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Abstract. Based on two-grid discretization, a simplified parallel iterative finite ele-
ment method for the simulation of incompressible Navier-Stokes equations is devel-
oped and analyzed. The method is based on a fixed point iteration for the equations on
a coarse grid, where a Stokes problem is solved at each iteration. Then, on overlapped
local fine grids, corrections are calculated in parallel by solving an Oseen problem in
which the fixed convection is given by the coarse grid solution. Error bounds of the
approximate solution are derived. Numerical results on examples of known analyti-
cal solutions, lid-driven cavity flow and backward-facing step flow are also given to
demonstrate the effectiveness of the method.
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1 Introduction

With the development of technology for parallel computation, parallel computing attract-
s more and more attentions in computational fluid dynamics community nowadays. In
such parallel computing, parallel algorithms play a key role in exploiting the full poten-
tial of the computational power of parallel computers and ensuring the accuracy of the
approximate solution. Therefore, much effort is thrown to the development of efficient
parallel numerical methods for the Navier-Stokes equations and related problems.

Recently, based on the two-grid discretization approach of Xu and Zhou [1, 2], and
motivated by the observation that for a finite element solution to the Navier-Stokes equa-
tions, low frequency components can be approximated well by a relatively coarse grid
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and high frequency components can be computed on a fine grid, some local and parallel
algorithms were proposed by He et al. [3], Ma et al. [4, 5], and Shang et al. [6, 7]. In these
algorithms, the fully nonlinear Navier-Stokes equations are first solved on a coarse grid,
and then corrections are calculated locally or in parallel by solving a linear problem on a
fine grid. Numerical tests showed the efficiency of the algorithms [5–8]. Furthermore, by
combing classical iterative methods for the Navier-Stokes equations with this approach
to local and parallel finite element computations, some parallel iterative algorithms were
developed and analyzed in [9, 10]. This local and parallel finite element computation ap-
proach was also combined with the variational multiscale method [11] and the subgrid
stabilization method [12].

In this paper, based on two-grid finite element discretization and using domain de-
composition technique, we develop a simplified parallel iterative method for the simu-
lation of incompressible flows governed by the Navier-Stokes equations. It uses a fixed
point iteration that differs from those used in [9, 10] for the nonlinear Navier-Stokes e-
quations on a coarse grid, where Stokes problems are solved, and then solves an Oseen
problem in a parallel manner on a fine grid to correct the solution, where the convec-
tion term is fixed by the coarse grid solution. Compared to the methods of [9, 10] where
Newton and Oseen iterations were employed, this method only solves a linear Stokes
problem (hence, linear with positive definite symmetric part) at each iteration. Specifi-
cally, we first iteratively solve the Navier-Stokes problem by solving a sequence of Stokes
equations on a coarse grid, and then compute fine grid corrections in a parallel manner
by solving a linearized Oseen problem in overlapped subdomains. This method has low
communication complexity. It only requires an existing sequential solver as subproblem
solver and hence can reuse existing sequential software. Under the stability condition
4N
ν2 ∥ f ∥−1,Ω <1 (here N is defined by (2.3), ν is the kinematic viscosity of the fluid, and f

the external body force exerting on the fluid), we derive the following error estimate for
our parallel method:

∥|∇(u−uh
m)|∥0,Ω+∥|p−ph

m|∥0,Ω

≤c
(
hs+Hs+1(1+∥ f ∥0,Ω)

)
∥ f ∥s−1,Ω+C

(3N
ν2 ∥ f ∥−1,Ω

)m
∥ f ∥−1,Ω, 1≤ s≤ k, m≥1, (1.1)

where ∥|·|∥0,Ω is piecewise norm defined by (3.3), m the number of nonlinear iterations
satisfying the stopping criterion, (u,p) the exact solution to the Navier-Stokes equations,
(uh

m,ph
m) the solution obtained from our parallel finite element method, H and h are the

coarse and fine grids sizes, respectively, c and C are two generic positive constants which
are independent of mesh parameter and may stand for different values at their different
occurrences in our paper, k and s are two positive constants related to the regularity of
the solution (u,p) to the Navier-Stokes equations and the finite element spaces used for
the discretization, respectively; see Theorem 3.2.

The above estimate shows that if we choose the coarse grid size H such that H =
O(h

s
s+1 ), then a convergence rate of the same order as the standard Galerkin finite ele-

ment method in H1-norm for the velocity and L2-norm for the pressure can be obtained



Y. Q. Shang and J. Qin / Adv. Appl. Math. Mech., 7 (2015), pp. 715-735 717

by our parallel method. However, due to that only a linear problem needs to be solved
in parallel on the fine grid, our method can save a large amount of computational time.

The paper is organized as follows. In the next section, the functional setting of the
Navier-Stokes equations and some assumptions on mixed finite element spaces are pro-
vided. Based on two-grid discretization, parallel two-level finite element algorithms are
developed and analyzed in Section 3. In Section 4, some numerical results are given to
illustrate the effectiveness of the parallel method. Finally, concluding remarks complete
the paper.

2 Preliminaries

As usual, for a nonnegative integer l, we denote by Hl(Ω) the Sobolev space of functions
with square integrable distribution derivatives up to order l in Ω, equipped with the
standard norm ∥·∥l,Ω; while denote by H1

0(Ω) the closed subspace of H1(Ω) consisting
of functions with zero trace on ∂Ω; see, e.g., [13]. The space H−1(Ω), the dual space
of H1

0(Ω), and its associated norm ∥·∥−1,Ω will also be used. Moreover, for a subdomain
Ω0⊂Ω, we view H1

0(Ω0) as a subspace of H1
0(Ω) by extending the functions in H1

0(Ω0) to
be functions in H1

0(Ω) with zero outside of Ω0. For a subdomain D, we use the notation
D⊂⊂Ω0 to mean that dist(∂D\∂Ω,∂Ω0\∂Ω)>0).

2.1 Functional setting of the Navier-Stokes equations

Let Ω be a bounded domain with Lipschitz-continuous boundary ∂Ω in Rd (d=2,3). We
consider the following incompressible Navier-Stokes equations:

−ν∆u+(u·∇)u+∇p= f in Ω, (2.1a)
divu=0, in Ω, (2.1b)
u=0 on ∂Ω, (2.1c)

where u = (u1,··· ,ud) is the velocity, p the pressure, f = ( f1,··· , fd) the prescribed body
force and ν the kinematic viscosity.

To introduce the variational formulation of problem (2.1a)-(2.1c), we set

X=H1
0(Ω)d, Y=L2(Ω)d, M=L2

0(Ω)=
{

q∈L2(Ω) :
∫

Ω
qdx=0

}
,

and define a(·,·), b(·,·,·), d(·,·) as

a(u,v)=ν(∇u,∇v), b(u,v,w)=
1
2
((u·∇)v,w)− 1

2
((u·∇)w,v),

d(v,q)=(div v,q), ∀u,v,w∈X, q∈M,

where (·,·) is the standard inner-product of L2(Ω)θ (θ=1,2,3).
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It is well known that the trilinear term b(·,·,·) has the following properties (cf. [14,15]):

b(u,v,w)=−b(u,w,v), ∀u,v,w∈X, (2.2a)
|b(u,v,w)|≤N∥∇u∥0,Ω∥∇v∥0,Ω∥∇w∥0,Ω, ∀u,v,w∈X, (2.2b)

where

N= sup
u,v,w∈X,
u,v,w ̸=0

|b(u,v,w)|
∥∇u∥0,Ω∥∇v∥0,Ω∥∇w∥0,Ω

. (2.3)

With the above notations, the variational formulation of (2.1a)-(2.1c) reads: find a pair
(u,p)∈X×M such that

a(u,v)+b(u,u,v)−d(v,p)+d(u,q)=( f ,v), ∀(v,q)∈X×M. (2.4)

We have the following existence and uniqueness results (cf. [15, 16]).

Theorem 2.1. Let Ω be a Ck+1-smooth bounded domain in Rd for k ≥ 1 or a bounded convex
polygonal or polyhedral domain in Rd for k= 1. Given f ∈ Hk−1(Ω)d, problem (2.4) admits at
least a solution pair (u,p)∈ (Hk+1(Ω)∩H1

0(Ω))d×(Hk(Ω)∩L2
0(Ω)) satisfying

∥∇u∥0,Ω ≤ν−1∥ f ∥−1,Ω, ∥ f ∥−1,Ω =sup
v∈X,
v ̸=0

|( f ,v)|
∥∇v∥0,Ω

, (2.5a)

ν∥u∥s+1,Ω+∥p∥s,Ω ≤ c∥ f ∥s−1,Ω, 0≤ s≤ k. (2.5b)

Moreover, if ν and f satisfy the following uniqueness condition:

N∥ f ∥−1,Ω

ν2 <1, (2.6)

then the solution pair (u,p) of problem (2.4) is unique.

2.2 Finite element spaces

Assume that Th(Ω)={K} is a mesh of Ω with a mesh-size function h(x) whose value is
the diameter hK of the element K containing x. One basic assumption on the mesh is that
it is not exceedingly over-refined locally, namely [1, 3],
A0. Triangulation. There exists γ≥1 such that

hγ
Ω ≤ ch(x), ∀x∈Ω, (2.7)

where hΩ =maxx∈Ω h(x) is the largest mesh size of Th(Ω). Sometimes, we shall drop the
subscript in hΩ and use h for the mesh size on a domain that is clear from the context.
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Associated with a mesh Th(Ω), let Xh(Ω)⊂ H1(Ω)d, Mh(Ω)⊂ L2(Ω) be two finite
element spaces and

X0
h(Ω)=Xh(Ω)∩H1

0(Ω)d, M0
h(Ω)=Mh(Ω)∩L2

0(Ω).

Given G⊂Ω, we define Xh(G), Mh(G), and Th(G) to be the restriction of Xh(Ω), Mh(Ω)
and Th(Ω) to G, respectively, and set

Xh
0(G)={v∈Xh(Ω) : supp v⊂⊂G}, Mh

0(G)={q∈Mh(Ω) : supp q⊂⊂G}.

Some basic assumptions on the mixed finite element spaces are needed (cf. [3, 5, 17, 18]).

A1. Approximation. For each (u,p)∈ Hk+1(G)d×Hk(G) (k≥ 1), there exists an approxi-
mation (πhu,ρh p)∈Xh(G)×Mh(G) such that

∥(u−πhu)∥0,G+∥h(u−πhu)∥1,G ≤ chs+1
G ∥u∥1+s,G, 1≤ s≤ k, (2.8a)

∥(p−ρh p)∥−1,G+∥h(p−ρh p)∥0,G ≤ chs+1
G ∥p∥s,G, 1≤ s≤ k. (2.8b)

A2. Inverse estimate. For any (v,q)∈Xh(G)×Mh(G), there hold

∥∇v∥0,G ≤ c∥h−1v∥0,G, ∥q∥0,G ≤ c∥h−1q∥−1,G. (2.9)

A3. Superapproximation. For G ⊂ Ω, let ω ∈ C∞
0 (Ω) with supp ω ⊂⊂ G. Then for any

(u,p)∈Xh(G)×Mh(G), there is (v,q)∈Xh
0(G)×Mh

0(G) such that

∥h−1∇(ωu−v)∥0,G ≤ c∥∇u∥0,G, ∥h−1(ωp−q)∥0,G ≤ c∥p∥0,G. (2.10)

A4. Inf-sup condition. There exists a constant β>0 such that

β∥q∥0,G ≤ sup
v∈X0

h(G),
v ̸=0

(divv,q)
∥∇v∥0,G

, ∀q∈M0
h(G). (2.11)

We refer to [19] for some examples satisfying Assumptions A1-A4. For instance, the
MINI finite elements [20] and the P2−P0 finite elements [21] satisfy Assumptions A1-A4
when k=1, while the Taylor-Hood elements [22] and the augmented P2−P1 elements [23,
24] satisfy Assumptions A1-A4 when k=2. Throughout this paper, we assume that h≪1
and Assumptions A0-A4 hold.

Under the above assumptions, the mixed finite element approximation of problem
(2.4) reads: find a pair (uh,ph)∈X0

h(Ω)×M0
h(Ω) such that

a(uh,v)+b(uh,uh,v)−d(v,ph)+d(uh,q)=( f ,v), ∀(v,q)∈X0
h(Ω)×M0

h(Ω). (2.12)

The following results on (uh,ph) are classical (cf. [3, 15, 16, 25]).
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Theorem 2.2. Suppose that Assumptions A0, A1, A4 and the conditions of Theorem 2.1 hold.
There exists a small h0 > 0 such that for all h∈ (0,h0], problem (2.12) admits a unique solution
(uh,ph) satisfying

∥∇uh∥0,Ω ≤ν−1∥ f ∥−1,Ω, ∥ph∥0≤3β−1∥ f ∥−1,Ω, (2.13a)
ν∥∇(u−uh)∥0,Ω+∥p−ph∥0,Ω ≤ chs∥ f ∥s−1,Ω, 1≤ s≤ k, (2.13b)

ν∥u−uh∥0,Ω+∥p−ph∥−1,Ω ≤ chs+1∥ f ∥s−1,Ω, 1≤ s≤ k. (2.13c)

3 Parallel finite element algorithms

In this section, based on two-grid discretization and overlapping domain decomposition,
we shall firstly introduce a parallel finite element algorithm for problem (2.12), and the
develop and analyze a two-level parallel iterative finite element algorithm.

3.1 Parallel finite element algorithm

Let TH(Ω) be a shape-regular coarse grid with size H≫h. We first divide Ω into a number
of disjoint subdomains D1,··· ,DJ , and then enlarge each Dj to obtain Ωj that align with
TH(Ω) and satisfy Dj ⊂⊂Ωj ⊂Ω. These Ω′

js compose an overlapping decomposition of
Ω. Assume Th(Ωj) to be a fine grid of subdomain Ωj with size h which can be obtained
from the mesh TH(Ω). In our analysis, we shall use an auxiliary fine grid, say Th(Ω),
that is globally defined and coincides with Th(Ωj) on Ωj; see Fig. 1.

(a) (b) (c)

Figure 1: Meshes: (a) a global coarse mesh; (b) a local fine mesh; and (c) a global fine mesh.

Algorithm 3.1. Parallel finite element algorithm.

1. Find a global coarse grid solution (uH,pH)∈X0
H(Ω)×M0

H(Ω) such that

a(uH ,v)+b(uH,uH,v)−d(v,pH)+d(uH ,q)=( f ,v), ∀(v,q)∈X0
H(Ω)×M0

H(Ω). (3.1)
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2. Find local fine grid corrections (ejh,ηjh)∈X0
h(Ωj)×M0

h(Ωj) (j=1,2,··· , J) in parallel by
solving the following Oseen equations:

a(ejh,v)+b(uH,ejh,v)−d(v,ηjh)+d(ejh,q)

=( f ,v)−a(uH ,v)−b(uH ,uH,v)+d(v,pH)−d(uH,q), ∀(v,q)∈X0
h(Ωj)×M0

h(Ωj). (3.2)

3. Set (uh,ph)=(uH,pH)+(ejh,ηjh) in Dj (j=1,2,··· , J).

Defining piecewise norm

∥|·|∥0,Ω =
( J

∑
j=1

∥·∥2
0,Dj

)1/2
, (3.3)

we have the following results (cf. [3, 10]).

Theorem 3.1. Suppose that the conditions of Theorem 2.1 and Assumptions A0-A4 hold,
(uh,ph) ∈ X0

h(Ω)×M0
h(Ω) is the standard Galerkin finite element solution of problem (2.12),

(uh,ph) is obtained from Algorithm 3.1. Then

∥|∇(uh−uh)|∥0,Ω+∥|ph−ph|∥0,Ω ≤ cHs+1(1+∥ f ∥0,Ω)∥ f ∥s−1,Ω, 1≤ s≤ k. (3.4)

Consequently,

∥|∇(u−uh)|∥0,Ω+∥|p−ph|∥0,Ω ≤ c
(
hs+Hs+1(1+∥ f ∥0,Ω)

)
∥ f ∥s−1,Ω, 1≤ s≤ k. (3.5)

Remark 3.1. From the definition of piecewise norm ∥|·|∥0,Ω (see (3.3)), we can see that
the constant c in (3.4) and (3.5) is relevant to the number J of subdomains, allowing the
algorithm to be suitable for those parallel architectures with a moderate number of pro-
cessors.

3.2 Simplified parallel two-level iterative finite element algorithm

We now discuss how to solve the nonlinear problem on the coarse grid in Algorithm 3.1.
By applying a simple iteration of m times to the nonlinear problem, we can easily develop
a parallel two-level iterative finite element algorithm for the Navier-Stokes equations.

Algorithm 3.2. Simplified parallel two-level iterative finite element algorithm.
1. Find a global coarse grid iterative solution (um

H ,pm
H)∈X0

H(Ω)×M0
H(Ω) such that

a(un
H,v)−d(v,pn

H)+d(un
H,q)=( f ,v)−b(un−1

H ,un−1
H ,v), ∀(v,q)∈X0

H(Ω)×M0
H(Ω), (3.6)

for n=1,··· ,m, with u0
H =0.

2. Find local fine grid corrections (em
jh,ηm

jh)∈X0
h(Ωj)×M0

h(Ωj) (j=1,2,··· , J) in parallel by
solving the following Oseen equations:

a(em
jh,v)+b(um

H,em
jh,v)−d(v,ηm

jh)+d(em
jh,q)

=( f ,v)−a(um
H ,v)−b(um

H ,um
H,v)+d(v,pm

H)−d(um
H,q), ∀(v,q)∈X0

h(Ωj)×M0
h(Ωj). (3.7)

3. Set (uh
m,ph

m)=(um
H,pm

H)+(em
jh,ηm

jh) in Dj (j=1,2,··· , J).
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For the iterative scheme (3.6), we have the following results [26].

Lemma 3.1. Under the following stability condition:

4N
ν2 ∥ f ∥−1,Ω <1, (3.8)

the sequence (un
H ,pn

H) defined by iterative scheme (3.6) satisfies for all n≥1:

∥∇un
H∥0,Ω ≤2ν−1∥ f ∥−1,Ω, ∥pn

H∥0,Ω ≤4β−1∥ f ∥−1,Ω, (3.9a)

ν∥∇(uH−un
H)∥0,Ω+∥pH−pn

H∥0,Ω ≤ c
(3N

ν2 ∥ f ∥−1,Ω

)n
∥ f ∥−1,Ω, (3.9b)

ν∥∇(uH−un
H)∥0,Ω+∥pH−pn

H∥0,Ω ≤ cν∥un
H−un−1

H ∥0,Ω, (3.9c)

where (uH ,pH) is the standard finite element solution to the Navier-Stokes equations (2.4) com-
puted on a mesh with size H.

For the first inequality of (3.9a), inequalities (3.9b) and (3.9c), we refer the readers
to Lemma 4.1, Lemma 5.1 and Theorem 5.4 of [26], respectively. While for the second
inequality of (3.9a), taking q=0 in (3.6), we get

d(v,pn
H)=a(un

H,v)−( f ,v)+b(un−1
H ,un−1

H ,v)

≤
(
ν∥∇un

H∥0,Ω+∥ f ∥−1,Ω+N∥∇un−1
H ∥2

0,Ω
)
∥∇v∥0,Ω

≤
(
2∥ f ∥−1,Ω+∥ f ∥−1,Ω+∥ f ∥−1,Ω

)
∥∇v∥0,Ω,

which, together with the inf-sup condition, follows the required result.

Remark 3.2. Our algorithm needs the stability condition (3.8), which can be verified in
practice by estimating N and ∥ f ∥−1,Ω. We refer to [27] for a discuss for this.

Remark 3.3. Estimate (3.9c) shows that ∥∇(uH−un
H)∥0,Ω and ∥pH−pn

H∥0,Ω can be bound-
ed by ∥un

H−un−1
H ∥0,Ω. This is true since (uH ,pH), the solution of nonlinear finite element

problem (3.1), is approximated by (un
H,pn

H), the nth iterative solution of the finite elemen-
t problem (3.6). The approximation depends on the simple nonlinear iterations. Given
the convergence of the simple nonlinear iterations, ∥un

H−un−1
H ∥0,Ω will tend to zero as n

tends to infinity, which means that C∥un
H−un−1

H ∥0,Ω tends to zero as well even there is
a constant C, and so (un

H ,pn
H) tends to (uH,pH). As for the problem that how accurate

should the approximation be, we refer to the followed Remark 3.4.

Lemma 3.2. Suppose that the conditions of Theorem 2.2 and Assumptions A0-A4 hold. Then em
jh

(j=1,2,··· , J) obtained from Algorithm 3.2 satisfies

ν∥∇em
jh∥0,Ωj ≤ c∥ f ∥−1,Ω, (3.10)

where c is independent of ν.
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Proof. Noting that Ωj (j=1,2,··· , J) align with TH(Ω), (2.2b) also holds for Ω replaced by
Ωj. Taking q=0 in (3.7) and using the inf-sup condition (2.11), we get

∥ηm
jh∥0,Ωj ≤β−1(ν∥∇em

jh∥0,Ωj +N∥∇um
H∥0,Ωj∥∇em

jh∥0,Ωj

+∥ f ∥−1,Ωj +ν∥∇um
H∥0,Ωj +N∥∇um

H∥2
0,Ωj

+c∥pm
H∥0,Ωj

)
. (3.11)

Setting (v,q)=(em
jh,ηm

jh) in (3.7), applying Young inequality, (2.2a) and (3.11), we arrive at

ν∥∇em
jh∥2

0,Ωj
≤∥ f ∥−1,Ωj∥∇em

jh∥0,Ωj +ν∥∇um
H∥0,Ωj∥∇em

jh∥0,Ωj +N∥∇um
H∥2

0,Ωj
∥∇em

jh∥0,Ωj

+c∥pm
H∥0,Ωj∥∇em

jh∥0,Ωj +c∥∇um
H∥0,Ωj∥ηm

jh∥0,Ωj

≤ν

8
∥∇em

jh∥2
0,Ωj

+
2
ν
∥ f ∥2

−1,Ωj
+

ν

8
∥∇em

jh∥2
0,Ωj

+2ν∥∇um
H∥2

0,Ωj

+
ν

8
∥∇em

jh∥2
0,Ωj

+
2N2

ν
∥∇um

H∥4
0,Ωj

+
ν

8
∥∇em

jh∥2
0,Ωj

+
c
ν
∥pm

H∥2
0,Ωj

+
ν

8
∥∇em

jh∥2
0,Ωj

+
cν

β2 ∥∇um
H∥2

0,Ωj
+

ν

8
∥∇em

jh∥2
0,Ωj

+
cN2

β2ν
∥∇um

H∥4
0,Ωj

+
1

2ν
∥ f ∥2

−1,Ωj
+

cν

2β2 ∥∇um
H∥2

0,Ωj
+

cν

β
∥∇um

H∥2
0,Ωj

+
cN
β
∥∇um

H∥3
0,Ωj

+
cν

4β2 ∥∇um
H∥2

0,Ωj
+

c
ν
∥pm

H∥2
0,Ωj

.

Thus

ν∥∇em
jh∥2

0,Ωj
≤ c

(1
ν
∥ f ∥2

−1,Ωj
+ν∥∇um

H∥2
0,Ωj

+
N2

ν
∥∇um

H∥4
0,Ωj

+N∥∇um
H∥3

0,Ωj
+

1
ν
∥pm

H∥2
0,Ωj

)
.

Consequently, from (3.9a) and the stability condition (3.8), we obtain

ν∥∇em
jh∥0,Ωj ≤c

(
∥ f ∥−1,Ωj +ν∥∇um

H∥0,Ωj +N∥∇um
H∥2

0,Ωj
+
√

Nν∥∇um
H∥3/2

0,Ωj
+∥pm

H∥0,Ωj

)
≤c

(
3∥ f ∥−1,Ω+

4N
ν2 ∥ f ∥2

−1,Ω+
2
√

2N
ν

∥ f ∥3/2
−1,Ω+

4
β
∥ f ∥−1,Ω

)
≤c∥ f ∥−1,Ω,

which completes the proof.

Lemma 3.3. Assume that Assumptions A0-A4 and Theorem 2.2 hold, (uh,ph) and (uh
m,ph

m) are
obtained from Algorithm 3.1 and Algorithm 3.2, respectively. Then under the stability condition
(3.8), we have, for j=1,2,··· , J, that

ν∥∇(uh−uh
m)∥0,Dj +∥ph−ph

m∥0,Dj ≤ c(ν∥∇(uH−um
H)∥0,Ωj +∥pH−pm

H∥0,Ωj),

where (uH ,pH) and (um
H,pm

H) are the coarse grid solutions defined by Algorithm 3.1 and Algo-
rithm 3.2, respectively.
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Proof. From Algorithm 3.1 and Algorithm 3.2, we get

a(uH+ejh,v)+b(uH,ejh+uH,v)−d(v,pH+ηjh)+d(uH+ejh,q)

=( f ,v), ∀(v,q)∈X0
h(Ωj)×M0

h(Ωj), (3.12a)

a(um
H+em

jh,v)+b(um
H,em

jh+um
H,v)−d(v,pm

H+ηm
jh)+d(um

H+em
jh,q)

=( f ,v), ∀(v,q)∈X0
h(Ωj)×M0

h(Ωj). (3.12b)

Setting (wj,rj)=(ejh−em
jh,ηjh−ηm

jh), we see from (3.12a)-(3.12b) that

a(uH−um
H+wj,v)+b(uH,uH−um

H+wj,v)−d(v,rj)+d(uH−um
H+wj,q)

=(g,v), ∀(v,q)∈X0
h(Ωj)×M0

h(Ωj), (3.13)

where

(g,v)=d(v,pH−pm
H)−b(uH−um

H ,em
jh+um

H,v). (3.14)

By applying (2.2b), Theorem 2.2, Lemmas 3.1 and 3.2 and the stability condition (3.8), we
obtain

∥g∥−1,Ωj ≤c∥pH−pm
H∥0,Ωj +N(∥∇um

H∥0,Ωj +∥∇em
jh∥0,Ωj)∥∇(uH−um

H)∥0,Ωj

≤c∥pH−pm
H∥0,Ωj +c

N
ν
∥ f ∥−1,Ω ·∥∇(uH−um

H)∥0,Ωj

≤C
(
∥pH−pm

H∥0,Ωj +ν∥∇(uH−um
H)∥0,Ωj

)
. (3.15)

Therefore, taking q=0 in (3.13) and from the inf-sup condition (2.11), (2.13a) and (2.6), we
get

∥rj∥0,Ωj ≤β−1(ν∥∇(uH−um
H)∥0,Ωj +ν∥∇wj∥0,Ωj +∥g∥−1,Ωj)

+
N
β
∥∇uH∥0,Ωj(∥∇(uH−um

H)∥0,Ωj +∥∇wj∥0,Ωj)

≤c
(
ν∥∇(uH−um

H)∥0,Ωj +ν∥∇wj∥0,Ωj +∥pH−pm
H∥0,Ωj

)
. (3.16)

Taking (v,q)= (wj,rj) in (3.13), using (2.2a) and the identity 2(a,a−b)= a2−b2+(a−b)2

with a=∇(uh−uh
m)=∇(uH−um

H+wj) and b=∇(uH−um
H) for the first term in (3.13), we

arrive at

ν

2
∥∇(uh−uh

m)∥2
0,Dj

+
ν

2
∥∇wj∥2

0,Ωj
+b(uH,uH−um

H ,wj)

≤ν

2
∥∇(uH−um

H)∥2
0,Ωj

−d(uH−um
H,rj)+(g,wj). (3.17)
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From (2.2b), (2.6), (2.13a), the stability condition (3.8), Young inequality and (3.16), we see

|b(uH ,uH−um
H,wj)|≤N∥∇uH∥0,Ωj∥∇(uH−um

H)∥0,Ωj∥∇wj∥0,Ωj

≤ N
ν
∥ f ∥−1,Ω∥∇(uH−um

H)∥0,Ωj∥∇wj∥0,Ωj

≤ ν

8
∥∇wj∥2

0,Ωj
+

ν

8
∥∇(uH−um

H)∥2
0,Ωj

,

|d(uH−um
H,rj)|≤ c∥∇(uH−um

H)∥0,Ωj∥rj∥0,Ωj

≤ c
(
ν∥∇(uH−um

H)∥2
0,Ωj

+ν∥∇(uH−um
H)∥0,Ωj∥∇wj∥0,Ωj

)
+c∥∇(uH−um

H)∥0,Ωj∥pH−pm
H∥0,Ωj

≤ ν

8
∥∇wj∥2

0,Ωj
+c(ν∥∇(uH−um

H)∥2
0,Ωj

+ν−1∥pH−pm
H∥2

0,Ωj
),

|(g,wj)|≤
ν

8
∥∇wj∥2

0,Ωj
+2ν−1∥g∥2

−1,Ωj
.

Taking the above inequalities into (3.17) and using (3.15), we deduce

ν∥∇(uh−uh
m)∥0,Dj +ν∥∇wj∥0,Ωj ≤ c(ν∥∇(uH−um

H)∥0,Ωj +∥pH−pm
H∥0,Ωj). (3.18)

Thus, the triangle inequality, (3.16) and (3.18) yield

∥ph−ph
m∥0,Dj ≤∥pH−pm

H∥0,Dj +∥rj∥0,Dj ≤ c(ν∥∇(uH−um
H)∥0,Ωj +∥pH−pm

H∥0,Ωj). (3.19)

Combining (3.18) with (3.19), we complete the proof.

Theorem 3.2. Suppose that Assumptions A0-A4 hold, (uh,ph) is the standard Galerkin finite
element solution to the Navier-Stokes equations, (uh

m,ph
m) is obtained from Algorithm 3.2. Then

under the conditions of Theorem 2.2 and the stability condition (3.8), the following error estimates
hold:

∥|∇(uh−uh
m)|∥0,Ω+∥|ph−ph

m|∥0,Ω

≤ cHs+1(1+∥ f ∥0,Ω)∥ f ∥s−1,Ω+C
(3N

ν2 ∥ f ∥−1,Ω

)m
∥ f ∥−1,Ω, 1≤ s≤ k, m≥1, (3.20a)

∥|∇(uh−uh
m)|∥0,Ω+∥|ph−ph

m|∥0,Ω

≤ cHs+1(1+∥ f ∥0,Ω)∥ f ∥s−1,Ω+C∥um
H−um−1

H ∥0,Ω, 1≤ s≤ k, m≥1. (3.20b)

Consequently,

∥|∇(u−uh
m)|∥0,Ω+∥|p−ph

m|∥0,Ω

≤ c
(
hs+Hs+1(1+∥ f ∥0,Ω)

)
∥ f ∥s−1,Ω

+C
(3N

ν2 ∥ f ∥−1,Ω

)m
∥ f ∥−1,Ω, 1≤ s≤ k, m≥1, (3.21a)

∥|∇(u−uh
m)|∥0,Ω+∥|p−ph

m|∥0,Ω

≤ c
(
hs+Hs+1(1+∥ f ∥0,Ω)

)
∥ f ∥s−1,Ω+C∥um

H−um−1
H ∥0,Ω, 1≤ s≤ k, m≥1. (3.21b)
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Proof. By applying the triangle inequality, Lemmas 3.1 and 3.3, Theorem 3.1, we get

∥|∇(uh−uh
m)|∥0,Ω+∥|ph−ph

m|∥0,Ω

≤∥|∇(uh−uh)|∥0,Ω+∥|∇(uh−uh
m)|∥0,Ω+∥|ph−ph|∥0,Ω+∥|ph−ph

m|∥0,Ω

≤ cHs+1(1+∥ f ∥0,Ω)∥ f ∥s−1,Ω+C
(3N

ν2 ∥ f ∥−1,Ω

)m
∥ f ∥−1,Ω, 1≤ s≤ k, m≥1,

∥|∇(uh−uh
m)|∥0,Ω+∥|ph−ph

m|∥0,Ω

≤ cHs+1(1+∥ f ∥0,Ω)∥ f ∥s−1,Ω+C∥um
H−um−1

H ∥0,Ω, 1≤ s≤ k, m≥1,

where (uh,ph) is the solution defined by Algorithm 3.1. Combining the triangle inequality
with (2.13b) and (3.20a)-(3.20b), we get (3.21a)-(3.21b) and finish the proof.

Remark 3.4. Theorem 3.2 shows that the error of the approximate solution consists of
two parts: one is the discretization error depending on the underlying meshes, and the
other is the error related to the simple nonlinear iterations on the coarse grid. If we
choose the coarse grid size H such that H =O(h

s
s+1 ), and solve the coarse grid problem

to the accuracy satisfying ∥m
H−um−1

H ∥0,Ω =O(hs), then an optimal convergence rate can
be obtained, and this indicates a stopping criterion for the simple nonlinear iterations on
the coarse grid:

∥um
H−um−1

H ∥0,Ω < chs. (3.22)

4 Numerical results

In this section, we shall present some numerical results to illustrate the effectiveness of
our parallel finite element method. Four numerical tests are performed: the first two
test cases are 2D and 3D examples with known analytical solutions which are designed
to demonstrate the theoretical predictions; while the last two are the well-known 2D
lid-driven cavity flow and backward-facing step flow problems, which are used to inves-
tigate the convergence behaviour of the proposed method depending on the boundary
data.

4.1 Analytical solution in 2D case

In this test case, the solution domain Ω is the unit square [0,1]×[0,1] in R2. The body
force f and the boundary conditions are set such that the exact solution of the stationary
Navier-Stokes equations is given by

u1=10x2(x−1)2y(y−1)(2y−1), (4.1a)

u2=−10y2(y−1)2x(x−1)(2x−1), (4.1b)

p=3x2+3y2−2. (4.1c)
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Figure 2: Triangulation and overlapping domain decomposition of Ω.

The numerical experiment is performed on a Dawning parallel cluster. Data ex-
changes between processors are supported by the Message Passing Interface (MPI). The
mesh consists of triangular elements which are obtained by dividing Ω (or Ωj, j=1,2,··· , J)
into sub-squares of equal size and then drawing the diagonal in each sub-square; see
Fig. 1. The Taylor-Hood mixed finite elements are employed for the discretization. To
avoid the initial fan-out communication, we let all processors simultaneously compute
the coarse solution in our numerical experiments.

Firstly, in order to test the asymptotical error provided by our parallel method, we set
ν=0.1 and divide Ω=[0,1]×[0,1] into four disjoint subdomains:

D1=(0,1/2)×(0,1/2), D2=(1/2,1)×(0,1/2),
D3=(0,1/2)×(1/2,1), D4=(1/2,1)×(1/2,1),

and then extend each Dj (j = 1,2,3,4) outside with an extra layer of width h to obtain
overlapped Ωj ⊂Ω4 (j=1,2,3,4); see Fig. 2.

We compute the finite element solutions by Algorithm 3.2 with fine meshes with size
h=n−3 (n=3,4,5) and corresponding coarse meshes with size H satisfying 2H3=h2. The
corresponding linear algebraic systems are solved by LU factorization. The following
stopping criterion (4.2) is employed for the nonlinear iteration on the coarse grid:

∥un+1
H −un

H∥0,Ω

∥un+1
H ∥0,Ω

<10−6, (4.2)

where un
H is the nth simple iterative solution. The numerical results are listed in Table 1

(top), in which m is the nonlinear iterations count satisfying the stopping condition (4.2).
The convergence rates are computed by the formula log(Ei/Ei+1)

log(hi/hi+1)
, where Ei and Ei+1 are the

relative errors
∥|∇(u−uh

m)|∥0,Ω+∥|p−ph
m|∥0,Ω

∥∇u∥0,Ω+∥p∥0,Ω
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Table 1: Errors of the approximate solutions for 2D case.

Method h H m CPU(s) ∥|∇(u−uh
m)|∥0,Ω

∥∇u∥0,Ω

∥|p−ph
m |∥0,Ω

∥p∥0,Ω
rate

1/27 1/18 3 2.85 0.00380327 0.000355402
Algorithm 3.2 1/64 1/32 3 8.53 0.000726862 7.33137e-05 1.89088

1/125 1/50 3 34.04 0.00020287 1.68941e-05 1.98901
1/27 - 3 5.02 0.00403434 0.000342939

Standard FE 1/64 - 3 47.37 0.000720131 6.1036e-05 1.99753
1/125 - 3 816.41 0.000189005 1.60029e-05 1.99863

corresponding to the fine meshes with size hi and hi+1, respectively. While the CPU time
in seconds is the wall time of the parallel program.

Let (u,p) be the exact solution to the Navier-Stokes equations and (uh
m,ph

m) be ob-
tained by our parallel two-level finite element method. According to the mixed finite
element spaces we chosen and the relationship between the mesh sizes H and h, i.e.,
H=O(h2/3), by Theorem 3.2, we have the following asymptotic behavior:

∥|∇(u−uh
m)|∥0,Ω+∥|p−ph

m|∥0,Ω ∼ ch2+C∥um
H−um−1

H ∥0,Ω. (4.3)

Moreover, if C∥um
H−um−1

H ∥0,Ω is a higher-order infinitesimal quantity compared to ch2 as
H (and hence h) tends to zero, we have the following asymptotic behavior:

∥|∇(u−uh
m)|∥0,Ω+∥|p−ph

m|∥0,Ω =O(h2).

The results shown in Table 1 (top) support the above estimate.
To compare with the standard Galerkin finite element method, in Table 1 (bottom), we

also listed the errors of the global standard finite element solution computed by the sim-
ple iterative method, where m is the nonlinear iterations count satisfying the following
stopping condition

∥un+1
h −un

h∥0,Ω

∥un+1
h ∥0,Ω

<10−6. (4.4)

From Table 1 we can see that our parallel finite element method is highly efficient. It can
yield an approximate solution with an accuracy comparable to that of the global standard
finite element solution with a large reduction in computational time.

In our numerical tests, we also computed the finite element solution with various
values of the viscosity parameter ν. The numerical results show that when ν is smaller
than 0.001, the algorithm doesn’t work; this may be caused by that the stability condition
(3.8) is not satisfied.

Secondly, to investigate how accurate should the coarse grid problem be solved, we
set ν=0.01,0,005, h=1/125, H=1/50 and then compute the finite element solution using
Algorithm 3.2. At each simple nonlinear interation, we compute two quantities

∥|∇(u−uh
n)|∥0,Ω

∥∇u∥0,Ω
and

∥|∇(p−ph
n)|∥0,Ω

∥p∥0,Ω
,
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Figure 3: Evolution of the errors with the number n of nonlinear iterations at ν = 0.01: ∥|∇(u−
uh

n)|∥0,Ω/∥∇u∥0,Ω (a) and ∥|p−ph
n|∥0,Ω/∥p∥0,Ω (b).
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Figure 4: Evolution of the errors with the number n of nonlinear iterations at ν = 0.005: ∥|∇(u−
uh

n)|∥0,Ω/∥∇u∥0,Ω (a) and ∥|p−ph
n)|∥0,Ω/∥p∥0,Ω (b).

and investigate their evolution with the simple nonlinear iterations, where both the stop-
ping conditions (4.2) and (3.22) with c=0.1 and s=2 are used.

Figs. 3 and 4 show that the stopping condition (3.22) is satisfied when the number of
simple nonlinear iterations is 5 and 8 at ν=0.01 and 0.005, respectively, while there are 8
and 14 steps nonlinear iterations when the stop condition (4.2) is satisfied. The numerical
results indicate that it is enough for the coarse grid nonlinear problem to be solved with
an accuracy that (3.22) is satisfied. Further iterations make no obvious contribution to the
improvement in accuracy of the solution. From this test case, we can conclude that our
derived stopping criterion (3.22) for the simple nonlinear iterations on the coarse grid is
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Table 2: Wall time T(J) in seconds of the parallel program, speedup Sp = T(1)/T(J) and parallel efficiency
Ep =T(1)/J×T(J).

J 1 2 4 6 8 12 16
T(J) 235.37 48.51 34.04 26.47 7.75 23.17 22.55
Sp 1.0 4.85 6.91 8.89 9.66 10.16 10.44
Ep 1.0 2.43 1.73 1.48 1.21 0.85 0.65

reliable and suitable, which can yield a good solution without redundant computations.
Finally, to check the parallel performance of our parallel finite element method, we

decompose the solution domain into 1×2, 2×2, 2×3, 2×4, 3×4 and 4×4 subdomains
of equal size, respectively, and then assign each processor a subdomain to compute the
corresponding solution by Algorithm 3.2, where the mesh sizes are set as h=1/125, H=
1/50. The overlapping size is 1/125×2. Table 2 reports the wall time of the parallel
program and the corresponding speedup and parallel efficiency computed by

Sp =
T(1)
T(J)

, Ep =
T(1)

J×T(J)
, (4.5)

where J>1 is the number of processors (or subdomains), T(1) and T(J) are the wall time
of the parallel program with one and J processors, respectively. From Table 2, we can
see that our parallel algorithm has a good parallel performance. Especially, superlinear
speedups and parallel efficiencies bigger than one were obtained when the number of
processors is 2, 4, 6 and 8, respectively. This often observed effect for such ”embarrass-
ingly” parallel computations arises from the aggregate effect of the increasing amounts
of cache memory available to store data for size-fixed problem.

It is remarked that from Table 2, one may see that as the number of processors in-
creases from 8 to 12 and to 16, the parallel efficiency quickly drops. This is due to the
redundant computations for the coarse grid problem which became a more significant
fraction of the total computations for each processor (in our numerical experiments, the
coarse grid problem was solved sequentially and independently by all processors, while
the coarse grid size H was 1/50 leading to a big scale computation). Therefore, when
the computational scale of the coarse grid problem is big, it is necessary to compute the
coarse grid solution in parallel for a better parallel performance. This will be considered
in our future work.

4.2 Analytical solution in 3D case

In this example, the exact solution to the Navier-Stokes equations is given by

u1= x2(x−1)2[2y(y−1)(2y−1)z2(z−1)2−2y2(y−1)2z(z−1)(2z−1)],

u2=y2(y−1)2[−2x(x−1)(2x−1)z2(z−1)2+2x2(x−1)2z(z−1)(2z−1)],
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u3= z2(z−1)2[2x(x−1)(2x−1)y2(y−1)2−2x2(x−1)2y(y−1)(2y−1)],

p= x2+y2+z2−1,

where Ω=[0,1]×[0,1]×[0,1], which is decomposed into 2×2×2 subdomains of equal size
in our numerical test. The body force f is computed by (2.1a).

We first set ν= 0.1 and then compute the finite element solution with Algorithm 3.2
and another similar algorithm where the coarse grid nonlinear problem is solved by
Newton iterations and the fine grid problem is the same as Algorithm 3.2 (we denote this
algorithm as N-O Algorithm), where the stopping condition (3.22) with c=0.1 and s= 2
is employed. The numerical results are listed in Table 3, which shows good agreement
with the theoretical predictions. It is also shown that there is no difference between the
computed solution by our Algorithm 3.2 and the N-O Algorithm; however, our proposed
simplified iterative algorithm takes less computational time than the N-O Algorithm; the
bigger the computational scale, the more the computational time saved by our proposed
algorithm compared to the N-O algorithm.

Secondly, to further compare our simplified iterative algorithm with the N-O Algo-
rithm, we set h=1/8, H=1/4 and then compute the finite element solution with various
values of the viscosity ν. The numerical results listed in Table 4 show that as ν decreases
to ν=10−6, both our algorithm and the N-O algorithm fail to work. This may be caused

Table 3: Errors of the computed solutions for 3D case.

Method h H it CPU(s) ∥|∇(u−uh
m)|∥0,Ω ∥|p−ph

m|∥0,Ω rate
1/4 1/2 2 0.178997 0.0397858 0.0329596 -
1/8 1/4 2 0.982288 0.00761281 0.00799658 2.22044

Algorithm 3.2 1/12 1/6 2 4.24722 0.00283863 0.00355064 2.20303
1/16 1/8 2 15.5743 0.00142742 0.00199967 2.16527
1/20 1/10 2 48.4488 0.000868242 0.00128148 2.09001
1/4 1/2 2 0.193378 0.0397858 0.0329596 -
1/8 1/4 2 1.07044 0.00761281 0.00799658 2.22044

N-O Algorithm 1/12 1/6 2 4.5207 0.00283863 0.00355064 2.20303
1/16 1/8 2 16.2599 0.00142742 0.00199967 2.16527
1/20 1/10 2 49.6552 0.000868242 0.00128148 2.09001

Table 4: Comparison of the methods.

ν
Algorithm 3.2 N-O Algorithm

CPU(s) ∥|∇(u−uh
m)|∥0 ∥|p−ph

m)|∥0 CPU(s) ∥|∇(u−uh
m)|∥0 ∥|p−ph

m)|∥0
100 1.01357 0.000862893 0.00798686 1.09272 0.000862893 0.00798686

10−1 0.982288 0.00761281 0.00799658 1.07044 0.00761281 0.00799658
10−2 0.978332 0.0760202 0.00799817 1.0756 0.0760202 0.00799817
10−3 0.992493 0.760167 0.0079984 1.06746 0.760167 0.0079984
10−4 0.982308 7.57423 0.00800595 1.05945 7.57542 0.00800565
10−5 0.979465 66.7898 0.00914237 2.17457 70.5172 0.00830664
10−6 – – – – – –
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by the invalidation of the stability condition (3.8). For all values of ν being tested, there
has no obvious difference between the computed solutions by the two methods; howev-
er, it is clearly shown that our proposed algorithm spends less computational time than
the N-O Algorithm.

4.3 Lid-driven cavity flow

Here we consider the lid-driven cavity flow problem defined in the square domain Ω=
[0,1]×[0,1]. With zero external body force, velocities are zero on all edges except the top
one (the lid), which has a driving horizontal velocity of one.

We set h= 1/64, H = 1/32 and compute the finite element solution by our Algorith-
m 3.2, where the stopping condition (3.22) for nonlinear iterations on the coarse grid is
employed. Figs. 5 and 6 show the computed streamlines and isobars at ν = 1 and 0.1,
respectively, with four subdomains. This test case illustrated the effectiveness of the pro-
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Figure 5: Computed streamlines (a) and isobars (b) for the lid-driven cavity flow at ν=1.
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Figure 6: Computed streamlines (a) and isobars (b) for the lid-driven cavity flow at ν=0.1.
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posed algorithm.

4.4 Backward-facing step flow

In this example, we consider the 2D backward-facing step flow which is a significant test
problem for validating the robustness of a Navier-Stokes solver. This problem is defined
on a long channel [0,30]×[−0.5,0.5], with no-slip conditions imposed on the top and
bottom walls, as well as the lower half of the left boundary. At the inlet boundary, a fully
developed parabolic velocity profile u1=24y(0.5−y) for 0≤y≤0.5 is specified. See Fig. 7
for detailed geometry and boundary conditions information.

We decompose the flow domain into 5×1 disjoint sub-domains of equal size, and then
extend each sub-domain outside with an extra layer of size h. The quasi-uniform meshes
sizes are set as H = 1/32, h= 1/64. Figs. 8 and 9 depict the computed streamlines and
isobars, which illustrated the effectiveness of our proposed method.

Figure 7: Schematic diagram of the backward-facing step flow.

(a) (b)
Figure 8: Computed streamlines for backward-facing step flow at ν=1 (a) and ν=0.1 (b).

(a) (b)
Figure 9: Computed isobars for backward-facing step flow at ν=1 (a) and ν=0.1 (b).

5 Conclusions

In this work, we have presented and analyzed a simplified parallel two-level iterative
finite element method for the incompressible Navier-Stokes equations. It is based on a
coarse grid nonlinear problem which is solved by a simple iterative method and local fine
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grid linearized Oseen correction problems defined in overlapped subdomains. Under
some appropriate regularity assumptions and the stability condition, error bounds of the
approximate solution were estimated. Numerical tests have also been performed which
illustrated the effectiveness of the proposed method.
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