given grid block v, suppose

∆b(v)= θ∆bc, (4.1)

where θ is a dynamically changing value.
The judgment that whether v belongs to the high nonlinearity region is made as:

{

v∈Sh, if θ(v)∈ (0.4,1.2) ,

v∈Sl , otherwise.
(4.2)

We adopt Case 1 as an example. For this case, the injection temperature is 288 K and
the breaking deformation ∆bc is 200 µm. The initial fracture aperture can be calculated
as 350 µm. Then according to Eq. (3.12), a grid block belongs to the high nonlinearity
group if its aperture change is between 430 µm to 590 µm. For the grid block locating
at the injection point in Case 1, its fracture aperture change curve is shown in Fig. 6.
According to Fig. 6, the grid block belongs to the high nonlinearity region between 1.06s
(11.5 days) to 7.3∗106s (84.5 days). We plot the permeability field at 180 days and 7 years
after the start of the injection in Fig. 7. Moreover, we plot the according distribution of
the high/low nonlinearity regions in Fig. 8. By comparing Fig. 7 and Fig. 8, we can see
that as the permeability enhancement effect propagates, the highly nonlinearity region is
around the heat front region. Besides, in either time point, the highly nonlinearity region
only takes a small portion of the entire domain.

Figure 6: Fracture aperture curve at the cold water injector of Case 1 and Case 5. Red lines indicate the highly
nonlinear zone determined by the judging criteria.
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Figure 7: Permeability field of Case 1 after cold water injection. The unit of the fracture permeability is m2.
Red/orange color indicates the permeability enhanced zone near the injector. The figure on the left is the y-
direction permeability field at 180 days of injection, while the figure on the right is the y-direction permeability
field after seven years of injection. In this case, the initial fracture permeability 10−11 m2 (10 Darcy).

Figure 8: Distribution of high/low nonlinearity regions of Case 1. Red/orange color indicates the high nonlinearity
region that is determined by the physics-based judging criteria. Blue color indicates the low nonlinearity region.
The figure on the left is the distribution at 180 days of injection, while the figure on the right is that at seven
years of injection.

4.2 Numerical performance

In this section, we present the numerical performance of the proposed method. We first
compare the speed of the convergence of INB, IBN-ANE and NR method. In this work,
we set that maximum number of allowed iterations within one time step to be 10. If it
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Figure 9: Comparison of the average number of iterations per time step of Case 1 to Case 4. Red columns:
Inexact Newton Method without preconditioning. Green columns: the proposed INB-ANE method. Blue
columns: Newton-Raphson method.

Figure 10: Comparison of the average computing time per time step of Case 1 to Case 4. Green columns: the
proposed INB-ANE method. Blue columns: Newton-Raphson method.

requires more than 10 iterations to converge, the iteration is terminated and the time step
is cut. For NR method, it iterates until the L2 norm of the relative residual is smaller than
10−6. The average number of iterations per time step and the average on-wall computing
time per time step are shown in Figs. 9-12. As the results demonstrate, the average num-
ber of iterations per time step of INB-ANE is in the range to 4 to 6, comparable to that of
NR method and much less than of INB without preconditioning. It turns out that by im-
plementing such a preconditioner, INB becomes more efficient and more robust. As INB
type of method requires less time spent in the linear solver within each iteration, the pro-
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Figure 11: Average number of iterations per time step of Case 5 to Case 8. Red columns: Inexact Newton
Method without preconditioning. Green columns: the proposed INB-ANE method. Blue columns: Newton-
Raphson method.

Figure 12: Comparison of the average computing time per time step of Case 5 to Case 8. Green columns::the
proposed INB-ANE method. Blue columns:Newton-Raphson method.

posed INB-ANE method can accelerate the simulation by 10% to 30%, as demonstrated
by Fig. 10 and Fig. 12.

4.3 Parallel performance

Parallel performance is a critical criteria to evaluate of nonlinear solvers. In this subsec-
tion, we investigate the parallel speedup factor of INB-ANE and compare it with that
of NR method. We re-run Case 1 with the same input parameters but on a refined grid
with 256*256*20=1,310,720 uniform grid blocks. Since the parallel performance is close
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Table 3: Comparison of the parallel speedup factor of INB-ANE and NR.

Number of Time spent by Speedup factor Time spent Speedup factor Ideal(linear)

processors INB-ANE (s) for INB-ANE by NR(s) of NF speedup

2 62490.62 2 77182.2 2 2

4 32554.01 3.82 39990.78 3.86 4

8 17058.48 7.29 20581.92 7.50 8

16 9273.40 13.41 11026.03 14.01 16

32 4892.06 25.42 5629.62 27.5 32

64 2952.42 42.12 3207.90 48.12 64

128 1778.552 69.92 1946.09 79.32 128

256 1137.544 109.33 1244.87 123.32 256

Figure 13: Comparison of the parallel speedup between INB-ANE, NR, and ideal performance.

to linear speedup when the number of processors is low enough, we use the parallel
performance of the 2-processor cases as the benchmark.

As demonstrated by Table 3 and Fig. 13, INB-ANE is nonlinearly scalable. Compared
to Newton-Raphson method, the speedup factor of INB-ANE deteriorates faster when
the number of processors increases, which is mainly due to the fact that the preliminary
nonlinearity elimination step is not fully scalable. However, it should be noticed that
when the number of processes increases to 256, INB-ANE still increases the speed by
around 10%.

5 Conclusions

We have developed a nonlinearly preconditioned Inexact Newton Method, INB-ANE.
The proposed method dynamically eliminates and balances the local nonlinearity and
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discontinuity. The method adopts physics-based criteria to determine the high nonlinear
zone within the computing domain. With algebraic restrictors, the method can be easily
implemented into the codes of existing massively parallel simulators.

We have used INB-ANE to simulate the coupled thermal-hydraulic-mechanical be-
haviors of fractured reservoirs with elastic-plastic deformations of the fractures induced
by cold water injection. It has been found that the proposed method can improve the
robustness of the Inexact Newton method, avoiding iteration failures or time step cuts.
Compared to commonly used Newton-Raphson method, the proposed method can save
10% to 30% of the computing time, depending on the input parameters and the number
of processors used.

The proposed INB-ANE method is a competitive nonlinear solver in simulating the
tightly coupled multi-physics problems with highly local nonlinearity in the practice of
reservoir simulation. Its application can be extended to reservoir optimization [28] as
well as uncertainty qualification [29]. It can also be used to the integration of the simu-
lation of hydraulic fracturing and reservoir simulation [30], in which the fracture front is
the highly nonlinear region.
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