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Abstract. A simple C++ class structure for construction of a Monte Carlo event gener-
ator which can produce unweighted events within relativistic phase space is presented.
The generator is self-adapting to the provided matrix element and acceptance cuts. The
program is designed specially for exclusive processes and includes, as an example of
such an application, implementation of the model for exclusive production of meson
pairs pp→ pM+M−p in high energy proton-proton collisions.
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1 Introduction

A commonly used method of testing hypotheses concerning the structure of matrix el-
ements for inelastic processes in high energy physics is Monte Carlo simulation. One
generates random “events” within the kinematic phase space (conserved energy and
momentum) and associates with each event a weight which is a product of the square
of modulus of the matrix element and a kinematic factor [1, 2]. Such properly weighted
MC events may be processed in the same manner as real events and may yield theoretical
distributions directly comparable to experimental ones. This method becomes inefficient
when, for dynamical reasons, a non-negligible weight is observed only in the very limited
regions of the phase space. For example, in high energy multi-particle production the
transverse momenta of final state particles are small while their longitudinal momenta
increase significantly with collision energy. Methods for generation of events within the
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so-called longitudinal phase space were developed long time ago [3–5] and are standard
components of any event generator for high energy physics. However, there is growing
interest in investigation of the high energy exclusive processes (for recent review see [6])
which are governed by sharply peaked matrix elements and nonzero weight events that
occupy an extremely small spot in the available phase space. There exist several event
generators specially designed for this type of processes. GenEx (Exclusive Processes Gen-
erator), the event generator described in this paper, achieves a high efficiency due to com-
bination of a proper choice of the integration variables with self-adapting Monte Carlo [7]
implemented in TFoam class of ROOT [8]. The usage of this self-adapting Monte-Carlo
technique and modular C++ structure dedicated to facilitate addition of new phase space
generation methods and new processes (matrix elements) make the GenEx distinctive
from other available generators for exclusive processes such: DIME [9], FPMC [10], Ex-
HuME [11]. In addition, GenEx, unlike ExHuME and FPMC, does not use the parton
structure of the colliding particles from the beginning, what makes it suitable for mod-
elling soft, Regge-like processes. The program extensively uses existing commonly avail-
able open source ROOT library developed at CERN [8], in particular TFoam [7] and some
other free software. For other general purpose software that uses TFoam see, e.g., [12].

The following sections contain general description of the generation method, imple-
mentation and class structure and detailed instruction how to install and use GenEx,
including examples and standard tests. In the Appendix some details of the phase space
calculation are explained.

2 General description of the event generator

A typical path of a Monte Carlo event generation has the following steps:

• create the vector of random numbers R;

• transform R into a set of final state particles four-momenta P which fulfil the energy-
momentum conservation;

• evaluate the matrix element square and the event total weight;

• use the rejection method to generate events with unit weight.

Random numbers in GenEx are generated by TRandom3 ROOT class [8] that implements
classical Mersenne Twister algorithm [13]. The period for the algorithm is 219937−1 and
should be taken into account when the large number of samples is generated. The seed
of the generator can be set in the main generator configuration file described below.

Using general properties of a certain class of matrix elements, e.g., for multiple par-
ticle production in high energy collisions, standard importance sampling methods are
usually employed to increase the generator efficiency. The importance sampling is per-
formed either at the level of the first step (non-uniform random number distribution) or
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the second step (choice of variables which are uniformly generated) or both as in [5]. The
generator described in this paper includes one important improvement to a typical path
of an event generation described above. Namely, it employs self-adaptive Monte Carlo
algorithm [7]. The event generation proceeds in two phases: exploration and generation.

In the Exploration Phase,

• Foam, using TRandom3 ROOT class, generates a vector of random variables R and
passes it to a few-body generator G, chosen as the most appropriate for the consid-
ered problem;

• G produces events which fulfil the energy-momentum conservation and correspond-
ing phase space weight WPhS;

• matrix element square is evaluated returning the weight WME, providing that the
event is inside detector acceptance and the weight is set to zero outside of the ac-
ceptance;

• product of weights W=WPhS ·WME provides measure of the event density for self-
adapting MC (Foam) in exploration phase.

The Generation Phase comprises of the following steps:

• TFoam using the weight distribution found in the exploration phase generates ap-
propriately weighted random vectors R′

that transformed into the final state par-
ticles four-momenta produce events corresponding to the assumed matrix element
and the detector acceptance cuts;

• if required, the events can be produced with the unit weight by use of the rejection
sampling method.

In the next section we describe technical details of implementation of this algorithm in
the C++ language, with emphasis on its object-oriented features.

3 Program structure and class description

GenEx consists three main components:

• TEventMaker... is responsible for generation of an event and estimation of its
phase space weight; It is described in Subsection 3.1;

• TWeight... provides the matrix element and the corresponding event weight; It is
described in Subsection 3.2;

• TAcceptance applies the acceptance cuts and is it described in Subsection 3.3.
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In addition, a number of utility classes is provided to manage the generator initialization,
cross-section estimation, histogramming and saving events. They are described in Sub-
section 3.4. The adaptation of the density of points in the multidimensional space for the
efficient event generation is realized by the TFoam class implemented in the ROOT frame-
work [8]. It requires a specification of TDensity class which inherits from TFoamIntegrand

from ROOT package. The interaction between TFoam and GenEx, described in general
terms in Section 2, is explained by comments within the code of the generator main class
Generator.

3.1 Event generation: TEventMaker

The first functional part of the program converts a vector of random numbers (provided
by TRandom3 ROOT class and passed through TFoam) into a set of generated particles
four-momenta that preserves energy-momentum conservation. The generator contains
several methods suitable for the generation of peripheral processes. The choice of a
method of phases space generation is based on the strategy pattern [14] (see Fig. 1), i.e.,
by implementation of the general interface/abstract class TEventMakerStrategy. The
different strategies represent different approaches to the phase space calculation. Imple-
menting the interface, the users can extend the generator by defining their own strategies.
Each strategy provides the phase space part of the event weight WPhS corresponding to
the Lorentz invariant phase space (LIPS) defined [15] as

dnLIPS=(2π)4δ

(

pa+pb−
n

∑
i=1

pi

) n

∏
i=1

d3pi

(2π)32Ei
, (3.1)

where n is the number of the final state particles, pi are their four-momenta, pa and pb

are the beam particles four-momenta and Ei are the energies of the final state particles.
The expression for the weight depends on the choice of the kinematic variables and the
importance sampling, if applied. The strategies described below are characterized by
a separation of the longitudinal and transverse components of momenta of some par-
ticles, which makes them suitable for integration of peripheral processes with exclusive
particle production. The TEventMaker class contains the Initialize()method that is re-
sponsible for choosing of strategy according to the prescription given in the Generator.dat
configuration file.

It should be noted that for all methods of the phase space generation, described in
the following text, it is assumed that particles 1 and 2 are peripherally scattered, i.e.,
p1,z·pa,z>0 and p2,z·pb,z>0. The events with p1,z·pa,z<0 or p2,z·pb,z<0 belong to the second
branch of the phase space (second root of the energy momentum conservation equation)
and are suppressed in the generation (see Appendix). Below we shortly describe the
strategies implemented in the present version of the generator.
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TEventMaker

-strategy: TEventMakerStrategy *

+SetEvent(in nDim:int,in Xarg:double *,

          out event:TEvent *): double

+isGenerationFailed(): bool const

-Initialize()()

TEventMakerStrategy

+SetEvent(in nDim:int,in Xarg:double *,

          out event:TEvent *): double

+isGenerationFailed(): bool const

TEventMakerCylindricalPhaseSpace

+SetEvent(in nDim:int,in Xarg:double *,

          out event:TEvent *): double

+isGenerationFailed(): bool const

TEventMaker2to4

+SetEvent(in nDim:int,in Xarg:double *,

          out event:TEvent *): double

+isGenerationFailed(): bool const

TEventMaker2toN

+SetEvent(in nDim:int,in Xarg:double *,

          out event:TEvent *): double

+isGenerationFailed(): bool const

TEventMaker2to3

+SetEvent(in nDim:int,in Xarg:double *,

          out event:TEvent *): double

+isGenerationFailed(): bool const

Figure 1: The strategy pattern adapted to the generation of events from a set of random
numbers. The abstract/Interface class TEventMakerStrategy is realized in different strategies:
TEventMakerCylindricalPhaseSpace, TEventMaker2to3, TEventMaker2to4 and TEventMaker2toN. The
choice is made using the Initialize() method in the TEventMaker class.

3.1.1 TEventMakerCylindricalPhaseSpace

The TEventMakerCylindricalPhaseSpace class implements generation of the cylindri-
cal phase space basing on the algorithm proposed in [5]. The transverse momenta and
rapidities of the final state particles are chosen as the integration variables. The rapidi-
ties are generated uniformly in the phase space, for the transverse momenta importance
sampling is employed. The latter method is useful whenever the transverse momenta
of produced final state particles decrease sharply with increasing of their transverse mo-
menta. In principle, this method can be used for an arbitrary number of particles. The
final state with 4 particles implies the total dimension of probabilistic space in TFoam ini-
tialization equal to 12 and in GenEx this number is automatically derived and provided
by TPolicyReader. The average transverse momentum of the generated particles is an
adjustable parameter. It should be noted that the algorithm implemented here differs
from the original one described in [5] by suppression of the events in which particles 1
and 2 change direction along z-axis, as mentioned above.

3.1.2 TEventMaker2to3

TEventMaker2to3 class implements generation of 3-body phase space using the variables
proposed in [16]:
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• the transverse momenta of scattered protons pt1,pt2, pmin ≤ pt1,pt2≤ pmax;

• the azimuthal angles of the scattered protons φ1 and φ2;

• the rapidity of the intermediate particle ymin≤y≤ymax.

Here pmin, pmax, ymin, ymax are the user’s bound for corresponding variables.
The phase space element can be expressed as

d3LIPS(p1,p2,p3)

=|J |−1(p1t p2t,φ1,φ2,y)|root
1

(2π)5

1

2E1

1

2E2

1

2
p1t p2tdp1t p2tdφ1dφ2dy, (3.2)

where the transformation Jacobian J (p1t p1t,φ1,φ2,y)|root is calculated (see Appendix A)
at the root of the energy and longitudinal momentum conservation equations. In this
case TFoam is initialized with total dimension equals 5.

3.1.3 TEventMaker2to4

TEventMaker2to4 class implements generation of 4-body phase space using the variables
proposed in [17]. For example in the diffractive reaction pp→ppπ+π− the protons are the
leading particles as they Mandelstam variables t1 and t2 are small and pions are produced
centrally. The class uses following variables:

• the transverse momenta of scattered leading particles (e.g., protons) pt1,pt2, pmin ≤
pt1,pt2≤ pmax;

• the leading particles azimuthal angles 0≤φ1,φ2≤2π;

• the rapidities y1,y2 of the centrally produced particles ymin ≤y1,y2≤ymax;

• the length pmt and the azimuthal angle φpmt of the difference of the transverse mo-
menta of the centrally produced particles, 0≤ pmt≤ pmt,max; 0≤φpmt≤2π.

Here also pmin,pmax,ymin,ymax,pmt,max are the user defined bounds on the corresponding
variables.

Using these variables phase space element can be expressed as

d4LIPS(p1,p2,p3,p4)=|J |−1(p1t,φ1,p2t,φ2,y3,y4,pmt,φm)|root
1

(2π)8

1

24

1

2E1

1

2E2
p1tdp1tdφ1 p2tdp2tdφ2dy3dy4d2pmt, (3.3)

where the transformation Jacobian J (p1t,p2t,φ1,φ2,y1,y2,pmt,φpmt)|root is calculated (see
Appendix A) at the root of energy and the longitudinal momentum conservation equa-
tions.TFoam is initialized with total dimension equals 8. The range of generated variables
has to be defined by the user. The functionality of this strategy is in principle the same
as that of TEventMaker2toN with N=4, however, its choice may be preferential in situa-
tions, when the constraint on rapidities of the centrally produced particles is required at
the generator level.
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3.1.4 TEventMaker2toN

TEventMaker2toN class implements generation of N-body phase space using the recur-
rence relation [15]

dN LIPS(s;p1,p2,··· ,pN)

=
1

2π
d3LIPS(s;p1,p2,p3)d

N−2LIPS(M2;p4,p5,··· ,pN)dM2, (3.4)

where M is the invariant mass of an intermediate particle 3, which subsequently decays
into particles 4,··· ,N. In the first step, the 3-body phase space is generated using variables
described in Subsection 3.1.2 and additionally in the variable M. In the second step, the
centrally produced object decays according to the phase space into particles 4,··· ,N. This
decay is managed by the class TDecay adapted from ROOT class of TGenPhaseSpace. In
the final step the four-momenta of the decay products are boosted to the global rest frame.
Thus the kinematic variables from which the final state four-momenta are constructed
are:

• the transverse momenta of peripherally scattered particles pt1,pt2, pmin ≤ pt ≤ pmax;

• the azimuthal angles φ1 and φ2 of particles 1 and 2: 0≤φ1,2≤2π;

• the rapidity of the intermediate object ymin≤y≤ymax;

• the mass M of the intermediate object Mmin≤M≤Mmax;

• remaining 3N−10 variables are managed by TDecay.

For N=4 functionality of this strategy is in principle the same as that of TEventMaker2to4,
however, its choice may be preferential in situations in which constraint on the invariant
mass M of the centrally produced system is required at the generator level. The code
of TDecay class which manages the decays of the centrally produced object results from
adaptation of ROOT utility class TGenPhaseSpace. The adapted features are the follow-
ing:

• random numbers are provided by TFoam (created by TRandom3);

• the decay phase space weight Wdecay of the centrally produced object many-body
decay corresponds to formula (3.4).

In addition to getWeight() method, which provides phase space weight of the event,
two additional methods are provided:

• GetDecayWeight() – returns the phase space weight Wdecay of the decay M→ 3+
4+···+N;
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• GetDecayPhaseSpaceIntegral() – returns
Idecay = LIPS(M,n,m1,m2,··· ,mn) of the integrated decay phase space of the
central object as a function of its mass M. This method will work only if
TEventMaker2toN::bIDecay=1 is set (see Subsection 4.2.3 in which other options for
TEventMaker2toN are defined).

The normalized decay weight Wdecay/Idecay represents the probability of a particular
configuration of particles from the decay in a given event (original TGenPhasespace pro-
vides only the relative probabilities). It can be useful when the matrix element represents
peripheral production of resonances.

The class TDecayIntegral serves as a tool for calculation of the value of the phase
space integral for decay into a given final state as a function of the system invariant mass
M. In the constructor of TEventMaker2toN class, the table of values of the integral in
bins of M is calculated. The GetDecayPhaseSpaceIntegral() method employs a linear
interpolation to calculate the integral value for a given mass M.

3.2 Event weight: TWeight

Once the event is generated and stored in the TEvent object its weight depending on final
state particles four-momenta can be calculated. The phase space weight WPhS is already
calculated by TEventMaker. The module which calculates the value of the matrix element
and its square WME is implemented following the strategy pattern, thus allowing for a
choice of the model (see Fig. 2). The binary (0/1) acceptance weight is calculated in the
TAcceptance class described in the next subsection. The interface class from which all
particular strategies inherit is called TWeightStrategy. The classes which implement
this interface include two methods important for the user

double GetWeight( TEvent * event, double eventWeight )

which calculates the total weight for a given event, i.e., the product of the phase space
weight (including Jacobian), the matrix element squared and the acceptance. The second
important method is

complex<double> getMatrixElement( TEvent * event )

which returns the matrix element value for an event. The following strategies are imple-
mented:

• TWeightUnit – the unit weight (for testing);

• TWeightGaussPt – the Gaussian distribution of the transverse momenta of all out-
going particles;

• TWeightLSpipi – the matrix element for the process pp→ ppπ+π− [17];

• TWeightLSKK – the matrix element for the process pp→ ppK+K− [18].
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TWeight

-strategy: TWeightStrategy *

+GetWeight(event:TEvent *,eventWeight:double): double

+getMatrixElement(event:TEvent *): complex<double>

-Initialize()()

TWeightStrategy

+GetWeight(event:TEvent *,eventWeight:double): double

+getMatrixElement(event:TEvent *): complex<double>

TWeightUnit

+GetWeight(event:TEvent *,eventWeight:double): double

+getMatrixElement(event:TEvent *): complex<double>

TWeightGaussPt

+GetWeight(event:TEvent *,eventWeight:double): double

+getMatrixElement(event:TEvent *): complex<double>

TWeightLSpipi

+GetWeight(event:TEvent *,eventWeight:double): double

+getMatrixElement(event:TEvent *): complex<double>

TWeightLSKK

+GetWeight(event:TEvent *,eventWeight:double): double

+getMatrixElement(event:TEvent *): complex<double>

Figure 2: The strategy pattern adapted to calculate weight and matrix element for the event. Abstract/Interface
class TWeightStrategy is realized as TWeightUnity, TWeightGaussPt, TWeightLSpipi or TWeightLSKK using
the Initialize() method.

The Initialize() method allocates appropriate object that realizes a given weight gen-
eration strategy during the initialization according to the data input from the configura-
tion file. If the user wants to add a new weight/matrix element to the generator then
the implementation of TWeightStrategy interface should be created and corresponding
change in Initialize() arranged.

3.3 Acceptance: TAcceptance

The acceptance cuts on kinematic variables other than those directly generated should
be applied after the TEvent object is created and before the matrix element is calculated.
Therefore, it is natural to implement the acceptance using the decorator pattern [14] that
decorates TWeight class, see Fig. 3 for details. The TAcceptance class has the same inter-
face as the TWeight class, namely TWeightStrategy. The constructor of the acceptance
class takes as an argument a pointer to the object that realizes TWeightStrategy interface,
which will be decorated. The weight and the matrix element of an event can be calcu-
lated in TAcceptance calling GetWeight(...) and getMatrixElement(...) methods. If
the acceptance test result is positive the event is passed to the internal class that calcu-
lates the matrix element. If the event does not pass the acceptance test, zero is returned
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TAcceptance

-weight: TWeightStrategy *

+ TAcceptance(weight:TWeightStrategy *)

+GetWeight(event:TEvent *,eventWeight:double): double

+getMatrixElement(event:TEvent *): complex<double>

+getAcceptance(event:TEvent *): double

+getIsAccepted(event:TEvent *): bool const

TWeightStrategy

+GetWeight(event:TEvent *,eventWeight:double): double

+getMatrixElement(event:TEvent *): complex<double>

+getAcceptance(event:TEvent *): double

+getIsAccepted(event:TEvent *): bool const

TGenerationAcceptance

+ TAcceptance(weight:TWeightStrategy *)

+GetWeight(event:TEvent *,eventWeight:double): double

+getMatrixElement(event:TEvent *): complex<double>

+getAcceptance(event:TEvent *): double

+getIsAccepted(event:TEvent *): bool const

TExplorationAcceptance

+ TAcceptance(weight:TWeightStrategy *)

+GetWeight(event:TEvent *,eventWeight:double): double

+getMatrixElement(event:TEvent *): complex<double>

+getAcceptance(event:TEvent *): double

+getIsAccepted(event:TEvent *): bool const

Figure 3: The decorator pattern adapted to decorate the TWeight class. The TAcceptance class imple-
ments the TWeightStrategy interface and also contains pointer to concrete realization of this interface.
TAcceptance is inherited by two classes: TExplorationAcceptnace, which is used during the exploration
phase and TGenerationAcceptance used in generation of events.

without calling internal decorated TWeightStrategy object. In this way calculation of the
matrix element outside the acceptance region is avoided. Two additional methods

double getAcceptance( TEvent * event );

bool getIsAccepted( TEvent * event );

return double (0.0/1.0) and boolean value respectively according to the acceptance of the
event.

There are two classes derived from TAcceptance:TExplorationAcceptnace and
TGenerationAcceptance. Both of them contain a set of different cuts that can be chosen
during the creation of an object according to the data in the configuration file. The second
class contains the cuts that are applied during the generation phase. Sometimes, however,
there is a need to perform the TFoam exploration in a wider phase space (with less re-
strictive cuts), e.g., see Subsection 4.5.4, and for this purpose TExplorationAcceptnace

class was created. Each of the derived acceptance classes contains the set of functions that
realize the cuts under the names cutX(), where X is some nonnegative integer number.
The cut functions are included during the compilation into the T...Acceptance classes
from the files in the ACCEPTANCE CUTS directory.
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3.4 Utility modules

3.4.1 Initialization

Initialization of the generator configuration, i.e., of the set of parameters and numeric
constants which define chosen generator options, generated process and matrix ele-
ment (reaction model) is managed by the TConfigurationReaderand the TPolicyReader
classes. TConfigReader serves as the configuration database. It keeps the configuration
values in a simple key-value map form. It also contains a parser which reads the config-
uration from a text file with the structure:

variable_name1 = value1 #comment1

...

#comment

...

variable_name2 = value2 ;comment2

...

The comments start from # or ; and end with a new line. The values can be extracted
from the object of the class by a set of the getTYPEValue() methods, where TYPE is
the type of the value, e.g., getDoubleValue(), getStringValue(), etc. Such method
gets a string, which is a name of a variable in the file. In case such a variable is not
defined in the file it throws an exception. The TConfigReader class allows reading of the
data from the configuration file. Therefore, it is necessary to introduce another class that
can impose constraints on the parameters and calculate derived quantities. This class,
TPolicyReader, which inherits from TConfigReader, reads the initial configuration file
(Generator.dat) and interprets it as follows:

1. the dimension of the phase space kDim is set according to eventGenerationStarategy
configuration variable;

2. the centre of mass energy tecm and the boost to laboratory frame are calculated from
the momenta of initial particles;

3. the configuration file of a model X, i.e., /MODEL DATA/X.dat, is read and model
constants are added to the list of all previously defined constants. The length of file
depends on the number of the model parameters.

3.4.2 Histograming

The THistogram class provides methods to calculate various kinematic variables
and to fill, draw and save histograms in the PostScript and root files. The
WriteHistograms( double xsection ) method that draws and saves histograms to
disk, called in the final part of the Generator main class, allows the user to normalize
selected distributions as the differential cross-section histograms. The THistogram class
using a built-in strategy pattern with the THistogramStrategy interface class provides
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separate methods to calculate kinematics and to fill histograms for different numbers of
particles in the final state.

3.4.3 Integration

The TIntegral class calculates the value of the Monte Carlo integral (cross-section) and
its statistical uncertainty using the average weight and the standard deviation of weight
distribution respectively. If the adaptive Monte Carlo integrator has been switched off by
setting IntegratorSetup=2 this class is used to calculate the integral and its error. Other-
wise, integration is performed within TFoam. The class is also used to count the number
of events that are accepted when using different exploration and generation cuts.

3.4.4 Logging

The TLog class provides logging of two types: global and configuration. The global
logging is realized by the singleton instance [14] of the TLog class contained in Global.h
header file, and produces RunLogFile, which contains basic information for a given gener-
ator run (time/date, initialization of TFoam, initialization of the generator and errors, if
any). The configuration logging saves the configuration data into a text file, which name
is set up by ConfigLogFile parameter, ConfigLog.log by default. It contains all the relevant
constants and parameters from Generator.dat and /MODEL DATA. The ConfigLog.log con-
figuration backup file, alphabetically sorted by the sortConfigLog.py Python script, can
be archived and used to run the generator by the make test command, as described in
Subsection 4.4.

Note that every utility module mentioned above is designed in such a way that it
can be used independently in a user program. These modules can be used to perform
additional analyses of the data or when constructing a new generator or weight strategy.

3.5 Simplified sequence diagrams

In this section simplified UML (Unified Modelling Language) [19] sequence diagrams
for the generator are presented. They visualize interaction between different parts of
the generator and the sequence of calls. The main program in the main.cxx file creates
instance of the Generator class. This object in constructor creates all other objects needed
in generation. Now, the program performance path splits depending on set-up parameter
IntegratorSetup = 1 or 2.

In the self-adapting Monte Carlo mode (IntegratorSetup = 1) TFoam is initialized and
exploration phase starts. This part is presented in form of sequence diagram, Fig. 4. After
successful exploration phase the generation starts. The generation sequence diagram is
presented in Fig. 5.

The second path of the program performance corresponding to IntegratorSetup = 2 is
presented in Fig. 6. Here instead of TFoam an object of TRandom3 provides a vector of
random numbers uniformly distributed on the unit interval.
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main.cxx
:Generator

Init()

:TFoam

:TDensity

Initialize()

Exploration,

multiple calls

Figure 4: Exploration phase using TFoam. The TDensity class internal calls structure was not presented.

main.cxx :Generator :TFoam

Generate() MakeEvent()

GetMCvect

GetMCwt

:TIntegral

AddWeigt

:THistogram

Fill

:TEventWriter

Fill()

TEventMaker

SetEvent

isGenerationFailed()

Figure 5: Generation phase when self-adapting Monte Carlo method TFoam is used. The TFoam object internally
calls the TDensity object which was not shown here to keep diagram simple.
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main.cxx :Generator :TRandom3

Generate() Uniform()

Uniform()

:TIntegral

AddWeigt

:THistogram

Fill

:TEventWriter

Fill()

multiple

calls

:TEventMaker

SetEvent

isgenerationFailed()

:TWeight:TGenerationAcceptance

GetWeight()

if generation

suceed

GetWeight()

if event passes

acceptance cuts

Figure 6: Generation phase when self-adapting Monte Carlo TFoam is not used.

4 How to install and use GenEx

4.1 Installation, Makefile and utility scripts

Prerequisites for compiling and running of the program are as follows

• ROOT package [8] – version 5.0;

• GNU C++ compiler [20] – compatible with standard C++ compiler;

• GNU Makefile [21] – compatible with standard Makefile format;

• Doxygen – for the documentation generation [22] (optional);

• Python 3.x interpreter – for running additional scripts [23] (optional).

The code of the GenEx generator in a form of the GENERATOR.tar.gz compressed file can
be obtained from the authors on request or cloned from the GitHub repository [24]. The
command tar -zxf GENERATOR.tar.gzunpacks it to GENERATOR directory, which has
the following content:
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• GENERATOR/ – main directory contains a simple GNU Makefile [21] and scripts
that perform various operations;

• GENERATOR/bin – contains main.x generator program that appears after the com-
pilation;

• GENERATOR/include – contains the header files;

• GENERATOR/src – contains source files and the main generator file main.cxx;

• GENERATOR/build – is the temporary directory for building executables. It is cre-
ated by make run command and deleted with all the content by make clean com-
mand;

• GENERATOR/EVENTS – contains the files with stored events from the run;

• GENERATOR/MODEL DATA – contains the configuration (text) files for different
models (e.g. matrix elements) used in generation;

• GENERATOR/ACCEPTANCE CUTS – contains the files defining cuts;

• GENERATOR/Tests – contains sorted generator configuration files like ConfigLog.log
for various tests (see make test below).

Makefile assumes that $ROOTSYS and $ROOTINC environment variables are properly set to
ROOT and ROOT/include directories. make command has the following options:

• make all – compiles the generator;

• make run – compiles and runs the generator using the Generator.dat configuration
file; the ConfigLog.log file that contains configuration of the run is also created and
can be archived, edited and used for running the generator by means of make test

tool;

• make test – compiles and runs the generator using the short and sorted configura-
tion file – ConfigLog.log. The command prompts the user to provide the sequential
number of configuration file stored in /Tests directory and runs the generator. Ex-
amples of usage of make test command are described in Subsection 4.4;

• make clean – restores Genex directory to the original state, i.e., removes all the
files created in the process of compiling and linking of the program; data like his-
tograms, events and log informations are unaffected;

• make line-count – counts the lines of code of the program;

• make Generate-doc – generates the Doxygen documentation.

The make run and make test commands will produce an output with result of the Monte
Carlo integration, the file histograms.ps with default histograms and the histograms.root file
which can be browsed typing: root browseHistograms.C
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4.2 Setting parameters

All parameters, which define the configuration of the generator, the generated process
and names of output files are defined in the main configuration file – Generator.dat, which
has format described in Subsection 3.4.1. The constants of the implemented models of
exclusive processes are set in the separate data files in the MODEL DATA directory.

4.2.1 General set-up

This group of parameters defines general set-up of the program – method of the phase
space generation and the output of the generator:

• NumberOfEventsToGenerate – total number of events to be generated in the genera-
tion phase. These events are either weighted or unweighted, depending on TFoam
parameter OptRej 0/1;

• IntegratorSetup – choice between the adaptive Monte Carlo TFoam integrator and
the standard Monte Carlo integration. The second choice is useful for testing a new
generator or weight strategy;

• seed – the random number generator seed. This variable can be used to run parallel
programs with different seeds to generate statistically independent sets of data;

• Foam parameters – the group of steering parameters for TFoam. Their meaning is
explained in [7]. The role of two of them (nCells, nSampl) is explained in the next
subsection;

• SaveEventDataLHE XML, SaveEventDataLHE TXT, SaveEventDataRoot – switch
on/off writing generated events to file in a chosen format (LHE-XML, LHE-TXT
or ROOT), see [25, 26] for LHE format specification. Example analysis scripts to
read these files are contained in the Analysis directory;

• RootEventFile, LHEEventFile, LHETxtEventFile – set names of event backup files.
These files can be analysed using additional programs in Analysis directory de-
scribed in Subsection 4.3;

• eventGeneratorStrategy – choice between strategies of event generation described in
Subsection 3.1:

– #1 – cylindrical phase space described in Subsection 3.1.1,

– #2 – 3-body phase space described in Subsection 3.1.2,

– #3 – 4-body phase space described in Subsection 3.1.3,

– #4 – N-body phase space described in Subsection 3.1.4.
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4.2.2 Specification of the initial and final state

• Parameters defining the initial state particles and the frame of reference:

- frametype – type of the reference frame: centre of mass (CM) or laboratory
(LAB);

- tecm – CM energy of the collision; has to be specified if frametype=CM;

- idA, idB – PDG names of the initial particles;

- EA, EB – energies of colliding particles, have to be specified if frametype=LAB.

• Parameters defining the final state particles:

- X::massIndication = 0 if particle mass is specified in configuration file; = 1 if
particle mass is derived from PDG code, where ’X’ denotes the event maker
type e.g. TEventMaker2toN;

- X::id1,X::id2...X::idN – PDG names of particles in the generated process, where
’X’ denotes the event maker type, e.g., TEventMaker2toN;

- X::m1,X::m2...X::mN – masses of particles in the generated process, where ’X’
denotes the event maker type, e.g., TEventMaker2toN.

It should be noted that particles 1 and 2 have been singled out of the rest as peripherally
scattered for reasons explained in Section 3.1.

4.2.3 Parameters and options for phase space generation

• Parameters for generation of 3-body phase space described in Subsection 3.1.2:
X::p max,X::p min,X::y min,X::y max, where X stands for TEventMaker2to3.

• Parameters for generation of 4-body phase space described in Subsec-
tion 3.1.3: X::p max,X::p min,X::y min,X::y max,X::pmt max, where X stands for
TEventMaker2to4.

• Parameters for generation of N-body phase space described in Subsection 3.1.4:

- centralMassOption – option used to define the central system mass range: 0 –
kinematic boundaries; 1 – specific mass range [mmin,mmax]; 2 – from threshold
to mmax;

- ranges of kinematic variables X::p max,X::p min, X::y min,X::y max where X
stands for TEventMaker2toN.

4.2.4 Choice of the reaction model (matrix element)

weightStrategy – selects different existing weight strategies, i.e., class calculating matrix
element for a given process. Each class has its own configuration file which contains the
model parameters:
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• 1 – the unit weight – a flat distribution for testing purposes;

• 2 – the Gaussian distribution in transverse momenta of all outgoing particles – a
peeked distribution which width can be adjusted; for efficiency testing purpose;

• 3 – the model for exclusive production of π+π− pairs in the process pp→ pπ+π−p
as described in [17];

• 4 – the model for exclusive production of K+K− pairs in the process pp→ pK+K−p
as described in [18].

4.3 Tool for analysis of event files in root and LHE formats

The event file in root or LHE formats can be analysed using additional programs con-
tained in the Analysis directory. One has to perform the following steps:

• copy ConfigLog.log, integral.log and one of the event files: event.root, event.txt into the
directory with appropriate analysis program;

• adjust the analysis.cxx program to the user’s needs, following the comments in the
file;

• type make run command to start the analysis.

4.4 How to use generator: quick start

After unpacking the generator from GENERATOR.tar.gz or cloning from the GitHub
repository [24] and entering the GENERATOR directory, the make run command will
start generation of 20000 events for the process pp→ ppπ+π− at

√
s=200 GeV collision

energy using the matrix element of [17]. The program output to the screen contains in-
formation on TFoam set-up parameters (see Subsection 4.2.1), the results of the TFoam
phase space exploration phase (see Section 2) and final TFoam results, in particular the
most precise cross section estimate 0.01365±3·10−5 mb. At this point it will be useful
to inspect the files created by the program and observe effects of modifications of the
Generator.dat main input file. In the main generator directory, called GENERATOR, the
following files are created:

• histograms.root and histograms.ps contain root histograms and their PostScript rep-
resentation created by the THistogram4 class directly in the generator loop. This is
the quickest method for analysis of the generated events during the model tuning
or development of a new generator strategy;

• events.root,events.lhe, events.txt from the EVENTS directory are files in which gener-
ated events are stored. The tools provided in the directory Analysis (see Section 4.3)
enable user to develop analysis of the events without repeating generation.
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• integral.log contains the value of the final estimation of the MC integral (cross sec-
tion) and its uncertainty. This file transferred to the Analysis directory is read by the
analysis.cxx tool in Section 4.3;

• ConfigLog.log records the generator set-up, including parameters contained in the
Generator.dat as well as the model parameters from the directory ./MODEL DATA
used during the run. It can be archived, edited and used for re-run the generator as
follows:

1. copy ConfigLog.log into the Tests directory and rename it to testX, where X is
some integer number;

2. in the test.py Python script add appropriate entry into dictionary structure
tests, e.g., if the renamed file is test30, then in the dictionary appropriate en-
try 30: ’Description of the test’ should be added. Correct indentation
should be used as in every Python script.

3. The make test command will run the generator upon appropriate test number
entry from the keyboard.

• In the original Generator.dat, the useExplorationCuts option has been set to zero, so
that identical acceptance cuts are applied both in exploration and generation phases
(see Sections 2 and 3.3). After setting useExplorationCuts=1, make run will produce
additional genhistos.ps file, which contains histograms made using finer cuts.

A new generator set-up requires the following actions:

- edit parameter and options in Generator.dat described in Section 4.2.1;

- if needed change the model-X parameters in /MODEL DATA/X.dat;

- define the user acceptance cuts editing
/ACCEPTANCE CUTS/double TGenerationAcceptance::cut0( void ) and
/ACCEPTANCE CUTS/double TExplorationAcceptance::cut0( void ) or any other avail-
able cut functions. The circumstances in which different exploration and generation
cuts make sense are explained in Section 4.5.4.

In order to analyse the results produced by the generator one can either edit THistogram3,
THistogam4 or THistogramN (depending on the number of particles in the final state, Sec-
tion 3.4.2) or to create its own analysis program in the directory Analysis (see Section 4.3).

4.5 Tests of the generator

The generator was extensively tested for consistency of results obtained using different
methods of phase space generation and for stability of results with respect to param-
eters in the generator set-up. The obtained results were compared to those published
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in [17, 18]. In every test N = 106 events was generated. All tests were performed using
nCells=nSampl=10000 during the exploration if not indicated otherwise. The generator
configurations for all 26 tests are archived in the /Test directory.

4.5.1 Comparison of GenEx with published results

In Table 1 the cross sections for the process pp → ppπ+π− at 200 GeV obtained using
TEventMaker2to4 and TWeightStrategyLS (generator configuration corresponding to
/Tests/test1... test3) are compared to the calculations published in [17]. Similar tests have
been performed for energies 500 GeV, 7 TeV and for process pp→ ppK+K− (/Tests/test4...
test14). Agreement between [17, 18] and GenEx results is very good for all the tested
energies and processes.

Table 1: Comparison of GenEx with results of [17] for different acceptance cuts and model parameter Λ2
o f f .

Corresponding cross-section values in the last two columns are given in ¯b, and Λ2
o f f in GeV2. The error is

given by the adaptive cellular Monte Carlo algorithm of FOAM [7].

Acceptance cuts Λ2
o f f Ref. [17] GenEx [¯b]

pt >0.15;|η|≤1 1.0 14.85 14.90±0.01

pt>0.15;|η|≤1,0.003≤−t1,t2≤0.035 1.0 0.79 0.7900±0.0007

pt >0.15;|η|≤1,0.003≤−t1,t2≤0.035 1.6 1.53 1.5200±0.0003

Detailed comparison of GenEx and DIME [9] in the case of the process pp→ ppπ+π−

(including differential cross-section plots) is presented in [27].

4.5.2 Stability of results with respect to generator parameters set-up

The generator is not a magic box, which produces right output. To obtain correct results
the user is requested to check if the number of cells (nCells) and the number of samplings
per cell (nSampl) are sufficient for a given generator set-up. This is illustrated in Table 2
(/Tests/test22,...test26). The generator set-up for rather restrictive acceptance cuts is run for
different number of cells, samplings and rapidity ranges of centrally produced particles.
When the rapidity range is much wider, for example [−8.0,8.0], that the one required
by acceptance cuts [−1.0,1.0], then 1000 cells is not sufficient to obtain the correct result.
Using 1000 cells and 1000 samplings/cell one gets a result (first row of Table 2) which
differs by about 36% from the correct result (last row of Table 2) obtained with 10000
and 10000 of cells and samplings/cell respectively and smaller rapidity range. It should
be noted that the error calculated by TFoam is almost an order of magnitude smaller.
However, when the rapidity range is set correctly (i.e. closer to that required by the
acceptance cuts) 1000 cells and 1000 sampling/cell is completely sufficient to obtain the
correct result (within the statistical uncertainty indicated by TFoam).

This example shows that the GenEx is a tool which should be used with care. If
the phase space volume within the acceptance cuts is significantly smaller than the
phase space in which the events are generated, then for a small number of samples (i.e.
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Table 2: Cross-section calculation corresponding to the generator set-up indicated in the third row of Table 1,
obtained for different rapidity ranges at the generator level and different TFoam parameters (nCells, nSampl).

nCells nSampl y-range cross section [¯b]

1000 1000 [−8.0,8.0] 0.977±0.002

10000 1000 [−8.0,8.0] 0.977±0.002

10000 10000 [−8.0,8.0] 1.421±0.004

10000 1000 [−2.0,2.0] 1.519±0.004

10000 10000 [−2.0,2.0] 1.523±0.004

Cells·Samples) it is hard to probe sufficiently the shape of the integrand. Thus, in the
case of very restrictive acceptance cuts, the stability of results against TFoam and the
generator parameters set-up should be checked. One should note that sometimes, in-
stead of increasing the number of cells and sampling, the use of different exploration and
generation cuts can lead to the correct results (see Subsection 4.5.4).

4.5.3 Consistency between TEventMaker2to4 and TEventMaker2toN, N=4

In this test (/Tests/test20, test21) the results generated by the general approach 2toN
(TEventMaker2toN (2toN)) and method of Lebiedowicz and Szczurek [17], restricted to 4
particles in the final state, implemented in the GenEx as TEventMaker2to4 (2to4) are com-
pared. To test the reaction 2p→2p+π++π− at tecm=200 GeV with acceptance cuts cor-
responding to third row of Table 1 (test3) were used. The results σ(2to4)=1.523±0.003 ¯b
and σ(2toN) = 1.525±0.004 ¯b agree perfectly within the statistical errors provided by
TFoam.

4.5.4 Comparison between different strategies of phase space generation for 5-body

processes

Comparison of the strategies TEventMakerCylindrical(CPS) and TEventMaker2toN

(2toN) for generation of 5-body phase space for the process pp→ ppπππ using the ma-
trix element with the Gaussian distribution of the transverse momenta of all particles
(weightStrategy=2 ) and the rapidity y of centrally produced particles |y| ≤ 2.0 was per-
formed for tecm= 200.0 GeV (/Tests/test15, test16). The phase space integrals σ(2toN)=
6.70·10−18±7·10−21 mb and σ(CPS) = 6.67·10−18±8·10−21 mb agree very well. How-
ever, if an additional cut 0.01 GeV2 ≤ |t1,t2|≤ 0.06 GeV2 is imposed (/Tests/test17, test18)
the results from CPS and 2toN strategies diverge: σ(2toN)=2.18·10−19±2·10−22 mb and
σ(CPS)=4.22·10−20±6·10−23 mb. In this case an agreement between CPS and 2toN strate-
gies can be achieved if the acceptance cuts in the exploration phase are left as in test15
and only in the generation phase additional acceptance cut on the momentum transfer is
imposed. Then phase space integral (test19) is σ(CPS)=2.11·10−19±2·10−22 mb, close to
σ(2toN) result.
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This example demonstrates another case of a problem with very restrictive accep-
tance cuts discussed earlier in Subsection 4.5.2. In order to understand how restrictive
the additional cut is, one should notice that the ratio of events that fall into the volume
described by generation cuts to those generated in the volume restricted by exploration
cuts is equal 0.03215.

5 Summary

A simple program for generating events and Monte Carlo integration in particle physics
was presented. The generator is specially designed for simulation of central exclusive
particle production in peripheral processes e.g. double pomeron exchange. It employs
the self-adaptive Monte Carlo algorithm TFoam implemented in ROOT – a very power-
ful tool which makes it possible to generate effectively processes described by sharply
peaked matrix elements and to impose restrictive cuts on the phase space. The program
is characterized by a modular structure and can be easily extended by adding new strate-
gies for generating phase space events and calculating the matrix elements. The gen-
erator can be treated as a template for creating small, effective generators for various
purposes.

A Phase space calculation formulae

For n= 3 particles in final state the expression (3.1) can be transformed into (3.2) in the
following steps:

• rewrite (3.1) in terms of the transverse momentum p3t and pseudorapidity y of
particles 3 using relation dpz =Edy;

• introduce cylindrical coordinates p=(|pt|,φ,pz) for p1 and p2;

• eliminate dpz2 and d2p3t using constraints imposed by Dirac δ4(···);

• Eliminate dp1z using formula

δ( f (x))=
#{xi : f (xi)=0}

∑
i=1

δ(x)
∣

∣

∣

d f (x)
dx

∣

∣

∣

|x=xi
, (A.1)

where # is a function that gives the number of elements in the set. The summa-
tion runs over the roots of the energy conservation equation, subject to additional
constraint from longitudinal momentum conservation

{

f (p1z) :=
√

s−
√

p2
1z+m2

1t−
√

p2
2z(p1z)+m2

2t−E3=0,

p2z(p1z)= paz+pbz−p1z−p3z,
(A.2)
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where
√

s=Ea+Eb and mti=
√

m2
i +p2

ti for i∈{1,2}.

The above system (A.2) effectively simplifies to the second order algebraic equation for
p1z which has two solutions. One of them corresponds to backscattering of particles 1
and 2. As the generator is designed for simulation of the peripheral processes, it does
not probe points in this branch of the phase space, because there the matrix element is
negligible there.

Taking into account formulae (A.1) and

J =
∂ f

∂p1z
=

p2z(p1z)

E2
− p1z

E1
(A.3)

one arrives at Eq. (3.2).
Three-body phase space with four-momentum conservation is described by 5 inde-

pendent variables, thus TFoam initialized with kDim=5 provides a vector R of 5 random
variables Ri, i=1,··· ,5 uniformly distributed on the interval [0.0,1.0], which are linearly
transformed to generator variables, e.g., y=ymin+(ymax−ymin)R1. The weight returned
to TFoam can be factorized in the following way: W=WPhS ·WME. The factor WPhS due
to the phase space and the affine transformation T :R→{|p1|,|p2|,y,φ1,φ2} is

WPhS= |T ||J |−1(p1t p2t,φ1,φ2,y)|root
1

(2π)5

1

2E1

1

2E2

1

2
p1t p2t, (A.4)

where
|T |= |pt1max−pt1min||pt2max−pt2min||ymax−ymin|(2π)2. (A.5)

The second factor WME due to the square of a matrix element M and the flux is

WME=
|M|2

2s
. (A.6)

Similarly, in the case of four-body phase space described in Subsection 3.1.3 after analog-
ical calculations one arrives at

WPhS= |T ||J |−1(p1t p2t,φ1,φ2,y)|root
1

(2π)8

1

2E1

1

2E2

1

24
p1t p2t, (A.7)

|T |= |pt1max−pt1min||pt2max−pt2min||pmtmax−pmtmin|
|y3max−y3min||y4max−y4min|(2π)3, (A.8)

where {|p1t|,|p2t|,φ1,φ2y3,y4,|pmt| := |p3t−p4t|,φm} variables were used. Finally, in case
of N-body phase space described in Subsection 3.1.4 respective expressions are (compare
to (A.4))

WPhS= |T ||J |−1(p1t p2t,φ1,φ2,y)|root
1

(2π)2

1

2E1

1

2E2

1

2
p1t p2t ·Wdecay, (A.9)

|T |= |pt1max−pt1min||pt2max−pt2min||M2
max−M2

min||ymax−ymin|(2π)2, (A.10)
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where Wdecay is the phase space weight for decay of object of mass M into n=N−2 central
particles calculated according to the recurrence relation [15] (see also [28])

dnLIPS(M2;p1,p2,··· ,pn−1,pn)=
1

2π
d2LIPS(M2;pd,pn)

×dn−1LIPS(sd;p1,p2,··· ,pn−1)dsd, (A.11)

where pd= p1+p2+···+pn−1 and sd= pd ·pd. As already mentioned, particles 1 and 2 are
assumed to be peripherally scattered, i.e., they have relatively small transverse momenta.
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