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Abstract. In this paper wavelet functions are introduced in the context of q-theory. We
precisely extend the case of Bessel and q-Bessel wavelets to the generalized q-Bessel
wavelets. Starting from the (q,v)-extension (v = (α,β)) of the q-case, associated gen-
eralized q-wavelets and generalized q-wavelet transforms are developed for the new
context. Reconstruction and Placherel type formulas are proved.
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1 Introduction and brief review

Wavelet theory has been known a great success since the eighteenth of the last century.
It provides for function spaces as well as time series good bases allowing the decom-
position of the studied object into spices associated to different horizons known as the
levels of decomposition. A wavelet basis is a family of functions obtained from one func-
tion known as the mother wavelet, by translations and dilations. Due to the power of
their theory, wavelets have many applications in different domains such as mathemat-
ics, physics, electrical engineering, seismic geology. This tool permits the representation
of L2-functions in a basis well localized in time and in frequency. Hence, wavelets are
special functions characterized by special properties that may not be satisfied by other
functions. In the present context, our aim is to develop new wavelet functions based on
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some special functions such as Bessel one. Bessel functions form an important class of
special functions and are applied almost everywhere in mathematical physics. They are
also known as cylindrical functions, or cylindrical harmonics, because of their strong link
to the solutions of the Laplace equation in cylindrical coordinates. We aim precisely to
apply the generalized q-Bessel function introduced in the context of q-theory and which
makes a general variant of Bessel, Bessel modified and q-Bessel functions.

To organize this paper, we will briefly review in the rest of this section the wavelet
theory on the real line. In Section 2, the basic concepts on Bessel wavelets are presented.
Section 3 is devoted to the presentation of the extension to the q-Bessel wavelets. Section
4 is concerned with the developments of our new extension to the case of generalized
q-Bessel wavelets. Backgrounds on wavelets, q-theory, q-wavelets and related topics may
be found in [2, 5, 6, 8, 10, 11, 26] and the references therein.

We now recall some basic definitions and properties of wavelets on R. For more
details we may refer to [18, 24]. In L2(R), a wavelet is a function ψ∈L2(R) satisfying the
so-called admissibility condition

Cψ=
∫ ∞

0

|ψ̂(ξ)|2
ξ

dξ<∞.

From translations and dilations of ψ, we obtain a family of wavelets {ψa,b}

ψa,b(x)=
1√
a

ψ

(
x−b

a

)
, b∈R, a>0. (1.1)

ψ is called the mother wavelet. a is the parameter of dilation (or scale) and b is the
parameter of translation (or position).

The continuous wavelet transform of a function f ∈L2(R) at the scale a and the posi-
tion b is given by

C f (a,b)=
∫ +∞

−∞
f (t)ψa,b(t)dt.

The wavelet transform C f (a,b) has several properties.

• It is linear, in the sense that

C(α f1+β f2)(a,b)=αC f1
(a,b)+βC f2

(a,b), ∀α,β∈R and f1, f2∈L2(R).

• It is translation invariant:

C(τb′ f )(a,b)=C f (a,b−b′),

where τb′ refers to the translation of f by b′ given by

(τb′ f )(x)= f (x−b′).
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• It is dilation-invariant, in the sense that, if f satisfies the invariance dilation prop-
erty f (x)=λ f (rx) for some λ,r>0 fixed, then

C f (a,b)=λC f (ra,rb).

As in Fourier or Hilbert analysis, wavelet analysis provides a Plancherel type relation
which permits itself the reconstruction of the analysed function from its wavelet trans-
form. More precisely we have

〈 f ,g〉= 1

Cψ

∫

a>0

∫

b∈R

C f (a,b)Cg(a,b)
dadb

a2
, ∀ f ,g∈L2(R), (1.2)

which in turns permit to reconstruct the analyzed function f in the L2 sense from its
wavelet transform Ca,b( f ) as

f (x)=
1

Cψ

∫

a>0

∫

b∈R

C f (a,b)ψ
( x−b

a

)dadb

a2
. (1.3)

2 Bessel wavelets

There are in literature several approaches to introduce Bessel wavelets. We refer for in-
stance to [22, 23]. As its name indicates, Bessel wavelets are related to special functions
namely the Bessel one. Historically, special functions differ from elementary ones such as
powers, roots, trigonometric, and their inverses mainly with the limitations that these lat-
ter classes have known. Many fundamental problems such that orbital motion, simulta-
neous oscillatory chains, spherical bodies gravitational potential were not best described
using elementary functions. This makes it necessary to extend elementary functions’
classes to more general ones that may describe well unresolved problems. The present
section aims to present basics about Bessel wavelets. For 1≤ p<∞ and µ>0, denote

L
p
σ(R+)=

{
f such that ‖ f‖p

p,σ =
∫ ∞

0
| f (x)|pdσ(x)<∞

}
,

where dσ(x) is the measure defined by

dσ(x)=
x2µ

2µ− 1
2 Γ(µ+ 1

2)
dx.

Denote also

jµ(x)=2µ− 1
2 Γ
(

µ+
1

2

)
x

1
2−µ Jµ− 1

2
(x),

where Jµ− 1
2
(x) is the Bessel function of order v=µ− 1

2 given by

Jv(x)=
( x

2

)v ∞

∑
k=0

(−1)k

k!Γ(k+v+1)

( x

2

)2k
.
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Denote next

D(x,y,z)=
∫ ∞

0
jµ(xt)jµ(yt)jµ(zt)dσ(t).

For a 1-variable function f , we define a translation operator

τx f (y)= f̃ (x,y)=
∫ ∞

0
D(x,y,z) f (x)dσ(z), ∀0< x,y<∞.

and for a 2-variables function f , we define a dilation operator

Da f (x,y)= a−2µ−1 f
( x

a
,
y

a

)
.

Recall that

∫ ∞

0
jµ(zt)D(x,y,z)dσ(z)= jµ (xt)jµ(yt), ∀0< x,y<∞, 0≤ t<∞,

and ∫ ∞

0
D(x,y,z)dσ(z)=1.

(see [22]). The Bessel Wavelet copies Ψa,b are defined from the Bessel wavelet mother
Ψ∈L2

σ(R+) by

Ψa,b(x)=DaτbΨ(x)= a−2µ−1
∫ ∞

0
D
( b

a
,
x

a
,z
)

Ψ(z)dσ(x), ∀a,b≥0. (2.1)

As in the classical wavelet theory on R, we define herealso the continuous Bessel Wavelet
transform (CBWT) of a function f ∈L2

σ(R+), at the scale a and the position b by

(BΨ f )(a,b)= a−2µ−1
∫ ∞

0

∫ ∞

0
f (t)Ψ(z)D

( b

a
,
t

a
,z
)

dσ(z)dσ(t). (2.2)

It is well known from Bessel wavelet theory that such a transform is a continuous function
according to the variable (a,b). The following result is a variant of Parceval/Plancherel
rules for the case of Bessel wavelet transform.

Theorem 2.1 (see [22]). Let Ψ∈L2
σ(R+) and f ,g∈L2

σ(R+). Then

a−2µ−1
∫ ∞

0

∫ ∞

0
(BΨ f )(b,a)(BΨg)(b,a)dσ(a)dσ(b)=CΨ〈 f ,g〉, (2.3)

whenever

CΨ=
∫ ∞

0
t−2µ−1|Ψ̂(t)|2dσ(t)<∞.
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Indeed,

(BΨ f )(b,a)=
∫ +∞

0
f (t)Ψa,b(t)dσ(t)

=
1

a2σ+1

∫ ∞

0

∫ ∞

0
f (t)Ψ(z)D

( b

a
,
t

a
,z
)

dσ(z)dσ(t).

Now, observe that

D
(b

a
,
t

a
,z
)
=
∫ +∞

0
jµ

( b

a
u
)

jµ

( t

a
u
)

jµ(zu)dσ(u).

Hence,

(BΨ f )(a,b)=
1

a2µ+1

∫

R3
+

f (t)Ψ(z)jµ

( b

a
u
)

jµ

( t

a
u
)

jµ(zu)dσ(u)dσ(z)dσ(t)

=
1

a2µ+1

∫

R2
+

f̂
(u

a

)
Ψ(z)jµ

( b

a
u
)

jµ(zu)dσ(u)dσ(z)

=
1

a2µ+1

∫

R+

f̂
(u

a

)
Ψ̂(u)jµ

(b

a
u
)

dσ(u)

=
∫

R+

f̂ (η)Ψ̂(aη)jµ(bη)dσ(η)

=
(

f̂ (η)Ψ̂(aη)
)
(b).

As a result,

∫

R2
+

(BΨ f )(a,b)(BΨg)(a,b)
dσ(a)

a2η+1
dσ(b)

=
∫

R2
+

f̂ (η)Ψ̂(aη)ĝ(η)Ψ̂(aη)dσ(η)
dσ(a)

a2σ+1

=
∫

R2
+

f̂ (η)ĝ(η)

(∫

R+

|Ψ̂(aη)|2 dσ(a)

a2σ+1

)
dσ(η)

=CΨ

∫

R+

f̂ (η)ĝ(η)dσ(η)

=CΨ〈 f̂ , ĝ〉
=CΨ〈 f ,g〉.

3 q-Bessel wavelets

At the beginning of the twentieth century Jackson introduced the theory of q-analysis
by defining the notions of q-derivative and q-integral and giving q-analogues of certain
special functions such as Bessel’s one. By virtue of their utilities, special functions and
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q-special functions continue to be a fascinating research topic. Many of these special
functions are related to mathematical physics and play an important role in mathematical
analysis. This is particularly the case for q-Bessel functions, which represent one of the
most important examples of q-special functions. In the present section we propose to
review the basic developments of q-Bessel wavelets which is the starting point to be able
to develop next our extension for the generalized q-Bessel case. Backgrounds on q-theory
and q-wavelets may be found in [5, 6, 8, 10, 11, 17, 26] and the references therein.

For 0<q<1, denote

Rq ={±qn, n∈Z}, R
+
q ={qn, n∈Z} and R̃

+
q =R

+
q

⋃
{0}.

On R̃+
q , the q-Jackson integrals from 0 to a and from 0 to +∞ are defined respectively by

∫ a

0
f (x)dq x=(1−q)a ∑

n≥0

f (aqn)qn

and ∫ ∞

0
f (x)dqx=(1−q) ∑

n∈N

f (qn)qn

provided that the sums converge absolutely. On [a,b] the integral is given by

∫ b

a
f (x)dqx=

∫ b

0
f (x)dqx−

∫ a

0
f (x)dqx,

(see [3, 11, 17]). This allows to introduce next the functional space

Lq,p,α(R̃
+
q )={ f :‖ f‖q,p,α<∞},

where

‖ f‖q,p,α=

[∫ ∞

0
| f (x)|px2α+1dqx

] 1
p

,

where α> −1
2 fixed. Denote next, C0

q(R̃
+
q ) the space of functions defined on R̃+

q , contin-
uous at 0 and vanishing at +∞, equipped with the induced topology of uniform conver-
gence such that

‖ f‖q,∞ = sup
x∈R̃

+
q

| f (x)|<∞.

Finally, Cb
q(R̃

+
q ) designates the space of functions that are continuous at 0 and bounded

on R̃+
q .

The q-derivative of a function f ∈Lq,p,α(R̃+
q ) is defined by

Dq f (x)=





f (x)− f (qx)

(1−q)x
, x 6=0,

f ′(0), else.
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The q-derivative of a function is a linear operator. However, for the product of functions
we have a different form,

Dq( f g)(x)= f (qx)Dqg(x)+Dq f (x)g(x)

and whenever g(x) 6=0 and g(qx) 6=0, we have

Dq

(
f

g

)
(x)=

g(qx)Dq f (x)− f (qx)Dqg(x)

g(qx)g(x)
.

In q-theory, we posses an analogues of the integration by parts rule (see [1]).

∫ b

a
g(x)Dq f (x)dq(x)= [ f (b)g(b)− f (a)g(a)]−

∫ b

a
f (qx)Dqg(x)dq(x),

where the integration is understood in q-Jackson sense.
We now introduce the normalized q-Bessel function (see [5])

jα(x,q2)= ∑
n≥0

(−1)n qn(n+1)

(q2α+2,q2)n(q2,q2)n
x2n, (3.1)

where the q-shifted factorial are defined by

(a,q)0 =1, (a,q)n =
n−1

∏
k=0

(1−aqk), (a,q)∞ =
+∞

∏
k=0

(1−aqk).

We recall also the q-Bessel operator defined for all f by

∆q,α f (x)=
f (q−1x)−(1+q2α) f (x)+q2α f (qx)

x2
, ∀x 6=0. (3.2)

The q-Bessel operator is related to the normalized q-Bessel function by the eigenvalue
equation

∆q,α jα(x,q2)=−λ2 jα(x,q2).

More precisely, jα(x,q2) is the unique solution of the Laplace eigenvalue problem for
λ∈C,

{
∆q,αu(x)=−λ2u(x),

u(0)=1, u′(0)=0.

The following relations are easy to show. The first is an analogue of Stokes rule and states
that for f ,g∈Lq,2,α(R̃+

q ) such that ∆q,α f ,∆q,αg∈Lq,2,α(R̃+
q ), we have

∫ ∞

0
∆q,α f (x)g(x)x2α+1dqx=

∫ ∞

0
f (x)∆q,αg(x)x2α+1dqx. (3.3)
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Recall that in general, the equality (3.3) above is not true (see Proposition 1 in [7] for
more details and for more general situations). Next, as a result, we get an orthogonality
relation for the normalized q-Bessel function (see [8]) as

∫ ∞

0
jα(xt,q2)jα(yt,q2)t2α+1dqt=

1

c2
q,α

δq,α(x,y),

where

cq,α=
1

1−q

(q2α+2,q2)∞

(q2,q2)∞

(3.4)

and

δq,α(x,y)=





1

(1−q)x2(α+1)
, if x=y,

0, else.

We now recall the q-Bessel Fourier transform Fq,α already defined in ( [5]) as

Fq,α f (x)= cq,α

∫ ∞

0
f (t)jα(xt,q2)t2α+1dqt, (3.5)

where cq,α is given by (3.4) and the q-Bessel translation operator defined next by

Tα
q,x f (y)= cq,α

∫ ∞

0
Fq,α f (t)jα(xt,q2)jα(yt,q2)t2α+1dqt, (3.6)

where cq,α is already the same constant given by (3.4), Such a translation operator satisfies

for all f ∈Lq,2,α(R̃+
q ) a Fourier invariance property (see [8])

Fq,α(T
α
q,x f )(λ)= jα(λx,q2)Fq,α f (λ), ∀λ,x∈ R̃

+
q . (3.7)

It satisfies also for f ∈Lq,2,α(R̃+
q ),

Tα
q,x f (y)=Tα

q,y f (x) and Tα
q,x f (0)= f (x)

and
T

α
q,x jα(ty,q2)= jα(tx,q2)jα(ty,q2), ∀t,x,y∈ R̃

+
q .

Definition 3.1 (see [11]). A q-Bessel wavelet is an even function Ψ∈Lq,2,α(R+
q ) satisfying

the following admissibility condition,

Cα,Ψ=
∫ ∞

0
|Fq,αΨ(a)|2 dqa

a
<∞.

The continuous q-Bessel wavelet transform of a function f ∈Lq,2,α(R̃+
q ) is defined by

Cα
q,Ψ( f )(a,b)= cq,α

∫ ∞

0
f (x)Ψα

(a,b)
(x)x2α+1dqx, ∀a∈R

+
q , ∀b∈ R̃

+
q ,
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where
Ψα

(a,b)(x)=
√

aTα
q,b(Ψa), ∀a,b∈R

+
q ,

and

Ψa(x)=
1

a2α+2
Ψ
( x

a

)
.

Several authors have studied the behavior of the wavelet transform as a function of
the scale and position variables (a,b) for continuity for example (see [13,20–22,25]). Even
in classical wavelet theory, the wavelet transform is considered as a product convolution
transform with respect to the scale a and a convolution transform with respect to the
position b. However, it is well known from functional spaces theory that as the analyzing
wavelet ψ is in L2(Rn) and also the analyzed function f , then the convolution f ∗ψ will
lie also in L2(Rn). BUt it remains questionable if the transformation (a,b) 7→ C f (a,b) is
continuous or not. In the present case, we have the following result.

Proposition 3.1. Let Ψ be a q-Bessel wavelet in Lq,2,α(R+
q ).

1. The function F : (a,b) 7→Ψα
(a,b) is continuous on R+

q × R̃+
q .

2. For all f ∈Lq,2,α(R+
q ), the function F̃ :(a,b) 7→Cα

q,Ψ( f )(a,b) is continuous on R+
q ×R̃+

q .

Proof. 1. It is clear that F is a mapping from R+
q × R̃+

q into Lq,2,α(R+
q ). So, fix a∈R+

q . For

b∈ R̃+
q , we have

‖F(a,b)−F(a,0)‖2
q,2,α

=‖Tα
q,b(Ψa)−Ψa‖2

q,2,α

=q−4α−2‖Fq,α(T
α
q,b(Ψa)−Ψa)‖2

q,2,α

=q−4α−2
∫ ∞

0

∣∣1− jα(xb,q2)
∣∣2 ∣∣Fq,α(Ψa)

∣∣2(x)x2α+1dqx.

However, for all x∈R+
q and b∈ R̃+

q , we have

∣∣1− jα(xb,q2)
∣∣2 ∣∣Fq,α(Ψa)

∣∣2(x)≤
(

1+
1

(q,q2)2
∞

)2 ∣∣Fq,α(Ψa)
∣∣2(x),

and Fq,α(Ψa)∈Lq,2,α(R+
q ). So, the Lebesgue theorem leads to

lim
b−→0

‖F(a,b)−F(a,0)‖q,2,α=0.

Assertion 2. follows immediately from 1. as

|F̃ : (a,b)− F̃ : (a0,b0)|≤Kq,α‖ f‖q,2,α‖F(a,b)−F(a,0)‖q,2,α,

where Kq,α is a positive constant depending on q and α.
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The following result is a variant of Parceval-Plancherel Theorem for the case of q-
Bessel wavelet transform.

Theorem 3.1 (see [11]). Let Ψ be a q-Bessel wavelet in Lq,2,α(R̃+
q ).

1. ∀ f ,g∈Lq,2,α(R̃+
q ), there holds that

∫ ∞

0
f (x)g(x)x2α+1dqx=

1

Cα,Ψ

∫ ∞

0

∫ ∞

0
Cα

q,Ψ( f )(a,b)Cα
q,Ψ(g)(a,b)b2α+1 dqadqb

a2
.

2. ∀ f ∈Lq,2,α(R̃+
q ), it holds that

f (x)=
cq,α

Cα,Ψ

∫ ∞

0

∫ ∞

0
Cα

q,Ψ( f )(a,b)Ψα
(a,b)(x)b2α+1 dqadqb

a2
, ∀x∈R

+
q .

The proof is easy and may be gathered from [3] and [11].

4 Generalized q-Bessel wavelets

In this part, the purpose is to generalize the previous results on q-Bessel wavelets to
the case of generalized q-Bessel wavelets by replacing the q-Bessel function with a more
general one. This latter have been introduced in [9]. The reader may refer to this reference
for backgrounds on such function and its properties. In the present work, we will not
review all such properties. We will recall in a brief way just what we need here. Instead,
we propose to introduce new wavelet functions and new wavelet transforms and we
will prove some associated famous relations such as Plancherel/Parcevall ones as well as
reconstruction formula. For α,β∈R, we put

v=(α,β), v=(β,α),

v+1=(α+1,β), |v|=α+β,

and for 1≤ p<∞, we put

Lq,p,v(R̃
+
q )=

{
f :‖ f‖q,p,v=

[∫ ∞

0
| f (x)|px2|v|+1dqx

] 1
p

<∞

}
.

Throughout this part we will fix 0<q<1 and α+β>−1. We refer to [9] for the definitions,
notations and properties. Denote next

j̃q,v(x,q2)= x−2β jα−β(q
−βx,q2). (4.1)
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Definition 4.1. The generalized q-Bessel Fourier transform F̃q,v is defined by

F̃q,v f (x)= cq,v

∫ ∞

0
f (t) j̃q,v(tx,q2)t2|v|+1dqt, ∀ f ∈Lq,p,v(R̃

+
q ), (4.2)

where

cq,v=
qn(α+n)(q2α+2,q2)∞

(1−q)(q2,q2)∞(q2α+2,q2)n
.

We are now able to introduce the context of wavelets associated to the new general-
ized q-Bessel function.

Definition 4.2. A generalized q-Bessel wavelet is an even function Ψ∈Lq,2,v(R̃+
q ) satisfy-

ing the following admissibility condition:

Cv,Ψ=
∫ ∞

0
|F̃q,vΨ(a)|2 dqa

a
<∞. (4.3)

To introduce the continuous generalized q-Bessel wavelet transform of a function f ∈
Lq,2,v(R̃+

q ) at the scale a ∈ R+
q and the position b ∈ R̃+

q we need to introduce firstly a
translation parameter and a dilation one on the wavelet function Ψ.

A generalized q-Bessel translation operator associated via the generalized q-Bessel
function has been already defined in [9] by

Tv
q,x f (y)= cq,v

∫ ∞

0
F̃q,v f (t) j̃q,v(yt,q2) j̃q,v(xt,q2)t2|v|+1dqt, ∀x,y∈ R̃

+
q . (4.4)

It is easy to show that

Tv
q,x f (y)=Tv

q,y f (x) and Tv
q,x f (0)= f (x).

Definition 4.3. The continuous generalized q-Bessel wavelet transform of a function f ∈
Lq,2,v(R̃+

q ) at the scale a∈R+
q and the position b∈ R̃+

q is defined by

Cv
q,Ψ( f )(a,b)= cq,v

∫ ∞

0
f (x)Ψ(a,b),v(x)x2|v|+1dqx, ∀a∈R

+
q , ∀b∈ R̃

+
q ,

where

Ψ(a,b),v(x)=
√

aTv
q,b(Ψa) and Ψa(x)=

1

a2|v|+2
Ψ
( x

a

)
.

Remark 4.1.

Cv
q,Ψ( f )(a,b)=

√
aq−4|v|−2

F̃q,v[F̃q,v( f )·F̃q,v(Ψa)](b).

The following result shows some properties of the generalized q-Bessel continuous
wavelet transform.
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Theorem 4.1. Let Ψ be a generalized q-Bessel wavelet in Lq,2,v(R̃+
q ). Then for all f ∈Lq,2,v(R̃+

q )

and all a∈R+
q the function Cv

q,Ψ( f )(a,·) is continuous on R̃+
q and

lim
b→∞

Cv
q,Ψ( f )(a,b)=0.

Furthermore, we have

|Cv
q,Ψ( f )(a,b)|≤ cq,v

(q,q2)2
∞a|v|+

1
2

‖Ψ‖q,2,v‖ f‖q,2,v.

The proof is based on the following preliminary Lemmas.

Lemma 4.1. Define the (q,v)-delta operator by

δq,v(x,y)=





1

(1−q)x2(|v|+1)
, if x=y,

0, else.

The following assertions hold

1. For all f ∈Lq,2,v(R̃+
q ) and all t∈R+

q , we have

f (t)=
∫ ∞

0
f (x)δq,v(x,t)x2(|v|+1)dqx.

2. For x,y∈R+
q , we have

c2
q,v

∫ ∞

0
j̃q,v(tx,q2) j̃q,v(ty,q2)t2|v|+1dqt=δq,v(x,y).

The proof of this Lemma is given in [9, Proposition 8]. For the sake of completeness
of the present work we reproduce it here.

Proof of Lemma 4.1. (1) From the definition of the q-Jackson integral we have

∫ ∞

0
f (x)δq,v(x,t)x2|v|+1dqx=(1−q)

∞

∑
n=0

f (qn)δq,v(q
n,s)qn(2|v|+2)

=(1−q) f (qk)δq,v(q
k,t)qk(2|v|+2)

= f (qk),

where k is the unique integer such that t=qk.
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(2) Let x,y∈R+
q . We have

∫ ∞

0
j̃q,v(tx,q2) j̃q,v(ty,q2)t2|v|+1dqt

=
∫ ∞

0
(xy)2n jα+n(q

ntx,q2)jα+n(q
nty,q2)t2(α+n)+1t4ndqt

=(xy)2n
∫ ∞

0
jα+n(ux,q2)jα+n(uy,q2)u2(α+n)+1q2n(α+n)dqt

=(xy)2nq−2n(α+n)
∫ ∞

0
jα+n(ux,q2)jα+n(uy,q2)u2(α+n)+1dqt,

where u=qnt. So

c2
q,v

∫ ∞

0
j̃q,v(tx,q2) j̃q,v(ty,q2)t2|v|+1dqt=δq,v(x,y).

We complete the proof. �

Lemma 4.2. For all f ∈Lq,2,v(R̃+
q ), we have

‖F̃q,v f‖q,2,v=‖ f‖q,2,v.

This Lemma is proved in [5] using a different method based on the ability to construct
an orthogonal basis of the Hilbert space Lq,2,ν. Here, we will use differently the result
by adopting Fubini’s rule to the context of q-Jackson integrals (see Appendix). Indeed,
denote for simplicity

Kq,v(x,t,s)= j̃q,v(xt,q2) j̃q,v(xs,q2).

We have

‖F̃q,v f‖2
q,2,v=c2

q,v

∫ ∞

0

∫ ∞

0

∫ ∞

0
f (t) f (s)Kq,v(x,t,s)(tsx)2|v|+1dqtdqsdqx

=c2
q,v

∫ ∞

0

∫ ∞

0
f (t) f (s)

∫ ∞

0
Kq,v(x,t,s)x2|v|+1dqx(ts)2|v|+1dqtdqs

=
∫ ∞

0

∫ ∞

0
f (t) f (s)δq,v(t,s)t

2|v|+1s2|v|+1dqtdqs

=
∫ ∞

0
f (t)t2|v|+1

∫ ∞

0
f (s)δq,v(t,s)s

2|v|+1dqsdqt

=
∫ ∞

0
| f (t)|2t2|v|+1dqt

=‖ f‖2
q,2,v.

The second and the fourth equalities are simple applications of Fubini’s rule. The third
one follows from Assertion 2 in Lemma 4.1. Finally, the fifth equality results from Asser-
tion 1 in Lemma 4.1.
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Lemma 4.3. For all f ∈Lq,2,v(R̃+
q ), the following assertions are true.

1. ‖Tv
q,xΨ‖q,2,v≤

1

(q,q2)2
∞

‖Ψ‖q,2,v.

2. ‖Ψa‖q,2,v=
1

a2|v|+2
‖Ψ‖q,2,v.

Proof. (1) Denote as in Lemma 4.2

K̃q,v(x,y,t,s)=Kq,v(x,t,s)Kq,v(y,t,s)

and
Qq,v f (t,s)=Fq,v f (t)F̃q,v f (s).

We have

‖Tv
q,x f‖2

q,2,v

=c2
q,v

∫ ∞

0

∫ ∞

0

∫ ∞

0
Qq,v f (t,s)K̃q,v(x,y,t,s)(tsy)2|v|+1dqtdqsdqy

=c2
q,v

∫ ∞

0

∫ ∞

0
Qq,v f (t,s)

∫ ∞

0
K̃q,v(x,y,t,s)y2|v|+1dqy(ts)2|v|+1dqtdqs

=
∫ ∞

0

∫ ∞

0
Qq,v f (t,s)δq,v(t,s)Kq,v(x,t,s)(ts)2|v|+1dqtdqs

=
∫ ∞

0
F̃q,v f (t) j̃q,v(xt,q2)t2|v|+1

∫ ∞

0
F̃q,v f (s)δq,v(t,s) j̃q,v(xs,q2)s2|v|+1dqsdqt

=
∫ ∞

0
|F̃q,v f (t)|2| j̃q,v(xt,q2)|2t2|v|+1dqt.

As previously, we use Fubini’s rule adopted to the context of q-Jackson integrals (see
Appendix). So, the second and the fourth equalities are simple applications of Fubini’s
rule. The third and the fifth ones are applications of the second and the first assertions in
Lemma 4.1 respectively. Next, observing that

| j̃q,v(xt,q2)|≤ 1

(q,q2)2
∞

,

we get

∫ ∞

0
|Fq,v f (t)|2| j̃q,v(xt,q2)|2t2|v|+1dqt

≤ 1

(q,q2)4
∞

∫ ∞

0
|F̃q,v f (t)|2t2|v|+1dqt

=
1

(q,q2)4
∞

‖F̃q,v f‖2
q,2,v.
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(2) Recall that

‖Ψa‖2
q,2,v=

∫ ∞

0
|Ψa(x)|2x2|v|+1dq(x)

=
1

a4|v|+4

∫ ∞

0

∣∣∣Ψ
( x

a

)∣∣∣
2
x2|v|+1dq(x).

Which by setting u= x
a yields that

‖Ψa‖q,2,v=
1

a2|v|+2

∫ ∞

0
|Ψ(u)|2u2|v|+1dq(u)

=
1

a2|v|+2
‖Ψ‖2

q,2,v.

We complete the proof.

Proof of Theorem 4.1. For a∈R+
q and b∈ R̃+

q , we have

Cv
q,Ψ( f )(a,b)= cq,v

∫ ∞

0
f (x)Ψ(a,b),v(x)x2|v|+1dqx.

Observing that
Ψ(a,b),v(x)=

√
aTv

q,b(Ψa),

we get

Cv
q,Ψ(g)(a,b)= cq,v

√
a
∫ ∞

0
f (x)Tv

q,bΨa(x)x2|v|+1dqx.

Now using Proposition 4.1 (see Appendix) with

g(x)= f (x)x|v|+1/2 and h(x)=Tv
q,bΨa(x)x|v|+1/2

we obtain

∫ ∞

0
|g(x)h(x)|dq x≤

(∫ ∞

0
| f (x)|2dqx

)1/2(∫ ∞

0
|g(x)|2dqx

)1/2

.

Consequently,

∣∣∣∣
∫ ∞

0
f (x)Tv

q,bΨa(x)x2|v|+1dqx

∣∣∣∣

≤
(∫ ∞

0
| f (x)|2x2|v|+1dqx

)1/2(∫ ∞

0
|Tv

q,bΨa(x)|2x2|v|+1dqx

)1/2

.

Hence, ∣∣∣Cv
q,Ψ( f )(a,b)

∣∣∣≤ cq,v

√
a‖ f‖q,2,v‖Tv

q,bΨa‖q,2,v.
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Which by Lemma 4.3 implies that

∣∣∣Cv
q,Ψ( f )(a,b)

∣∣∣≤
cq,v

(q,q2)2
∞a|v|+

1
2

‖Ψ‖q,2,v‖ f‖q,2,v.

Thus, we complete the proof. �

The following result shows Plancherel and Parceval formulas for the generalized q-
Bessel wavelet transform.

Theorem 4.2. Let Ψ be a generalized q-Bessel wavelet in Lq,2,v(R̃+
q ). Then we have

1. ∀ f ∈Lq,2,v(R+
q ),

1

Cv,Ψ

∫ ∞

0

∫ ∞

0
|Cv

q,Ψ( f )(a,b)|2 b2|v|+1 dqadqb

a2
=‖ f‖2

q,2,v.

2. ∀ f ,g∈Lq,2,v(R̃+
q ),

∫ ∞

0
f (x)g(x)x2|v|+1dqx=

1

Cv,Ψ

∫ ∞

0

∫ ∞

0
Cv

q,Ψ( f )(a,b)Cv
q,Ψ(g)(a,b)b2|v|+1 dqadqb

a2
.

Proof. (1) We have

q4|v|+2
∫ ∞

0

∫ ∞

0
|Cv

q,Ψ( f )(a,b)|2 b2|v|+1 dqadqb

a2

=q4|v|+2
∫ ∞

0

(∫ ∞

0
|F̃q,v( f )(x)|2|F̃q,v(Ψa)|2(x)x2|v|+1dqx

)
dqa

a

=
∫ ∞

0
|F̃q,v( f )(x)|2

(
|F̃q,v(Ψ)(ax)|2 dqa

a

)
x2|v|+1dqx

=Cv,Ψ

∫ ∞

0
|F̃q,v( f )(x)|2x2|v|+1dqx

=Cv,Ψ‖ f‖2
q,2,v.

Hence, the first assertion is proved.

(2) may be deduced from the previous assertion by replacing f by f+g and observing
the linearity of the wavelet transform.

Theorem 4.3. Let Ψ is a generalized q-Bessel wavelet in Lq,2,v(R̃+
q ), then for all f ∈Lq,2,v(R̃+

q ),
we have

f (x)=
cq,v

Cv,Ψ

∫ ∞

0

∫ ∞

0
Cv

q,Ψ( f )(a,b)Ψ(a,b),α(x)b2|v|+1 dqbdqa

a2
, ∀x∈R

+
q . (4.5)
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Proof. For x∈R+
q , consider the function g=δq,v(x,·). It is straightforward that

Cv
q,Ψ(g)(a,b)= cq,vΨ(a,b),v(x).

Consequently, the right hand part of the Assertion 2 in Theorem 4.2 becomes

cq,v

Cv,Ψ

∫ ∞

0

∫ ∞

0
Cv

q,Ψ( f )(a,b)Ψ(a,b),v(x)b2|v|+1 dqadqb

a2
.

On the other hand, with the choice of g above it follows from Lemma 4.1 that for all
f ∈Lq,2,v(R̃+

q ), ∫ ∞

0
f (x)g(x)x2|v|+1dqx= f (x).

Consequently,

f (x)=
cq,v

Cv,Ψ

∫ ∞

0

∫ ∞

0
Cv

q,Ψ( f )(a,b)Ψ(a,b),v(x)b2|v|+1 dqadqb

a2
.

Thus, we complete the proof.

Appendix

In this appendix we present some analogues in the context of q-theory of classical rules
known in integration theory such as Cachy-Shwartz, Fubini rules. For p>0 we denote

Lp(R̃+
q )=

{
f : R̃+

q −→C; ‖ f‖p
q =

∫ ∞

0
| f (x)|pdqx<∞

}
.

Proposition 4.1. For all f ,g∈L2(R̃+
q ) we have, f g∈L1(R̃+

q ) and

‖ f g‖1
q ≤‖ f‖2

q‖g‖2
q .

Indeed,
∫ ∞

0
| f (x)g(x|dq x=(1−q)

∞

∑
n=0

| f (qn)g(qn)|qn

=(1−q)
∞

∑
n=0

| f (qn)|qn/2|g(qn)|qn/2

≤
(
(1−q)

∞

∑
n=0

| f (qn)|2qn

)1/2(
1−q)

∞

∑
n=0

|g(qn)|2qn

)1/2

=

(∫ ∞

0
| f (x)|2dqx

)1/2(∫ ∞

0
|g(x)|2dqx

)1/2

=‖ f‖2
q‖g‖2

q .
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Next, the following definition extends in a usual way the notion of Jackson integral to the
two dimensional case.

Definition 4.4. A function f : R̃+
q −→C is said to be integrable in the q-Jackson sense iff

the series in (4.6) below is absolutely convergent and we define the integral by

∫

R̃
+
q ×R̃

+
q

f (x,y)dq(x,y)=(1−q)2
∞

∑
n,m=0

f (qn,qm)qn+m. (4.6)

Now as for the 1-dimensional case, we denote for p>0

Lp(R̃+
q ×R̃

+
q )=

{
f : R̃+

q ×R̃
+
q −→C; ‖ f‖p

q =
∫

R̃
+
q ×R̃

+
q

| f (x,y)|pdq(x,y)<∞

}
.

Proposition 4.2. For all f ∈L1(R̃+
q ×R̃+

q ) we have,

∫

R̃
+
q ×R̃

+
q

f (x,y)dq(x,y)=
∫

R̃
+
q

(∫

R̃
+
q

f (x,y)dq x

)
dqy=

∫

R̃
+
q

(∫

R̃
+
q

f (x,y)dqy

)
dqx.

Proof. From Definition 4.4, we have
∫

R̃
+
q ×R̃

+
q

f (x,y)dq(x,y)

=(1−q)2
∞

∑
n,m=0

f (qn,qm)qn+m=(1−q)
∞

∑
m=0

(
(1−q)

∞

∑
m=0

f (qn,qm)qn

)
qm

=(1−q)
∞

∑
m=0

(∫

R̃
+
q

f (x,qm)dqx

)
qm =

∫

R̃
+
q

(∫

R̃
+
q

f (x,y)dq x

)
dqy.

Similarly, we have
∫

R̃
+
q ×R̃

+
q

f (x,y)dq(x,y)

=(1−q)2
∞

∑
n,m=0

f (qn,qm)qn+m=(1−q)
∞

∑
n=0

(
(1−q)

∞

∑
m=0

f (qn,qm)qm

)
qn

=(1−q)
∞

∑
n=0

(∫

R̃
+
q

f (qn,y)dqy

)
qn =

∫

R̃
+
q

(∫

R̃
+
q

f (x,y)dqy

)
dqx.

We complete the proof.
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[18] O. Le Cadet, Méthodes d’ondelettes pour la Segmentation D’images: Applications à
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tures Planes, Thése de Doctorat en Acoustique, INSA de Lyon, 2001.

[20] R. S. Pathak, Continuity and inversion of the wavelet transform, Integral Transforms and
Special Functions, 6(1-4) (1998), 85–93.

[21] R. S. Pathak, The wavelet transform of distributions, Tohoku Math. J., 56 (2004), 411–421.
[22] R. S. Pathak and M. M. Dixit, Continuous and discrete Bessel wavelet transforms, J. Comput.

Appl. Math., 160 (2003), 240–250.
[23] R. S. Pathak, S. K. Upadhyay and R. S. Pandey, The Bessel wavelet convolution product,

Rend. Sem. Mat. Univ. Politec. Torino, 96(3) (2011), 267–279.
[24] A. Prasad, A. Mahato, V. K. Singh and M. M. Dixit, The continuous fractional Bessel wavelet



76 I. Rezgui and A. Ben Mabrouk / Anal. Theory Appl., 34 (2018), pp. 57-76

transformation, Boundary Value Problems, 40 (2013), 1–16.
[25] A. Prasad, A. Mahato1 and M. M. Dixit, Continuity of the Bessel wavelet transform on cer-

tain Beurling-type function spaces, J. Inequalities Appl., 29 (2013), 9 pages.
[26] R. F. Swarttouw, The Hahn-Exton q-Bessel Functions, PhD Thesis, The Technical University

of Delft, (1992).
[27] S. K Upadhyaya, On continuous Bessel wavelet transformation associated with the Hankel-

Hausdorff operator, Integral Transforms and Special Functions, 23(5) (2012), 315–323.


