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Abstract. In this paper, a mathematical model is developed to study the wave prop-
agation in an infinite, homogeneous, transversely isotropic thermo-piezoelectric solid
bar of circular cross-sections immersed in inviscid fluid. The present study is based
on the use of the three-dimensional theory of elasticity. Three displacement poten-
tial functions are introduced to uncouple the equations of motion and the heat and
electric conductions. The frequency equations are obtained for longitudinal and flex-
ural modes of vibration and are studied based on Lord-Shulman, Green-Lindsay and
Classical theory theories of thermo elasticity. The frequency equations of the coupled
system consisting of cylinder and fluid are developed under the assumption of perfect-
slip boundary conditions at the fluid-solid interfaces, which are obtained for longitu-
dinal and flexural modes of vibration and are studied numerically for PZT-4 materi-
al bar immersed in fluid. The computed non-dimensional frequencies are compared
with Lord-Shulman, Green-Lindsay and Classical theory theories of thermo elasticity
for longitudinal and flexural modes of vibrations. The dispersion curves are drawn
for longitudinal and flexural modes of vibrations. Moreover, the dispersion of specif-
ic loss and damping factors are also analyzed for longitudinal and flexural modes of
vibrations.

AMS subject classifications: 43.40.Ey, 43.88.Fx, 43.40.Cw, 43.20.Bi
Key words: Piezoelectric cylinders/plates, thermo-elastic, thermal cylinder immersed in fluid,
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1 Introduction

The piezoelectric materials have been used in numerous fields taking advantage of the
flexible characteristics of these polymers. Some of the applications of these polymers in-
clude Audio device-microphones, high frequency speakers, tone generators and acous-
tic modems; Pressure switches–position switches, accelerometers, impact detectors, flow
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meters and load cells; Actuators-electronic fans and high shutters. Since piezoelectric
polymers allow their use in a multitude of compositions and geometrical shapes for a
large variety of applications from transducers in acoustics, ultrasonic’s and hydrophone
applications to resonators in band pass filters, power supplies, delay lines, medical scans
and some industrial non-destructive testing instruments.

The piezoelectricity was discovered by the brothers Curie in 1880 (Curie and Curie,
1880). The piezoelectric materials generally are physically strong and chemically inert,
and they are relatively inexpensive to manufacture. The composition, shape and dimen-
sion of piezoelectric ceramic elements can be tailored to meet the requirements of a spe-
cific purpose. Ceramics manufactured from formulations of lead zirconate/ lead titanate
exhibit greater sensitivity and higher operating temperatures, relative to ceramics of oth-
er compositions and the materials PZT-4 are most widely used piezoelectric ceramics.

The coupling between the thermal/electric/elastic fields in piezo electric materials
provides a mechanism for sensing thermo mechanical disturbances from measurements
of induced electric potentials, and for altering structural responses via applied electric
fields. One of the applications of the piezo thermoelastic material is to detect the re-
sponses of a structure by measuring the electric charge, sensing or to reduce excessive
responses by applying additional electric forces or thermal forces actuating. If sensing
and actuating can be integrated smartly, a so-called intelligent structure can be designed.
The piezoelectric materials are also often used as resonators whose frequencies need to
be precisely controlled. The coupling between the thermoelastic and pyroelectric effects,
it is important to qualify the effect of heat dissipation on the propagation of wave at low
and high frequencies.

The thermo- piezoelectric theory was first proposed by Mindlin [1], later he derived
the governing equations of a thermo-piezoelectric plate [2]. The physical laws for the
thermo-piezoelectric materials have been discussed by [3, 4]. Chandrasekhariah [5, 6]
presented the generalized theory of thermo-piezoelectricity by taking into account the
finite speed of propagation of thermal disturbance. Yang and Batra [7] studied the effec-
t of heat conduction on shift in the frequencies of a freely vibrating linear piezoelectric
body with the help of perturbation methods. Sharma and Pal [8] discussed the prop-
agation of Lamb waves in a transversely isotropic piezothermoelastic plate. Sharma et
al. [9] investigated the free vibration analysis of a homogeneous, transversely isotropic,
piezothermoelastic cylindrical panel based on three dimensional piezoelectric thermoe-
lasticity. Sharma and Walia [10] presented the propagation of straight and circular crested
waves in generalized piezo thermoelastic materials.

Tang and Xu [11] derived the general dynamic equations, which include mechanical,
thermal and electric effects, based on the anisotropic composite laminated plate theory.
They also obtained analytical dynamical solutions for the case of general force acting on
a simply supported piezo thermoelastic laminated plate and harmonic responses to tem-
perature variation and electric field have been examined as a special case. Tauchert [13]
applied thermo-piezoelectricity theory to composite plate. The generalized theory of
thermoelasticity was developed by Lord and Shulman [13] involving one relaxation time
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for isotropic homogeneous media, which is called the first generalization to the coupled
theory of elasticity. These equations determine the finite speeds of propagation of heat
and displacement distributions, the corresponding equations for an isotropic case were
obtained by Dhaliwal and Sherief [14]. The second generalization to the coupled theo-
ry of elasticity is what is known as the theory of thermoelasticity, with two relaxation
times or the theory of temperature–dependent thermoelasticity. A generalization of this
inequality was proposed by Green and Laws [15]. Green and Lindsay [16] obtained an
explicit version of the constitutive equations. These equations were also obtained inde-
pendently by Suhubi [17]. This theory contains two constants that act as relaxation times
and modify not only the heat equations, but also all the equations of the coupled theo-
ry. The Classical Fourier’s law of heat conduction is not violated if the medium under
consideration has a center of symmetry. Erbay and Suhubi [18] studied the longitudi-
nal wave propagation in a generalized thermoplastic infinite cylinder and obtained the
dispersion relation for a constant surface temperature of the cylinder.

Sinha et al. [19] have studied the axisymmetric wave propagation in circular cylin-
drical shell immersed in a fluid, in two parts. In Part I, the theoretical analysis of the
propagation modes is discussed and in Part II, the axisymmetric modes excluding ten-
sional modes are obtained theoretically and experimentally and are compared. Berlin-
er and Solecki [20] have studied the wave propagation in a fluid loaded transversely
isotropic cylinder. In that paper, Part I consists of the analytical formulation of the fre-
quency equation of the coupled system consisting of the cylinder with inner and outer
fluid and Part II gives the numerical results. Guo and Sun [21] discussed the propagation
of Bleustein–Gulyaev wave in 6mm piezoelectric materials loaded wwith viscous liquid
using the theory of continuum mechanics. Qian et al. [22] analyzed the propagation of
Bleustein-Gulyaev waves in 6mm piezoelectric materials loaded with a viscous liquid
layer of finite thickness.

Venkatesan and Ponnusamy [23, 24] studied the wave propagation in solid and gen-
eralized solid cylinder of arbitrary cross-sections immersed in fluid using the Fourier
expansion collocation method. Dayal [25] investigated the free vibrations of a fluid load-
ed transversely isotropic rod based on uncoupling the radial and axial wave equations
by introducing scalar and vector potentials. Nagy [26] studied the propagation of lon-
gitudinal guided waves in fluid-loaded transversely isotropic rod based on the superpo-
sition of partial waves. Guided waves in a transversely isotropic cylinder immersed in
a fluid was analyzed by Ahmad [27]. Ponnusamy [28] and later with Rajagopal [29]
have studied, the wave propagation in a generalized thermo elastic solid cylinder of
arbitrary cross-section and in a homogeneous transversely isotropic thermo elastic sol-
id cylinder of arbitrary cross-sections respectively using the Fourier expansion colloca-
tion method. Ponnusamy [30, 31] studied respectively the wave propagation in thermo-
elastic plate of arbitrary and polygonal cross-sections. Dispersion analysis of generalized
magneto-thermoelastic waves in a transversely isotropic cylindrical panel is analyzed
by Ponnusamy and Selvamani [32]. Ponnusamy [33] studied the wave propagation in a
piezoelectric solid bar of circular cross-section immersed in fluid.
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In this paper, wave propagation in an infinite, homogeneous, transversely isotropic
thermo-piezoelectric solid bar of circular cross-sections immersed in fluid is studied us-
ing the three-dimensional theory of elasticity. The frequency equations are obtained for
longitudinal and flexural modes of vibration and are studied based on Lord-Shulman
(LS), Green-Lindsay (GL) and Classical theory (CT) theories of thermo elasticity. The fre-
quency equations of the coupled system consisting of cylinder and fluid is developed
under the assumption of perfect-slip boundary conditions at the fluid-solid interfaces,
and they are obtained for longitudinal and flexural modes of vibration and are studied
numerically for PZT-4 material bar immersed in fluid. The computed non-dimensional
frequencies are compared with Lord-Shulman (LS), Green-Lindsay (GL) and Classical
theory (CT) theories of thermo elasticity for longitudinal and flexural modes of vibra-
tions.

2 Formulation of the problem

We consider homogeneous transversely isotropic, thermally and electrically conducting
piezoelectric circular bar of infinite length with uniform temperature T0 in the undis-
tributed state initially. The complete equations governing the behavior of piezoelectric
cylinder have been considered from Paul [34] and the heat conduction equations taken
from Sharma [9]. In cylindrical coordinates (r,θ,z), the equations of motion in the absence
of body force are
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The heat conduction equation is
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The electric displacements Dr, Dθ and Dz satisfy the Gaussian equation
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The elastic, the piezo electric, thermal conduction and dielectric matrices of the 6mm
crystal class, the piezo thermo elastic relations are

σrr = c11Srr+c12Sθθ+c13Szz−β1(T+t1δ2kṪ)+e31Ez, (2.4a)
σθθ = c12Srr+c11Sθθ+c13Szz−β1(T+t1δ2kṪ)+e31Ez, (2.4b)
σzz = c13Srr+c13Sθθ+c33Szz−β3(T+t1δ2kṪ)+e33Ez, (2.4c)

where

σrθ =2c66Srθ , σθz =2c44Sθz−e15Eθ , σrz =2c44Srz−e15Er, (2.5a)
Dr =2e15Srz+ε11Er, Dθ =2e15Sθz+ε11Eθ , Dz = e31(Srr+Sθθ)+e33Szz+ε33Ez+p3T, (2.5b)

where σrr, σθθ , σzz, σrθ , σθz, for σrz are the stress components, Srr, Sθθ , Szz, Srθ , Sθz, Srz
are the strain components, c11, c12, c13, c33, c44 and c66 = (c11−c12)/2 are the five elastic
constants, e31, e15, e33 are the piezoelectric constants, ε11, ε33 are the dielectric constants,
T is the temperature change about the equilibrium temperature T0, Cv is the specific heat
capacity, β1, β3 are the thermal expansion coefficients, K1, K3 are the thermal conductivity,
t0, t1 are the two thermal relaxation times, ρ is the mass density. The comma notation is
used for spatial derivatives, the superposed dot represents time differentiation and δij is
the Kronecker delta. In addition, K=1 for Lord-Shulman (LS) theory and K=2 for Green-
Linsay (GL) theory. The thermal relation times t0 and t1 satisfy the inequalities t0≥ t1≥0
for GL theory only and we assume that ρ>0, T0>0 and Cv >0.

The strain Sij are related to the displacements are given by
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3 Lord-Shulman (LS) Theory

The Lord-Shulman theory of heat conduction equation and normal stresses for a three
dimensional piezo thermoelasticity is obtained by substituting K=1 in the Eqs. (2.2) and
(2.4), we get
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and

σrr = c11Srr+c12Sθθ+c13Szz−β1T+e31Ez, (3.2)
σθθ = c12Srr+c11Sθθ+c13Szz−β1T+e31Ez, (3.3)
σzz = c13Srr+c13Sθθ+c33Szz−β3T+e33Ez. (3.4)

Substituting Eqs. (2.5a), (2.6) and (3.2) in Eqs. (2.1) and (3.1), the displacement equations
of motions are obtained as
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4 Solution of the field equation

To obtain the propagation of harmonic waves in piezo thermoelastic circular bar, we as-
sume the solutions of the displacement components to be expressed in terms of deriva-
tives of potentials are taken from Paul [34]. Thus, we seek the solution of the Eq. (3.5a) in
the form of Paul [34] are
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T(r,θ,z,t)=
c44

β3a2 Tei(kz+ωt), Er(r,θ,z,t)=−E,rei(kz+ωt), (4.1c)

Eθ(r,θ,z,t)=−1
r

E,θei(kz+ωt), Ez(r,θ,z,t)=E,zei(kz+ωt), (4.1d)

where i=
√
−1, k is the wave number, ω is the angular frequency, ϕ(r,θ), ψ(r,θ), E(r,θ)

and T(r,θ) are the displacement potentials and a is the geometrical parameter of the bar.
Introducing the dimensionless quantities such as

x= r/a, ζ= ka, Ω2=ρω2a2/c44,
c11= c11/c44, c13= c13/c44, c33= c33/c44,

c66= c66/c44, β=β1/β3, Ki =Kic44/ωβ2
3T0a2,

d=ρCvc44/β2
3T0, p3= p3c44/β3e33, ε11= ε11c44/e2

33,
e31= e31/e33, e15= e15/e33,

and substituting Eq. (4.1) in Eq. (3.5a), we obtain

[c11∇2+(Ω2−ζ2)]ϕ−ζ(1+c13)W−ζ(e15+e31)E−βT=0, (4.2a)

ζ(1+c13)∇2ϕ+[∇2+(Ω2−ζ2c33)]W+(e15∇2−ζ2)E−ζT=0, (4.2b)

τ0β∇2ϕ−τ0ζW+τ0ζ p3E+[τ0d+iK1∇2−iK3ζ2]T=0, (4.2c)

ζ(e15+e31)∇2ϕ+(e15∇2−ζ2)W+(ζ2ε33−ε11∇2)E+p3ζT=0, (4.2d)

and

(c66∇2+(Ω2−ζ2))ψ=0, (4.3)

Eq. (4.2) can be written as
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τ0β∇2 −τ0ζ τ0ζ p3 (iK1∇2+g2)

∣∣∣∣∣∣∣∣∣(ϕ,W,E,T)=0, (4.4)

where g1=Ω2−ζ2c33, g2=τ0d−iK3ζ2, g3=Ω2−ζ2, g4=ε2
11+e2

15, g5=e31+e15 and g6=1+c13.
Evaluating the determinant given in Eq. (4.4), we obtain a partial differential equation

of the form

(A∇8+B∇6+C∇4+D∇2+E)(ϕ,W,E,T)=0. (4.5)
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Where

A=−iK1c11g4, (4.6a)

B= iK1c11(ζ
2(ε33+e15)−ε11g1)−c11ε11g2−iK1g3g4

−ζ2g5g6iK1e15−ζ2g5iK1(e15g6−g5)−e2
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3τ0)+ζ2(τ0(d+p3−ε33)+ζ2(τ0 p3−iK3))]+g1g3(iK1ζ2ε33

−ε11g2)−e15g3[e15g2+ζ2(−iK1−g2+τ0 p3(e15−ζ2))+ζ2g3[g2(ε33+e15)−iK1ζ2

+τ0(p3(ζ
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−τ0ζ4(g5(β−g5)−g6βε33 p3)−ζ2τ0β(g5 p3−ε33β)−ζ4τ0β(β−g5), (4.6d)

E= g3ζ2[g1(ε33g2−p2
3τ0)+ζ2(τ0(d+p3−ε33)+ζ2(τ0 p3−iK3))]

+ζ4g6(g5(g2−τ0 p3)−τ0 p3β)−g1βζ2τ0(p3g5−ε33β). (4.6e)

Solving the Eq. (4.5), we get the solution for a circular cylinder as

ϕ=
4

∑
i=1

Ai Jn(αiax)cosnθ, W=
4

∑
i=1

ai Ai Jn(αiax)cosnθ, (4.7a)

E=
4

∑
i=1

bi Ai Jn(αiax)cosnθ, T=
4

∑
i=1

ci Ai Jn(αiax)cosnθ, (4.7b)

where (αia)
2>0, (i=1,2,3,4), are the roots of the algebraic equation

A(αa)8−B(αa)6+C(αa)4−D(αa)2+E=0. (4.8)

The solutions corresponding to the root (αia)
2 = 0 is not considered here, since Jn(0) is

zero, except for n= 0. The Bessel function Jn is used when the roots (αia)
2, (i= 1,2,3,4)

are real or complex and the modified Bessel function In is used when the roots (αia)
2,

(i=1,2,3,4) are imaginary.
The constants ai, bi and ci defined in Eq. (4.7) can be calculated from the following

equations

ai = ζg6(e15∇2−ζ2)−ζg5(∇2+g1)/H,

bi =−ζ2g5−β(e15∇2−ζ2)/H,

ci =−βζg6+ζ(c11∇2+g3)/H,
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where

H= c11∇2+g3(∇2+g1)+ζ2g2
6∇2. (4.9)

Solving the Eq. (4.3), we obtain

ψ=A5 Jn(α5ax)sinnθ, (4.10)

where (α5a)2=(Ω2−ζ2)/c66. If (α5a)2<0, the Bessel function Jn is replaced by the mod-
ified Bessel function In.

5 Equations of motion of the fluid

In cylindrical polar coordinates r, θ and z the acoustic pressure and radial displacement
equation of motion for an invicid fluid are of the form Achenbach [36] as

p f =−B f (u f
r,r+r−1(u f

r +u f
θ,θ)+u f

z,z), (5.1)

and

c2
f u f

r,tt =∆,r, (5.2)

respectively, where B f is the adiabatic bulk modulus, ρ f is the density, c f =
√

B f /ρ f is the
acoustic phase velocity in the fluid, and

∆=(u f
r,r+r−1(u f

r +u f
θ,θ)+u f
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Substituting

u f
r =ϕ

f
,r, u f

θ = r−1ϕ
f
,θ and u f

z =ϕ
f
,z, (5.4)

and seeking the solution of Eq. (4.7) in the form

ϕ f (r,θ,z,t)=
∞

∑
n=0

ϕ f (r)cosnθei(kz+ωt). (5.5)

The fluid that represents the oscillary wave propagating away is given as

ϕ f =A6H(1)
n (α6ax), (5.6)

where (α6a)2 =Ω2/ρB f −ζ2, in which ρ= ρ/ρ f , B f
=B f /c44, H(1)

n is the Hankel function
of first kind. If (α6a)2 <0, then the Hankel function of first kind is to be replaced by Kn,
where Kn is the modified Bessel function of the second kind. By substituting Eq. (5.5) in
Eq. (5.1) along with Eq. (5.6), the acoustic pressure for the fluid can be expressed as

p f =
∞

∑
n=0

A6Ω2ρH(1)
n (α6ax)cosnθei(ζz+ΩTa). (5.7)
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6 Boundary conditions and frequency equations

The free vibration of transversely isotropic piezo thermoelastic solid bar of circular cross-
section is considered in this problem.
i. Mechanical boundary condition. The mechanical boundary condition for an infinite
cylindrical circular bar is

σrr =−p f =0, σrθ =σrz =0 at r= a. (6.1)

ii. Thermal boundary condition

T=0. (6.2)

iii. Electrical boundary condition

E=0. (6.3)

Substituting the solution given in the Eqs. (4.7) and (4.10) along with Eq. (5.7) in the
boundary condition in the Eq. (5.3), we obtain a system of five linear algebraic equation
as follows:

[A]{X}={0}, (6.4)

where [A] is a 5×5 matrix of unknown wave amplitudes and {X} is an 5×1 column
vector of the unknown amplitude coefficients A1, A2, A3, A4, A5. The components of [A]
are defined in the Appendix. The solution of Eq. (5.7) is nontrivial when the determinant
of the coefficient of the wave amplitudes {X} vanishes, that is

|A|=0. (6.5)

Eqs. (6.1)-(6.3) is the frequency equation of the coupled system consisting of transversely
isotropic piezo thermoelastic solid circular bar.

7 Green-Linsay (GL) theory

The basic governing equations of motion and heat conduction in the absence of body
force and heat source for a piezo thermoelastic cylinder of circular bar, in the context of
GL theory is obtained by substituting K=2 in the heat conduction equation Eq. (2.2) and
in the stress-strain relation Eq. (2.4), thus we obtain

K1

(∂2T
∂r2 +

1
r

∂T
∂r

+
1
r2

∂2T
∂θ2

)
+K3

∂2T
∂z2 −ρCv

(∂T
∂t

+t0
∂2T
∂t2

)
=T0

∂

∂t
[β1(Srr+Sθθ)+β3Szz−p3Ez], (7.1)
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and

σrr = c11Srr+c12Sθθ+c13Szz−β1(T+t1Ṫ)−e31Ez, (7.2a)
σθθ = c12Srr+c11Sθθ+c13Szz−β1(T+t1Ṫ)−e31Ez, (7.2b)
σzz = c13Srr+c13Sθθ+c33Szz−β3(T+t1Ṫ)−e33Ez. (7.2c)

Substituting Eqs. (2.5a), (2.5b), (6.5) in Eqs. (2.1) along with Eq. (6.4), we get the displace-
ment equations of motion as follows:

c11

(∂2ur

∂r2 +
1
r

∂ur

∂r
− ur

r2

)
+
(c12+c66)

r
∂2uθ

∂r∂θ
+(c13+c44)

∂2uz

∂r∂z
− (c11+c66)

r2
∂uθ

∂θ

+
c66

r2
∂2ur

∂θ2 +c44
∂2ur

∂z2 −β1

(∂T
∂r

+
∂2T
∂r∂t

)
+(e15+e31)E,rz =ρ

∂2ur

∂t2 , (7.3a)

c66

(∂2uθ

∂r2 +
1
r

∂uθ

∂r
− uθ

r2

)
+

c11

r2
∂2uθ

∂r2 +c44
∂2uθ

∂z2 +
(c66+c12)

r
∂2ur

∂r∂θ
+
(c66+c11)

r
∂ur

∂θ

+
(c44+c13)

r
∂2uz

∂θ∂z
− β1

r
(T+t1Ṫ)+

(e31+e15)

r
E,θz =ρ

∂2uθ

∂t2 , (7.3b)

c44

(∂2uz

∂r2 +
1
r

∂uz

∂r
+

1
r2

∂2uz

∂θ2

)
+c33

∂2uz

∂z2 +
(c13+c44)

r

(∂ur

∂z
+

∂2uθ

∂θ∂z

)
+(c13+c44)

∂2ur

∂r∂z
+e33E,zz+e15

(
E,rr+

1
r

E,r+
1
r2 E,θθ

)
−β3(T+t1Ṫ),z =ρ

∂2uz

∂t2 , (7.3c)

e15

(∂2uz

∂r2 +
1
r

∂uz

∂r
+

1
r2

∂2uz

∂θ2

)
+(e15+e31)

( ∂2ur

∂r∂z
+

1
r

∂2uθ

∂θ∂z
+

1
r

∂ur

∂z

)
−ε11

(
E,rr+

1
r

E,r+
1
r2 E,θθ

)
+e33

∂2uz

∂z2 −ε33E,zz+p3T,z =0, (7.3d)

K1∇2T+K3T,zz =T0
∂

∂t

[
β1

(∂ur

∂r
+

1
r

∂uθ

∂θ
+

ur

r

)
+β3

∂uz

∂z
−p3

∂E
∂z

]
+ρCv

(∂T
∂t

+t0
∂2T
∂t2

)
. (7.3e)

Substituting the solution given in Eq. (4.1) in Eq. (7.1) along with the dimensionless quan-
tities, and applying the same procedure as discussed in the previous section, we get∣∣∣∣∣∣∣∣

(c11∇2+g3) −ζg6 −ζg5 −βτ1
ζg6∇2 ∇2+g1 (e15∇2−ζ2) −ζ

ζg5 e15∇2−ζ ζ2ε33−ε11∇2 p3ζ

τ0
′β∇2 −τ0

′ζ τ0
′ζ p3 iK1∇2+g2

∣∣∣∣∣∣∣∣(ϕ
′,W ′,E′,T′)=0. (7.4)

Simplifying the determinant given in Eq. (7.2), we obtain(
P∇8+Q∇6+R∇4+S∇2+U

)
(ϕ′,W ′,E′,T′)=0. (7.5)
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Where

P=−iK1c11g4,

Q= iK1c11(ζ
2(ε33+e15)−ε11g1)−c11ε11g2−iK1g3g4−ζ2g5g6iK1e15

−ζ2g5iK1(e15g6−g5)−e2
15τ0

′β
2
,

R= c11g1(iK1ζ2ε33−ε11g2)−c11e15[e15g2+ζ2(−iK1+iK3ζ2−τ0d+τ0
′(p3e15−β3 p3ζ2))]

+c11[g2(ζ
2ε33+e15)+ζ2(τ0

′p3e15−iK1)+τ0
′(−p2

3−p3e15+ε11)]

+iK3g3[ζ
2(ε33+e15)−ε11g1]−ε11g2g3−ζ2g6e15(g2g5−τ0

′βp3)

−ζ2g5g6e15(g2−iK1ζ2)+ζ2(iK1(ζ
2g5g6+g1g2

5)−g2g2
5)

+τ0
′βζ2(−ε11g6+g5(−p3+g1e15))+ζ2g6τ0

′τ1β(e15 p3−ε11)

+τ0
′τ1β(−g1ε11β+e15ζ2(β−g5))+τ0

′τ1β
2
(ζ2e15−ε11),

S= c11ζ2[g1(ε33g2−p2
3τ0)+ζ2(τ0d+τ0

′(p3−ε33)+ζ2(τ0
′p3−iK3))]+g1g3(iK1ζ2ε33−ε11g2)

−e15g3[e15g2+ζ2(−iK1−g2+τ0
′p3(e15−ζ2))+ζ2g3[g2(ε33+e15)−iK1ζ2

+τ0
′(p3(ζ

2e15−p3−e15)+ε11)]+ζ4g2
6(ε33g2−p2

3g5)+ζ2g1g5(g2g5−τ0
′τ1 p3β)

−τ0
′ζ4(g5(β−g5)−g6β(ε33−p3))−ζ2τ0

′τ1β(g5 p3−ε33β)−ζ4τ0
′τ1β(β−g5),

U= g3ζ2[g1(ε33g2−p2
3τ0

′)+ζ2(τ0d+τ0
′(p3−ε33)+ζ2(τ0

′p3−iK3))]

+ζ4g6(g5(g2−τ0
′p3)−τ0

′p3β)−g1βζ2τ0
′τ1(p3g5−ε33β).

Solving the Eq. (7.5), we get the solution for a circular cylinder as

ϕ′=
4

∑
i=1

Ai Jn(βiax)cosnθ, W ′=
4

∑
i=1

di Ai Jn(βiax)cosnθ, (7.6a)

E′=
4

∑
i=1

ei Ai Jn(βiax)cosnθ, T′=
4

∑
i=1

fi Ai Jn(βiax)cosnθ, (7.6b)

where (βia)
2>0, (i=1,2,3,4), are the roots of the algebraic equation

P(βa)8−Q(βa)6+R(βa)4−S(βa)2+T=0. (7.7)

The solutions corresponding to the root (βia)
2 = 0 is not considered here, since Jn(0) is

zero, except for n=0. The Bessel function Jn is used when the roots (βia)
2, (i=1,2,3,4),

are real or complex and the modified Bessel function In is used when the roots (βia)
2,

(i=1,2,3,4), are imaginary.
The constants di, ei and fi defined in Eq. (4.7) can be calculated from the following

equations

di = ζg6(e15∇2−ζ2)−ζg5(∇2+g1)/H
′
, (7.8a)
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ei =−ζ2g5−βτ1(e15∇2−ζ2)/H
′
, (7.8b)

fi =−βτ1ζg6+ζ(c11∇2+g3)/H
′
, (7.8c)

where

H′= c11∇2+g3(∇2+g1)+ζ2g2
6∇2. (7.9)

Solving the Eq. (4.3), we obtain

ψ=A5 Jn(β5ax)sinnθ, (7.10)

where (α5a)2=(Ω2−ζ2)/c66. If (β5a)2<0, the Bessel function Jn is replaced by the mod-
ified Bessel function In.

Substituting the solution given in the Eqs. (7.1), (7.5) along with the Eq. (5.7) in the
boundary condition in the Eqs. (6.1)-(6.3), we obtain a system of five linear algebraic
equation as follows:

[B]{X}={0}, (7.11)

where [B] is a 5×5 matrix of unknown wave amplitudes and {X} is an 5×1 column
vector of the unknown amplitude coefficients B1, B2, B3, B4, B5. The solution of Eq. (5.7) is
nontrivial when the determinant of the coefficient of the wave amplitudes {X} vanishes,
that is

|B|=0. (7.12)

Eq. (7.7) is the frequency equation of the coupled system consisting of transversely isotrop-
ic thermo-piezoelectric solid circular bar.

b1i =2c66{n(n−1)Jn(βiax)+(βiax)Jn+1(βiax)}−x2[(βia)
2c11+ζc13di

+ζei+βτ1 fi]Jn(βiax), i=1,2,3,4,
b15=2c66{n(n−1)Jn(β5ax)−(β5ax)Jn+1(β5ax)},
b2i =2n{(βiax)Jn+1(βiax)−(n−1)Jn(βiax)}, i=1,2,3,4,

b25={[(β5ax)2−2n(n−1)]Jn(β5ax)−2(β5ax)Jn+1(β5ax)}, i=1,2,3,4,
a3i =(ζ+di+e15ei)[nJn(βiax)−(βiax)Jn+1(βiax)], i=1,2,3,4,
b35=nζ Jn(β5ax),
b4i =(e15ζdi−ε11ei){nJn(βiax)−(βiax)Jn+1(βiax)}, i=1,2,3,4,
b45= e15ζnJn(β5ax),
b5i = fi{nJn(βiax)−(βiax)Jn+1(βiax)}, i=1,2,3,4,
b55=0.
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8 Particular case

The frequency equation for a piezoelectric circular bar of infinite length is obtained by
omitting the thermal and fluid medium in the corresponding equations and solutions,
the resulting frequency equation is compared with the frequency equations of Paul and
Raju [35], which matches well with the frequency equations of the author.

8.1 Specific loss

The interval energy of a material is defined by specific loss. The specific loss is the ratio
of the amount of energy (∆E) dissipated in a specimen through a stress cycle to the elas-
tic energy (E) stored in that specimen at a maximum strain. According to Kolsky [37],
specific loss (∆E/E) is equal to 4π times the absolute value of the imaginary part of α to
the real part of α, therefore we have

|∆E/E|=4π|Im(ζ)/Re(ζ)|= |vq/ω|. (8.1)

The real and imaginary parts of the wave number is obtained from the relation ζ=R+iq,
where R=ω/ν and the wave speed ν and the attenuation coefficient (q) are real numbers.

8.2 Thermo-elastic damping factor

The thermo-elastic damping factor (Q−1) is defined with respect to the angular frequency
ω as

Q−1=2
∣∣∣ Im(ω)

Re(ω)

∣∣∣. (8.2)

Where Re(ω) is the real part of ω and Im(ω) is the imaginary part of ω, respectively.

8.3 Attenuation coefficient

The attenuation coefficient is the quantity that characterizes how easily a material or
medium can be penetrated by a beam of light, sound particles or matters. It is defined as

1/c=1/s+iq/ω, (8.3)

where c is the phase velocity, ω is the angular frequency and q is the attenuation coeffi-
cient.

9 Numerical results and discussion

The frequency equation given in Eq. (6.4) is transcendental in nature with unknown fre-
quency and wavenumber. The solutions of the frequency equation are obtained numer-
ically by fixing the wave number. The material chosen for the numerical calculation is
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PZT-4. The material properties of PZT-4 are taken form Berlincourt et al. [38] are used for
the numerical calculation is given below:

c11=13.9×1010Nm−2, c12=7.78×1010Nm−2, c13=7.43×1010Nm−2,

c33=11.5×1010Nm−2, c44=2.56×1010Nm−2, c66=3.06×1010Nm−2,

e31=−5.2Cm−2, e33=15.1Cm−2, e15=12.7Cm−2,

ε11=6.46×10−9C2N−1m−2, ε33=5.62×10−9C2N−1m−2, ρ=7500Kgm−2,

and for fluid the density ρ f =1000Kgm−3, phase velocity c=1500msec−1 and used for the
numerical calculations.

In this problem, there are two kinds of basic independent modes of wave propagation
have been considered, namely, the longitudinal and flexural modes. By choosing respec-
tively n=0 and n=1, we can obtain the non-dimensional frequencies of longitudinal and
flexural modes of vibrations.

9.1 Comparison table

A comparison is made between non-dimensional wave number for thermo-piezoelectric
cylindrical immersed in fluid and in space for longitudinal modes of vibration and is
shown in Table 1. From Table 1, it is observed that the wave numbers of GL theory is
higher than the wave numbers of both LS and CT theory. Also it is observed that the wave
numbers of LS theory is higher than the wave numbers of CT theory. In addition, the
wave numbers of cylinder immersed in fluid is higher than the wave numbers of cylinder
in space for all the three theories. A comparison is made between non-dimensional wave
number for thermo piezoelectric cylinder immersed in fluid and in space for flexural
modes of vibration and is shown in Table 2. From Table 2, it is observed that the wave
numbers of CT theory is higher than the wave numbers of both GL and LS theories for
cylinder immersed in fluid and the wave numbers of CL theory is lesser than the wave
numbers of both GL and LS theories for cylinder in space. Also it is observed that the
wave number of LS theory for the case of immersed in fluid and it is reverse for the case
of cylindrical bar in space. Further the wave numbers of cylindrical bar in space is greater
than the wave number of cylinder immersed in fluid for all three theories.

Table 1: Comparison between non-dimensional wave numbers for thermo-piezoelectric cylinder immersed in
fluid and in space for longitudinal modes of vibration.

Model Immersed in fluid In space
LS GL CT LS GL CT

1 1.4145 1.4156 1.4026 1.2374 1.2358 0.7636
2 2.8288 2.8313 2.8284 2.7261 2.7520 2.8188
3 4.2473 4.2479 4.2468 4.2715 4.9672 4.2268
4 5.6563 5.6625 5.6521 7.7065 3.2459 5.6273
5 7.0786 7.0753 7.0774 4.0662 5.0004 7.0138
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Table 2: Comparison between non-dimensional wave numbers for thermo-piezoelectric cylinder immersed in
fluid and in space for flexural antisymmetric modes of vibration.

Model Immersed in fluid In space
LS GL CT LS GL CT

1 1.4156 1.2539 1.4000 1.4144 1.4223 1.4230
2 2.0943 2.5807 2.8138 2.8283 2.8266 2.8223
3 3.1903 3.9568 4.2241 4.2483 4.2459 4.2322
4 4.0725 5.3512 5.6327 5.6578 5.6653 5.6400
5 5.0216 6.7540 7.0396 7.0755 7.0781 7.0446

9.2 Dispersion curves

The computed non-dimensional wave numbers are plotted in the form of dispersion
curves. The notations used in the figures namely, LM, FM respectively denotes longi-
tudinal and flexural modes of vibrations in all the graphs. The 1 refers the first mode
and 2 the second and so on. A comparison graph is drawn between non-dimensional
frequencies Ω versus dimensionless wave number |ς| of longitudinal and flexural modes
of vibrations for LS and GL theory of thermo-piezoelectric cylindrical bar immersed in
fluid are shown respectively in the Figs. 1 and 2. From Figs. 1 and 2, it is observed
that the dimensionless wave number increases as non-dimensional frequency increases
for both modes of vibration, further it is observed that the wave numbers of LS theory
is higher than the wave numbers of GL theory. A Similar comparison graph is drawn
between non-dimensional frequencies Ω versus attenuation coefficient of longitudinal
modes for LS and GL theory of thermo-piezoelectric cylindrical bar immersed in fluid is
shown in Fig. 3. From Fig. 3, it is observed that the attenuation coefficient increases as
non-dimensional frequency increases for every modes of vibration, also, the attenuation
coefficient of LS theory is higher than the attenuation coefficient of GL theory for any
modes of vibration. A graph is drawn between non-dimensional frequencies Ω versus
specific heat of longitudinal modes for LS and GL theory of thermo-piezoelectric cylin-

Figure 1: Comparison between non-dimensional frequency Ω versus dimensionless wavenumber |ς| of longitudinal
modes of thermo-piezoelectric cylinderical bar immersed in fluid.
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Figure 2: Comparison between non-dimensional frequency Ω versus dimensionless wavenumber |ς| of lflexural
modes of thermo-piezoelectric cylinderical bar immersed in fluid.

Figure 3: Comparison between non-dimensional frequency Ω versus attunation coefficient of longitudinal modes
of thermo-piezoelectric cylinderical bar immersed in fluid.

Figure 4: Comparison between non-dimensional frequency |Ω| versus specific loss of longitudinal modes of
thermo-piezoelectric cylindrical bar immersed in fluid.

drical bar immersed in fluid and is shown in Fig. 4. From Fig. 4, it is observed that specific
loss increases as non-dimensional frequency increases and finally it is asymptotic to the
horizontal axis.
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Figure 5: Non-dimensional frequency versus specific loss for longitudinal modes of thermo-piezoelectric cylin-
drical bar in space.

Figure 6: Non-dimensional frequency versus specific loss for flexural modes of thermo-piezoelectric cylindrical
bar in space.

A dispersion curve is drawn to compare LS, GL and CT theories of thermo-
piezoelectric cylindrical bar in space; here the graph is drawn between non-dimensional
frequency Ω versus specific loss. The Figs. 5 and 6 respectively represent the specific loss
of the material in longitudinal and flexural modes of vibrations. From the Fig. 6, it is
observed that the behavior of material in LS and GL theory will be the same as compared
with the CT theory of thermo-piezoelectric cylindrical bar, also, it is observed that, the
non-dimensional frequencies increases the specific losses are also increases in both LS
and GL theories of thermo elasticity. A similar graph to represents the flexural modes of
vibration is shown in the Fig. 6. From the Fig. 6, it is observed that, the vibration and
displacements are higher in the LS theory as compared to GL theory thermo elasticity.
The cross over points in all the graphs represents the transfer of heat energy between any
two modes of vibrations. The dispersion curve shown in the Fig. 7 represents the specific
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Figure 7: Non-dimensional frequency versus specific loss for longitudinal modes of thermo-piezoelectric cylin-
drical bar immersed in fluid.

Figure 8: Non-dimensional frequency versus dimensionless daming factor for longitudinal modes of thermo-
piezoelectric cylinderical bar in space.

loss occurred when the thermo-piezoelectric cylindrical bar immersed in fluid. From the
Fig. 7, it is observed that the specific loss decrease by increasing the wave number, also
after Ω=0.6, the specific loss will get same in all the LS, GL and CT theories of thermo e-
lasticity. A graph is drawn between non-dimensional frequency Ω versus damping factor
for longitudinal modes thermo-piezoelectric cylindrical bar in space is shown in Fig. 8.
From the Fig. 8, it is observed that the damping factor is increases by increasing the non-
dimensional wave numbers in both LS and GL theories of thermo elasticity, where as in
CT theory, the trend line linearly increases along the horizontal axis.

10 Conclusions

The propagation in a thermo-piezoelectric solid bar of circular cross-section immersed in
fluid is discussed using three-dimensional theory of piezoelectricity. Three displacement
potential functions are introduced to uncouple the equations of motion, electric conduc-
tion. The frequency equation of the coupled system consisting of cylinder and fluid is
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developed under the assumption of perfect-slip boundary conditions at the fluid-solid
interfaces. The frequency equations are obtained for longitudinal and flexural modes of
vibration and are studied numerically for PZT-4 material bar immersed in fluid based
on Lord-Shulman (LS), Green-Lindsay (GL) and Classical theory (CT) theories of thermo
elasticity. The computed non-dimensional frequencies are compared with Lord-Shulman
(LS), Green-Lindsay (GL) and Classical theory (CT) theories of thermo elasticity for lon-
gitudinal and flexural modes of vibrations and the frequencies are tabulated. The disper-
sion curves are drawn for longitudinal and flexural modes of vibrations, the dispersion of
specific loss and damping factors are also analyzed for longitudinal and flexural modes
of vibrations.

Appendix

a1i =2c66{n(n−1)Jn(αiax)+(αiax)Jn+1(αiax)}−x2[(αia)
2c11+ζc13ai

+ζbi+βci]Jn(αiax), i=1,2,3,4,
a15=2c66{n(n−1)Jn(α5ax)−(α5ax)Jn+1(α5ax)},
a2i =2n{(αiax)Jn+1(αiax)−(n−1)Jn(αiax)}, −i=1,2,3,4,

a25={[(α5ax)2−2n(n−1)]Jn(α5ax)−2(α5ax)Jn+1(α5ax)},
a3i =(ζ+ai+e15bi)[nJn(αiax)−(αiax)Jn+1(αiax)], i=1,2,3,4,
a35=nζ Jn(α5ax),
a4i =(e15ζai−ε11bi){nJn(αiax)−(αiax)Jn+1(αiax)}, i=1,2,3,4,
a45= e15ζnJn(α5ax),
a5i = ci{nJn(αiax)−(αiax)Jn+1(αiax)}, i=1,2,3,4,
a55=0.
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