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Abstract. The differential quadrature method has been widely used in scientific and
engineering computation. However, for the basic characteristics of time domain dif-
ferential quadrature method, such as numerical stability and calculation accuracy or
order, it is still lack of systematic analysis conclusions. In this paper, according to the
principle of differential quadrature method, it has been derived and proved that the
weighting coefficients matrix of differential quadrature method meets the importan-
t V-transformation feature. Through the equivalence of the differential quadrature
method and the implicit Runge-Kutta method, it has been proved that the differen-
tial quadrature method is A-stable and s-stage s-order method. On this basis, in order
to further improve the accuracy of the time domain differential quadrature method,
a class of improved differential quadrature method of s-stage 2s-order has been pro-
posed by using undetermined coefficients method and Padé approximations. The nu-
merical results show that the proposed differential quadrature method is more precise
than the traditional differential quadrature method.

AMS subject classifications: 37M05, 65L05, 65L06, 65L20
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1 Introduction

The differential quadrature method (DQM) was first proposed by Bellman and his asso-
ciates in the early 1970s [1, 2], which is used for solving ordinary and partial differential
equations. As an analogous extension of the quadrature for integrals, it can be essential-
ly expressed as the values of the derivatives at each grid point as weighted linear sums
approximately of the function values at all grid points within the domain under consid-
eration.
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The differential quadrature method is conceptually simple and the implementation
is straightforward. It has been recognized that the differential quadrature method has
the capability of producing highly accurate solutions with minimal computational ef-
fort [3, 4] when the method is applied to problems with globally smooth solutions. So
far, the differential quadrature method has been widely applied to boundary-value prob-
lems in many areas of engineering and science, such as transport process [5], structural
mechanics [6–8], calculation of transmission line transient response [9,10], etc. [11] made
the first attempt to apply the differential quadrature method for time domain discretiza-
tion. Subsequently, the differential quadrature method has been extended to solve initial
value problems in the time domain, such as, time-dependent diffusion problems [12],
transient elastodynamic problems [13] and dynamic problems [14–16]. A comprehensive
review of the chronological development of the differential quadrature method can be
found in [4, 11]. Though the differential quadrature method has been successfully ap-
plied in so many fields, for the basic characteristics of the method, such as numerical
stability and calculation accuracy or order, not much work about it has been done in this
area for the differential quadrature method. According to Fung [17], using Lagrange in-
terpolation functions as test functions, the time domain differential quadrature has been
shown to be equivalent to the recast implicit Runge-Kutta method [18–20], besides, some
low-order algorithms were discussed in detail. However, the method used by Fung is
not the traditional sense of differential quadrature method, but involved post-processing
(i.e., numerical solution at the end of grid points adopts polynomial extrapolation).

In this paper, using general polynomial as test functions [21], the weighting coeffi-
cients matrix of differential quadrature method is proved to satisfy V-transformation [19,
22]. The equivalent implicit Runge-Kutta method is constructed through the differential
quadrature method. Hence, making use of Butcher fundamental order theorem and the
method of linear stability analysis [18–20], the basic characteristics of differential quadra-
ture method can be systematically analysed. Unfortunately, the differential quadrature
method is only the method of s-stage s-order and A-stable. Consequently, the differential
quadrature method can’t yield higher accurate solutions to the boundary-value problem-
s with fewer computational efforts. Based on above deduction, the method of undeter-
mined coefficients is used to make the stability function of the equivalent Runge-Kutta
method become the diagonal Padé approximations to the exponential function [19, 20].
Therefore, a class of improved differential quadrature method of s-stage 2s-order has
been derived.

The manuscript is arranged as follows. In Section 2, the weighting coefficients matrix
of traditional differential quadrature method using general polynomial as test functions
is briefly discussed. In Section 3, the equivalent relationship between differential quadra-
ture method and Runge-Kutta method is deduced. In Section 4, the stability and order
characteristics of differential quadrature method are studied. A class of improved dif-
ferential quadrature method of s-stage 2s-order and A-stable is proposed in Section 5.
In Section 6, the transient response of a double-degree-of-freedom system is computed,
which is given to verify the computational accuracy with the defined three grid points.
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Conclusions are then given in Section 7.

2 Traditional differential quadrature method

Suppose function f (x) is sufficiently smooth in the whole interval, there are (s+1) grid
points with coordinates as ci, i∈(0,s). The first order derivative f (1)(ci) at each sampling
grid point ci, i∈ (1,s), is approximated by a linear sum of all the function values in the
whole domain, that is

f (1)(ci)=
s

∑
j=0

gij f (cj), i∈ (1,s), (2.1)

where f (ci) represent function values at a grid point ci, gij is the weighting coefficients.
In order to compute the weighting coefficients gij in Eq. (2.1), the test functions can be

chosen as
rk(x)= xk, (k=0,1,···s). (2.2)

Substituting Eq. (2.2) into Eq. (2.1) gives

k=0, 0=
s

∑
j=0

gij, i∈ (1,s), (2.3a)

s

∑
j=0

gijck
j = k·ck−1

i , i,k∈ (1,s), (2.3b)

Eq. (2.3a) can be expanded into matrix form as
g11 g12 ··· g1s
g21 g22 ··· g2s
...

...
. . .

...
gs1 gs2 ··· gss




1
1
...
1

+


g10
g20
...

gs0

=


0
0
...
0

. (2.4)

Let

G0=


g10
g20
...

gs0

, G=


g11 g12 ··· g1s
g21 g22 ··· g2s
...

...
. . .

...
gs1 gs2 ··· gss

, e=


1
1
...
1

. (2.5)

Using Eq. (2.5), Eq. (2.4) can be rewritten as

G0≡−Ge. (2.6)

From k=1,2,··· ,s, Eq. (2.3b) can be expanded as
gi0c0+gi1c1+gi2c2+···+giscs =1,
gi0c2

0+gi1c2
1+gi2c2

2+···+gisc2
s =2ci,

...
gi0cs

0+gi1cs
1+gi2cs

2+···+giscs
s = scs−1

i .

(2.7)
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Since initial grid point c0 is usually defined as 0, Eq. (2.7) reduces to
gi1c1+gi2c2+···+giscs =1,
gi1c2

1+gi2c2
2+···+gisc2

s =2ci,
...
gi1cs

1+gi2cs
2+···+giscs

s = scs−1
i .

(2.8)

From i=1,2,···s, Eq. (2.8) can be also expanded into matrix form as

G


c1 c2

1 ··· cs
1

c2 c2
2 ··· cs

2
...

...
. . .

...
cs c2

s cs
s

=


1 2c1 ··· scs−1

1
1 2c2 ··· scs−1

2
...

...
. . .

...
1 2cs ··· scs−1

s



=


1 c1 ··· cs−1

1
1 c2 ··· cs−1

2
...

...
. . .

...
1 cs ··· cs−1

s




1
2

. . .
s

. (2.9)

Vandermonde matrix V is defined as follows

V=


1 c1 ··· cs−1

1
1 c2 ··· cs−1

2
...

...
. . .

...
1 cs ··· cs−1

s

. (2.10)

Making use of Eq. (2.10), Eq. (2.9) can be expressed as

G−1V=


c1 c2

1 ··· cs
1

c2 c2
2 ··· cs

2
...

...
. . .

...
cs c2

s ··· cs
s




1
1
2

. . .
1
s



=


1 c1 c2

1 ··· cs
1

1 c2 c2
2 ··· cs

2
...

...
...

. . .
...

1 cs c2
s ··· cs

s





0 0 ··· 0
1

1
2

. . .
1
s


. (2.11)

Finally, it can be inferred that
V−1G−1V=As, (2.12)
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where As is defined as

As =



0 0 0 ··· α1
1 0 0 ··· α2

0
1
2

...
...

...
...

...
...

. . .
...

0 0 ··· 1
s−1

αs


, (2.13)

with
αs =[α1,α2,··· ,αs]

T=
1
s

V−1cs, cs =[cs
1,cs

2,··· ,cs
s]

T. (2.14)

Eq. (2.12), i.e., G=V A−1
s V−1, is called the implicit expression of the weighting coeffi-

cients matrix, and is also called V-transformation.
When the grid points have been selected, the weighting coefficients matrices G and

G0 are easy to calculate with the above formula. Obviously, the weighting coefficients
of the differential quadrature method depend on test functions and the distribution of
grid points, but are independent of some specific problems. There are four typical grid
points distribution: Legendre grid, Chebyshev grid, Chebyshev-Gauss-Lobatto grid and
Uniform grid [17, 21]. Legendre grid is a special case in traditional quadrature method.
This paper will focus on the latter three kinds of commonly used grid points, which are
defined as follows:
1) Chebyshev grid points

c0=0, ck =
1
2

(
1−cos

(2k−1
2s−2

π
))

, k∈ (1,s−1), cs =1.

2) Chebyshev-Gauss-Chebysgev grid points

ck =
1
2

(
1−cos

( k
s

π
))

, k∈ (0,s).

3) Uniform grid points

ck =
k
s

, k∈ (0,s).

3 The equivalence of differential quadrature method and
Runge-Kutta method

In order to analyse the numerical stability and order of differential quadrature method,
the time domain differential quadrature method can be transformed into equivalent im-
plicit Runge-Kutta method. Consider the following ordinary differential equations

dx
dt

= f(t, x), 0< t≤T,

x(t=0)=x0.
(3.1)
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In the following, tn, tn+1 represent respectively the beginning and the end points at each
step. h= tn+1−tn denotes the step size. The time interval [tn,tn+1] will be normalized.
i.e., c= (t−tn)/h, t∈ [tn,tn+1]. At the same time, Eq. (3.1) can be made in the standard
normalized form as

d
dc

x=h f(tn+ch, x̃), x̃= x(tn+ch), (3.2)

then, using s-stage differential quadrature method to solve Eq. (3.2) yeilds

G

 x̃1
...
x̃s

+ G0 xn =h

 f(tn+c1h, x̃1)
...

f(tn+csh, x̃s)

, (3.3)

where x̃i = x(tn+cih), i∈ (1,s). Since G0≡G e, Eq. (3.3) reduces to x̃1
...
x̃s

= xn

 1
...
1

+h G−1

 f(tn+c1h, x̃1)
...

f(tn+csh, x̃s)

. (3.4)

Let
G−1= A=[aij], i, j∈ (1,s). (3.5)

Clearly, making use of Eqs. (2.12) and (3.5) leads to

A=VAsV−1. (3.6)

Therefore, the weigthing coefficients matrix A also satisfies V-transformation. It can be
inferred from Eq. (3.4)

x̃i = xn+h
s

∑
j=1

aij f(tn+cjh, x̃j), i∈ (1,s). (3.7)

Since cs =1, tn+csh= tn+h= tn+1, therefore, xi(i= s) is the approximate solution at the
end of the step. Then, x̃s can be rewritten as the following form

x̃s = xn+1= xn+h
s

∑
j=1

asjf(tn+cjh, x̃j)= xn+h
s

∑
j=1

bjf(tn+cjh, x̃j), (3.8)

where bj=asj, j∈(1,s). It can be seen that Eqs. (3.7) and (3.8) are the standard forms for an
s-stage Runge-Kutta method. Since, the equivalent Runge-Kutta method is a reducible
method [22]. In fact, the traditional differential quadrature method generally doesn’t
involve post-processing, so the Runge-Kutta method converted from traditional differ-
ential quadrature method will naturally become a reducible method. The Runge-Kutta
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method can be conveniently summarized in the Butcher tableau as

c A

bT
=

c1 a11 ··· a1s
...

...
...

cs as1 ··· ass

b1 ··· bs

, (3.9)

where bT=(b1,b2,··· ,bs)=(as1,as2,··· ,ass).

4 Stability and order analysis of the differential quadrature
method

The stablity and accuracy characteristics of the newly resultant Runge-Kutta method will
be investigated next. From Eqs. (2.12) and (3.5), it can be inferred that

a11 a12 ··· a1s
a21 a22 ··· a2s
...

...
. . .

...
as1 as2 ··· ass




1 c1 ··· cs−1
1

1 c2 ··· cs−1
2

...
...

. . .
...

1 cs ··· cs−1
s



=


c1 c2

1 ··· cs
1

c2 c2
2 ··· cs

2
...

...
. . .

...
cs c2

s cs
s




1
1
2

. . .
1
s

. (4.1)

Eq. (4.1) reduces to
s

∑
j=1

aijck−1
j =

ck
i
k

, i∈ (1,s), k∈ (1,s). (4.2)

On the other hand, since bj = asj, j∈ (1,s) and cs =1, from Eq. (4.1), it can be seen that

bTV=
[
1,

1
2

,··· , 1
s

]
. (4.3)

Similarly, Eq. (4.3) reduces to

s

∑
i=1

bick−1
i =

1
k

, k∈ (1,s). (4.4)

Obviously, from Eqs. (4.2) and (4.4), it has been shown that the equivalent Runge-Kutta
method at least satisfies simplifying assumptions C(s) and B(s). Furthermore, it can be
verified that the equivalent Runge-Kutta method satisfies simplifying assumptions D(0).
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From Theorem 5.1 on pp. 71 in [19], it can be concluded that the implicit Runge-Kutta
method or the corresponding differential quadrature method is s-stage s-order.

The stability function of the corresponding differential quadrature method, i.e., R(z),
is given by the formula

R(z)=1+zbT(I−zA)−1e=
det(I+z(ebT−A))

det(I−zA)
, (4.5)

where, as usual, I is the identity matrix of dimension s. Due to grid points’s asymmetric
distribution, the equivalent implicit Runge-Kutta method is not a symmetrical method.
As a result, there is an unique adjoint method (also called reflected method) [18, 20],
which is defined as

c∗ A∗

(b∗)T
,

satisfying 
c∗=e−Pc,
PA∗P=ebT−A,
b∗=Pb,

(4.6)

where P is

P=


1

1

. . .

1

∈Rs×s. (4.7)

Futhermore, from Theorem 343B on pp. 221 in [20], if the original method satisfies the
simplifying assumptions C(s) and B(s), the adjoint method also satisfies the same sim-
plifying assumptions. Hence, the adjoint method enjoys V-transformation

A∗=V∗A∗
s (V

∗)−1, V∗=


1 c∗1 ··· (c∗1)

s−1

1 c∗2 ··· (c∗2)
s−1

...
...

. . .
...

1 c∗s ··· (c∗s )
s−1

, (4.8)

where A∗
s is also defined as

A∗
s =



0 0 0 ··· β1
1 0 0 ··· β2

0
1
2

...
...

...
...

...
...

. . .
...

0 0 ··· 1
s−1

βs


, (4.9)
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with

βs =[β1,β2,··· ,βs]
T=

1
s
(V∗)−1(c∗)s, (c∗)s =[(c∗1)

s,(c∗2)
s,··· ,(c∗s )s]T. (4.10)

So Eq. (4.5) can be reduced to

R(z)=
det(I+z(ebT−A))

det(I−zA)
=

det(I+z(PA∗P-1))
det(I−z(VAsV−1))

=
det(I+zA∗)

det(I−zAs)

=
det(I+z(V∗As(V∗)−1))

det(I−zAs)
=

det(I+zA∗
s )

det(I−zAs)
. (4.11)

Because both As and A∗
s are a class of special matrices, Eq. (4.11) can be evaluated as

R(z)=
det(I+zA∗

s )

det(I−zAs)
=

1−
1
∑

k=s
βk

(k−1)!
(s−1)! (−z)s−k+1

1−
1
∑

k=s
αk

(k−1)!
(s−1)! z

s−k+1
. (4.12)

Let

∏s
i=1(x−ci)=

s

∑
k=0

γkxk, ∏s
i=1(x−c∗i )=

s

∑
k=0

γ∗
k xk. (4.13)

It can be inferred from Eqs. (2.14) and (4.10)

αk =−γk−1/s, βk =−γ∗
k−1/s, k∈ (1,s). (4.14)

For example, s=3,
α1=(c1c2c3)/3,
α2=−(c1c2+c1c3+c2c3)/3,
α3=(c1+c2+c3)/3,


β1=(c∗1c∗2c∗3)/3,
β2=−(c∗1c∗2+c∗1c∗3+c∗2c∗3)/3,
β3=(c∗1+c∗2+c∗3)/3.

(4.15)

Since cs =1, c∗1 =1−cs =0, and c∗k = ck−1, k∈ (2,s), therefore

1. When s is even, a2i−1<0, a2i>0, i∈(1,s/2); except for β1=0, the elements of βs also
have similar properties.

2. When s is odd, a2i−1>0, a2i <0, i∈ (1,s/2), αs <0; except for β1=0, the elements of
βs also have similar properties.

3. α2
k−β2

k >0, k∈ (1,s).

Hence, It has been shown that the stability function of equivalent Runge-Kutta method is
A-acceptability of p-order (p≥ s−1) rational approximation to exponential function [23].
Therefore, the corresponding differential quadrature method is A-stable.
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In the following, the three-stage differential quadrature method using Uniform grid
points will be given as an example. When s=3, c1, c2 and c3 are given by 1/3, 2/3, 1. It
can be worked out that matrices G0 and G are given by

G0=

 −1
1
2
−1

, G=


−3

2
3 −1

2
−3

3
2

1
9
2

−9
11
2

, (4.16)

and the Butcher tableau of equivalent Runge-Kutta method would be

c A

bT
=

1
3

23
36 − 4

9
5
36

2
3

7
9 − 2

9
1
9

1 3
4 0 1

4
3
4 0 1

4

. (4.17)

V-transformation of matrix is

A=


1

1
3

1
9

1
2
3

4
9

1 1 1




0 0
2
27

1 0 −11
27

0
1
2

2
3




1
1
3

1
9

1
2
3

4
9

1 1 1


−1

, (4.18)

the stability function of equivalent Runge-Kutta method is

R(z)=
1+ 1

3 z+ 1
27 z2

1− 2
3 z+ 11

54 z2− 1
27 z3

, (4.19)

and the Butcher tableau of the adjoint method would be

c∗ A∗

(b∗)T
=

0 0 0 0
1
3 − 1

36
2
9

5
36

2
3

1
9

4
9

1
4

1
4 0 3

4

. (4.20)

V-transformation of matrix A∗
s is

A∗=


1 0 0

1
1
3

1
9

1
2
3

4
9




0 0 0

1 0 − 2
27

0
1
2

1
3




1 0 0

1
1
3

1
9

1
2
3

4
9


−1

. (4.21)
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5 Improved differential quadrature method

Based on the above deduction, the traditional differential quadrature method is the method
of s-stage s-order. Compared with multi-stage and high-order Runge-Kutta method, for
example, Gauss method (s-stage 2s-order method), it has the disadvantage of lower pre-
cision. From Eq. (4.11), it can be seen that the stability function of equivalent Runge-Kutta
method will be determined by As and A∗

s . Suppose As =A∗
s =As, without changing b

and V, a new Runge-Kutta method

c Ã

bT

is redefined as

Ã=(G̃)−1=V



0 0 0 ··· γ1
1 0 0 ··· γ2

0
1
2

...
...

...
...

...
...

. . .
...

0 0 ··· 1
s−1

γs


V−1=VÃsV−1. (5.1)

Then, the stability function of new Runge-Kutta method becomes

R(z)=
det(I+zÃs)

det(I−zÃs)
. (5.2)

From Eq. (5.1), it can be seen that the last column elements of Ãs determine the stability
function. To improve the order of new Runge-Kutta method, undetermined coefficients
can be selected so that the stability function of new Runge-Kutta method becomes the
diagonal Padé approximations to the exponential function (defining as ez|ss):

R(z)=
det(I+zÃs)

det(I−zÃs)
= ez|ss. (5.3)

By comparing the coefficients on both sides of Eq. (5.3), undetermined coefficients γ can
be conveniently obtained as

s=2, γ2=[−1/12,1/2],
s=3, γ3=[1/60,−1/5,1/2],
s=4, γ4=[−1/280,1/14,−9/28,1/2],··· .

After getting γs =(γ1 ···γs)T, so that coefficients matrix Ã or G̃ can also be easily com-
puted through using Eq. (5.1). Therefore, a class of new Runge-Kutta method of s-stage
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2s-order has been successfully constructed. In other words, a class of improved differen-
tial quadrature method of s-stage 2s-order has been derived. Besides, the adjoint method
of new Runge-Kutta method is also s-stage 2s-order.

If the traditional differential quadrature method using Legendre grid points is con-
verted into Runge-Kutta method, this method is Gauss method [14, 17]. It well known
that Gauss method is a symplectic method of s-stage 2s-order and its stability function
is also diagonal Pad approximations to the exponential function. Hence, the traditional
differential quadrature method using Legendre grid points is a special case so that its
order is impossible to be improved by the method presented in this paper. This is why
traditional differential quadrature method using Legendre grid points is not discussed
in this paper. Symplectic Gauss method is more suitable for integrations over long time
duration (especially for Hamiltonian systems) [24–26].

Take the same as above, the improved differential quadrature method using Uniform
grid points will be given as an example. It can be worked out that the new matrices G̃0

and G̃ are given by

G̃0=


4
3
4
3

−12

, G̃=


−17

2
10 −17

6

−11
2

4
1
6

75
2

−42
33
2

, (5.4)

and the Butcher tableau of new Runge-Kutta method would be

c Ã

bT
=

1
3

73
120 − 23

60
13

120
2
3

97
120 − 17

60
17

120

1 27
40

3
20

7
40

3
4 0 1

4

. (5.5)

V-transformation of matrix Ã is

Ã=


1

1
3

1
9

1
2
3

4
9

1 1 1




0 0
1
60

1 0 −1
5

0
1
2

1
2




1
1
3

1
9

1
2
3

4
9

1 1 1


−1

. (5.6)

Then, Butcher tableau of the adjoint method would be

c Ã∗

(b∗)T
=

0 3
40 − 3

20
3
40

1
3

13
120

17
60 − 7

120
2
3

17
120

23
60

17
120

1
4 0 3

4

. (5.7)
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V-transformation of matrix Ã∗ is

Ã∗=


1 0 0

1
1
3

1
9

1
2
3

4
9




0 0
1
60

1 0 −1
5

0
1
2

1
2




1 0 0

1
1
3

1
9

1
2
3

4
9


−1

. (5.8)

6 Numerical examples

Consider a two-degree-of-freedom system governed by(
2 0
0 1

){
ẍ1
ẍ2

}
+

(
6 −2
−2 4

){
x1
x2

}
=

{
0
10

}
. (6.1)

With initial condition {
x1(0)=0,
x2(0)=0,

{
ẋ1(0)=0,
ẋ2(0)=0,

(6.2)

the analytical solution of the problem is
x1=1− 5

3
cos(

√
2t)+

2
3

cos(
√

5t),

x2=3− 5
3

cos(
√

2t)− 4
3

cos(
√

5t).
(6.3)

The differential quadrature method can be used to solve Eq. (6.1) and the solution pro-
cedure can look over [11]. The following three Figures show the displacement error tra-
jectories comparison between traditional differential quadrature method and improved
differential quadrature method with the same step size h=0.5s. In these figures, the an-
alytical solution at each step is used for comparison. From Figs. 1-3, it can be seen that
improved differential quadrature method is two orders of magnitude higher than tra-
ditional differential quadrature method. The error of improved differential quadrature
method range between 10−5 and 10−4, even with a large step size h=0.5s.

Figure 1: Error trajectories comparison of different DQM using Chebyshev grid points (h=0.5s, s=3).
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Figure 2: Error trajectories comparison of different DQM using Chebyshev-Gauss-Lobatto grid points (h=0.5s,
s=3).

Figure 3: Error trajectories comparison of different DQM using Uniform grid points (h=0.5s, s=3).

7 Conclusions

In this paper, the stability and order of the time domain differential quadrature method
are systematically studied in detail and a new class of differential quadrature method
of s-stage 2s-order is proposed. From the above analysis and derivation, the following
conclusions can be made:

1. Using general polynomial as test functions, the weighting coefficients matrix of
differential quadrature method satisfies V-transformation. V-transformation plays
an extremely important role in the analysis of basic characteristics of differential
quadrature method and its improvement.

2. The traditional differential quadrature method can be transformed into equivalent
Runge-Kutta method of A-stable and s-stage s-order. Therefore, compared with the
single-stage and low-order numerical integral methods, even with a small number
of grid points, the traditional differential quadrature method can also gives more
accurate solutions. This is the main mechanism that the differential quadrature
method has been successfully applied to scientific and engineering computation.

3. Finally, by making the stability function of equivalent Runge-Kutta method become



142 F. Z. Wang, X. B. Liao and X. Xie / Adv. Appl. Math. Mech., 8 (2016), pp. 128-144

the diagonal Padé approximations to the exponential function, a class of improved
differential quadrature method of s-stage 2s-order and A-stable is proposed. Hence,
the improved differential quadrature method can be extended to multi-degree-of-
freedom time domain dynamic systems, which can produce higher accurate solu-
tions at lower computational cost.

4. With regard to the traditional differential quadrature method, using Legendre grid
points is the method of s-stage 2s-order and A-stable. So that it is better to use
Legendre grid points for traditional differential quadrature method. The improved
differential quadrature method using other three types grid points has the same or-
der and stability. Therefore, there are four kinds of differential quadrature method
of s-stage 2s-order that can be applied.

Appendix

s=2 (c for 3 types of grid points is the same, c1=1/2, c2=1)

G̃0=

(
0
6

)
, G̃=

(
−2 2
−14 8

)
,

c Ã

bT
=

1
2

2
3 − 1

6

1 7
6 − 1

6

1 0

.

s=3 (Chebyshev grid points: c1=1/2−
√

2/4, c2=1/2+
√

2/4, c3=1)

G̃0=

 − 9
2

− 9
2

−12

, G̃=


−4+ 11

√
2

2 4− 3
√

2
2

9
2 −4

√
2

4+ 3
√

2
2 −4− 11

√
2

2
9
2 +4

√
2

−4−15
√

2 −4+15
√

2 20

,

c Ã

bT
=

1
2 −

√
2

4
29
60 −

53
√

2
240

11
60 −

43
√

2
240 − 1

6 +
3
√

2
20

1
2 +

√
2

4
11
60 +

43
√

2
240

29
60 +

53
√

2
240 − 1

6 −
3
√

2
20

1 11
15 −

7
√

2
30

11
15 +

7
√

2
30 − 7

15
2
3 −

√
2

6
2
3 +

√
2

6 − 1
3

.

s=3 (Chebyshev-Guass-Lobatto grid points: c1=1/4, c2=3/4, c3=1)

G̃0=

 − 3
4

− 3
4

−12

, G̃=

 − 11
6

9
2 − 23

12
5
6 − 7

2
41
12

74
3 −30 52

3

,

c Ã

bT
=

1
4

251
720 − 41

240 − 13
180

3
4

419
720

31
240

7
180

1 23
45

7
15

1
45

5
9

1
3

1
9

.
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