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Abstract. The pullback asymptotic behavior of the solutions for 2D Nonau-
tonomous G-Navier-Stokes equations is studied, and the existence of its L2-
pullback attractors on some bounded domains with Dirichlet boundary conditions
is investigated by using the measure of noncompactness. Then the estimation of
the fractal dimensions for the 2D G-Navier-Stokes equations is given.
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1 Introduction

The Navier-Stokes equations have received much attention over past decades due to
their importance in the understanding of fluids motion and turbulence. In this paper,
we consider the 2D nonautonomous G-Navier-Stokes equations on some bounded
domain Ω⊂R2 with Dirichlet boundary conditions, which has the following form,
(see Roh [1, 2] and Jiang and Hou [3])

∂u
∂t

− ν∆u + (u · ∇)u +∇p = f (x, t), in Ω × (0, ∞), (1.1a)

∇ · (gu) = 0, in Ω × (0, ∞), (1.1b)
u(x, t) = 0, on ∂Ω, (1.1c)
u(x, 0) = u0(x), in Ω, (1.1d)
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where u(x, t)∈R2 and p(x, t)∈R denote the velocity and the pressure, ν>0 and
f= f (x, t)∈(L2(Ω))2 is the time-dependent external force. 0<m0≤g=g(x1, x2)≤M0.
Here, g=g(x1, x2) is a suitable real-valued smooth function. When g=1, the Eqs. (1.1)
become the usual 2D Navier-Stokes equations. In [12], Raugel and Sell proved global
existence of strong solutions for large initial data and forcing terms in thin three di-
mensional domains. In 2005, Roh applied Raugel and Sell methods on Ωg=Ω2 × (0, g)
and derive the 2D G-Navier-Stokes equations form 3D Navier-Stokes equation in [1,2].
In this paper, our aim is to study the long-time behaviour of weak solutions of problem
(1.1) by using the theory of pullback attractors. This theory is a natural generalization
of the theory of global attractors developed to study autonomous dynamical systems
(see [3–12]), and the theory of pullback attractors has an advantage over the theory of
uniform attractors (see [13]) allowing the nonautonomous term to be an arbitrary in
suitable norms.

Recently, Caraballo in [14] introduces the notion of pullback D-attractor for nonau-
tonomous dynamical systems and prove the existence of pullback D-attractor on some
unbounded domains by using the energy equation method. Langa in [15] obtains frac-
tal dimension for 2D N-S equation. Motivated by some ideas in [14, 15], we present
a new equivalent condition (PC) for pullback D-asymptotically compact by using the
measure of noncompactness. In this paper, we prove the existence of pullback at-
tractor and estimate its fractal dimension for 2D G-N-S equation on some bounded
domains.

This paper is organized as follows: in Section 1, we recall some basic notations
and results for 2D G-Navier-Stokes equations and the concept about the measure of
noncompactness. In Section 2, we apply the theory of the measure of noncompactness
to obtain the existence of the pullback attractor for non-autonomous G-N-S equation
on some bounded domains; then, In Section 3, we estimate the fractal dimension of
pullback attractor for 2D G-N-S equation on some bounded domains.

2 Preliminaries

Now, we assume that the Poincaré inequality holds on Ω, there exists an λ1>0 such
that ∫

Ω
ϕ2gdx ≤ 1

λ1

∫
Ω
|∇ϕ|2gdx, ∀ϕ ∈ H1

0(Ω). (2.1)

The mathematical frameworks of (1.1) is the following:
• Let L2(g) = (L2(Ω))2 with the inner products,

(u, v) =
∫

Ω
u · νgdx and norms | · | = (·, ·)

1
2 , u, v ∈ L2(g).

• Let H1
0(g) = (H1

0(Ω))2, which is endowed with the inner products,

((u, v)) =
∫

Ω

2

∑
j=1

∇uj · ∇vjgdx,
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and norms

∥ · ∥ = ((·, ·)) 1
2 ·, u = (u1, u2), v = (v1, v2) ∈ H1

0(g).

Note that thanks to (2.1), the norm ∥ · ∥ is equivalent to the usual one in H1
0(Ω). Let

D(Ω) be the space of C∞ functions with compact support contained in Ω and let

ℵ = {v ∈ (D(Ω))2 : ∇ · gv = 0 in Ω},

Hg = closure of ℵ in L2(g),

Vg = closure of ℵ in H1
0(g).

With Hg and Vg endowed with the inner product and norm of L2(g) and H1
0(g) respec-

tively, it follows from (2.1) that

|u|2 ≤ 1
λ1

∥u∥2, ∀u ∈ Vg. (2.2)

Now, we define a G-Laplacian operator as follows:

−∆gu = −1
g
(∇ · g∇)u = −∆u − 1

g
∇g · ∇u,

Using the G-Laplacian operator, we rewrite (1.1a) as follows:

∂u
∂t

− ν∆gu + ν
∇g
g

· ∇u + (u,∇)u +∇p = f . (2.3)

We define a G-orthogonal projection

Pg : L2(g) → Hg,

and G-Stokes operator

Agu = −Pg

(1
g
(∇ · (g∇u))

)
,

which satisfies the following proposition.

Proposition 2.1. ( [1, 2]) For the linear operator Ag, the following hold:
(1) Ag is a positive self-adjoint operator with compact inverse, where the domain of Ag,

D(Ag)=Vg ∩ H2(Ω).
(2) There exist countable eigenvalues of Ag satisfying 0<λg≤λ1≤λ2≤λ3≤· · · , where

λg=4π2m0/M0 and λ1 is the smallest eigenvalue of Ag. In addition, there exists the corre-
sponding collection of eigenfunctions {e1, e2, e3, · · · }, which forms an orthonormal basis for
Hg.
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When we apply the projection Pg into the Eq. (2.3), we can obtain the following
weak formulation of (1.1): let f∈Vg and u0∈Hg, we find

u ∈ L∞(0, T; Hg) ∩ L2(0, T; Vg), T > 0, (2.4)

such that

d
dt
(u, v) + ν((u, v)) + bg(u, u, v) + ν(Ru, v) = ⟨ f , v⟩, ∀v ∈ Vg, ∀t > 0, (2.5a)

u(0) = u0, (2.5b)

where bg : Vg × Vg × Vg → R is given by

bg(u, v, w) =
2

∑
i,j=1

∫
ui

∂vj

∂x
wjgdx, (2.6a)

Ru = Pg

[1
g
(∇g · ∇)u

]
, ∀u ∈ Vg. (2.6b)

Then, the weak formulation (2.5a) is equivalent to the functional equation

du
dt

+ νAgu + Bu + νRu = f , (2.7a)

u(0) = u0, (2.7b)

where Ag : Vg → V
′
g is the G-Stokes operator defined by

⟨Agu, v⟩ = ((u, v)), ∀u, v ∈ Vg, (2.8)

and B(u)=B(u, u)=Pg(u · ∇)u is a bilinear operator B : Vg × Vg → V
′
g defined by

⟨B(u, v), w⟩ = bg(u, v, w), ∀u, v, w ∈ Vg.

Now, we recall some well known inequalities (see Temam [16]) that we will be
using in what follows

|B(u, v, w)| ≤ C|u| 1
2 ∥u∥ 1

2 ∥v∥|w| 1
2 ∥w∥ 1

2 , ∀u, v, w ∈ Vg, (2.9)

here C denote positive constants, which may be different from line to line and even in
the same line.

The G-Stokes operator Ag is an isomorphism from Vg into V
′
g, while B and R satisfy

the following inequalities (see Roh [2] and Sell and You [17]):

∥B(u)∥V′
g
≤ c|u|∥u∥, ∥Ru∥V′

g
≤ |∇g|∞

m0λ1/2
1

∥u∥, ∀u ∈ Vg. (2.10)

We have the following concept and result (see Bae [18] and Temam [16]).
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Proposition 2.2. Given f∈L2(g), u0(x)∈Hg, there exists a unique

u(x, t) ∈ L∞(R+; Hg) ∩ L2(0, T; Vg) ∩ C(R+; Hg), ∀T > 0,

such that (2.5a)-(2.5b) hold.

Now, we recall some basic notions and result about existence of pullback attractors.
Let X be a complete metric space with distance d(·, ·). A two-parameter family of

mappings acting on X: U(t, τ) : X → X, t ≥ τ, τ ∈ R, is said to be an evolutionary
process if

(1) U(t, τ)=U(t, r)U(r, τ), for all τ ≤ r ≤ t,
(2) U(t, τ)=Id is the identity operator, τ ∈ R.
Let D be a nonempty class of parameterized sets D̂={D(t): t∈R}⊂P(X), where

P(X) denotes the family of all nonempty subsets of X. The following two definitions
can be found in [20].

Definition 2.1. It is said that B̂ ∈ D is pullback D-absorbing for the process U(t, τ) if for
any t∈R and any D̂∈D, there exists a τ0(t, D̂)≤t such that

U(t, τ)D(τ) ⊂ B(t), for τ ≤ τ0(t, D̂).

Definition 2.2. A family
Â = {A(t) : t ∈ R} ⊂ P(X),

is said to be a pullback D-attractor for the process U(·, ·) in X if
(1) A(t) is compact for every t∈R,
(2) Â is pullback D-attracting, i.e.,

lim
τ→−∞

dist(U(t, τ)D(τ), A(t)) = 0, for all D̂ ∈ D and all t ∈ R,

(3) Â is invariant, i.e., U(t, τ)A(τ)=A(t), for −∞<τ≤t<+∞, where dist(A, B) is the
Hausdorff semi-distance between A and B, defined as

dist(A, B) = sup
x∈A

inf
y∈B

d(x, y), for A, B ⊂ X.

We call Â minimal if for every family Ĉ={C(t): t∈R⊂P(X)} of closed sets satis-
fying

lim
τ→−∞

dist(U(t, τ)B(τ), C(τ)) = 0,

where A(t)⊂C(t).
Let B(X) is the set of all bounded subsets of X and B∈B(X). Its Kuratowski mea-

sure of noncompactness α(B) is defined by

α(B) = inf
{

δ|B admits a finite cover by set of diameter ≤ δ
}

.

It has the following properties (see Sell and You [17], Hale [19]).
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Lemma 2.1. Let B, B1, B2∈B(X) . Then
(1) α(B) = 0 ⇔ α(N(B, ε)) ≤ 2ε ⇔ B is compact;
(2) α(B1 + B2) ≤ α(B1) + α(B2);
(3) α(B1) ≤ α(B2) whenever B1 ⊂ B2;
(4) α(B1 ∪ B2) ≤ max{α(B1), α(B2)};
(5) α(B) = α(B);
(6) if B is a ball of radius ε, then α(B) ≤ 2ε.

Lemma 2.2. Let · · · ⊃Fn⊃Fn+1⊃· · · be a sequence of nonempty closed subsets of X such that
α(Fn)→0, as n→∞. Then F=∩∞

n=1Fn is nonempty and compact.

Definition 2.3. A process U(t, τ) on X is said to be pullback D-limit-set compact if for any
D̂∈D,

lim
s→−∞

α
( ∪

τ<s
U(t, τ)D(τ)

)
= 0.

Definition 2.4. Let X be a Banach space. A process U(t, τ) is said to be norm-to-weak con-
tinuous on X if for all t, τ∈R with t≥τ and for every sequence xn∈X,

xn → x strongly in X ⇒ U(t, τ)xn → U(t, τ)x weakly in X.

The following result is very useful to check that the process is norm-to-weak con-
tinuous.

Theorem 2.1. ( [11]) Let X, Y be two Banach space, X∗, Y∗ be respectively their dual spaces.
Assume that X is dense in Y, the injection i : X → Y is continuous, its adjoint i∗ : Y∗ →
X∗ is dense, and U is a norm-to-weak continuous process on Y. Then U is a norm-to-weak
continuous process on X if and only if for any τ∈R, t≥τ, U(t, τ) maps compact sets of X to
bounded sets of X.

Theorem 2.2. ( [20]) Let X be a Banach space, U(t, τ) be a norm-to-weak continuous process
in X satisfying the following conditions:

(1) There exists a family B̂ of pullback D-absorbing sets in X,
(2) U(t, τ) is pullback D-limit-set compact,

then there exists a minimal pullback D-attractor Â in X given by

A(t) =
∩
s≤t

∪
τ≤s

U(t, τ)B(τ).

Definition 2.5. ( [20]) Let X be a Banach space. A process U(t, τ) on X is said to satisfy
pullback D-Condition (C) if for any t∈R, D̂∈D and ϵ>0, there exist τ0(D̂, t, ϵ) and a finite
dimensional subspace X1 of X such that

P
( ∪

τ<τ0

U(t, τ)D(τ)
)

is bounded; (2.11a)∥∥∥(I − P)
( ∪

τ≤τ0

U(t, τ)D(τ)
)∥∥∥ ≤ ε, (2.11b)
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where P : X → X1 is a bounded projector.

Theorem 2.3. ( [20]) Let U(t, τ) be a process in a uniformly convex Banach space X. Then
the following conditions are equivalent:

(1) U(t, τ) satisfies pullback D-Condition (C),
(2) U(t, τ) is pullback D-limit-set compact.

3 The existence of pullback attractor on bounded domains

Denote by L2
loc(R, X) the metrizable space of function f (s), s∈R with value in X that

are locally 2-power integrable in the Bochner sense , It is equipped with the local 2-
power mean convergence topology. Now, we apply the measure of noncompactness
to prove the existence of pullback attractor for 2D G-Navier-Stokes equations. We
have the following lemma (see Jiang and Hou [21]).

Lemma 3.1. Suppose f∈L2
loc(R, Hg) is such that

| f |2b = sup
t∈R

∫ t+1

t
| f (s)|2ds < ∞, (3.1)

u0(x)∈Hg, and let

u(x, t) ∈ L∞(R+, Hg) ∩ L2
loc(0, T, Vg) ∩ C(R+, Hg), ∀t > 0,

be a weak solution of (1.1). Then for all t≥τ, with σ=νλ1, the following estimate holds,

|u(t)|2 ≤ |u0|2e−σγ0(t−τ) + R2
1, (3.2)

where

R2
1 = σ−1(1 − e−σγ0)−1| f |2b and γ0 = 1 − 2ν

|∇g|∞
m0

√
λ1

, (3.3)

for sufficiently small |∇g|∞.

For any f∈L2
loc(R, Hg), | f |2b=| f0|2b, using (3.1), we obtain

B0 =
{

u ∈ Hg
∣∣|u|2 ≤ 2R2

1 = ρ2
0
}

, (3.4)

is the pullback D-absorbing set in Hg.

Lemma 3.2. Suppose f∈L2
loc(R, Hg) satisfying (3.1) and u0(x)∈Hg. Let

u(x, t) ∈ L∞(R+, Vg) ∩ L2
loc(0, T, D(Ag)) ∩ C(R+, Vg), u

′
(x, t) ∈ L2

loc(Rτ ; Hg), ∀t > 0,

be a strong solution of (1.1), then for all t≥τ, the following estimates hold:

∥u(t)∥2 ≤ ∥u(τ)∥2e−β(t−τ) + (1 − e−β)−1| f |2b, (3.5a)
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where

β = λ
(

2ν − 1 − 2Cρ0

λ1/2
0

− 2ν|∇g|∞
m0λ1/2

0

)
, (3.5b)

for sufficiently small |∇g|∞.

Let
B1 =

∪
f∈Γ

∪
t>t0+1

ϕ(t0 + 1, f , B0)

. By using (3.2), B1 is bound, ∥u∥2≤ρ2
1, ∀u∈B1, and B1 is the pullback D-absorbing set

in Vg.

Theorem 3.1. If f (x, t)∈L2
loc(R; Hg) satisfies (3.1), then the process {U(t, τ)} corresponding

to problem (1.1) possesses a minimal pullback D-attractor

A = {At}t∈R in Hg. (3.6)

Proof. From Lemma 3.1, we know that the process U(t, τ) corresponding to prob-
lem (1.1) process a family of B̂ of pullback D-absorbing sets in Hg. It is easy to see that
the process U(t, τ) is weakly continuous in Vg (see [13]), From Lemma 3.1, we know
that the process U(t, τ) maps bounded sets of Hg to bounded sets of Hg for all τ∈R,
t≥τ. In view of the Theorem 2.1, it is clear that the process U(t, τ)is norm-to-weak
continuous in Hg.

From Theorem 2.3, we need only to verify that the family of process {U(t, τ)}
satisfies pullback D-Condition (C) in Hg.

For fixed n, let H1 be the subspace spanned by ω1, · · · , ωn, H2 be the orthogonal
complement of H1 in Hg. For any u∈D(Ag), we write

u = u1 + u2, u1 ∈ H1, u2 ∈ H2, for any u ∈ Hg.

Taking the inner product of the equation of (2.7a) with u2 in Hg, we have

1
2

d
dt
|u2|2 + ν∥u2∥2 + (B(u), u2) + ν(Ru, u2) = ( f , u2). (3.7)

Using Young’s inequality, together with (2.9), we have

|(B(u), u2)| ≤ C|u| 1
2 ∥u∥ 3

2 |u2|
1
2 ∥u2∥

1
2 ≤ C|u| 1

2 ∥u∥ 3
2 1

λ1/4
1

∥u2∥

≤ C
λ1/4

1

(
νλ

1
4
1 ∥u2∥2

3C + 3C|u|∥u∥3

4νλ1/4
1

)
= ν

3∥u2∥2 + 3C
4νλ1/2

1
|u|∥u∥3,

(3.8)

|(Ru, u2)| ≤ |Ru| · |u2| ≤ |∇g|∞
m0

∥u∥ · |u2| ≤ |∇g|∞
m0λ1/2

1
∥u∥ · ∥u2∥

≤ |∇g|∞
m0λ1/2

1

(
∥u2∥2

3 · m0λ1/2
1

|∇g|∞ + 3|∇g|∞
4m0λ1/2

1
∥u∥2

)
= ν

3∥u2∥2 + 3ν
4

(
|∇g|∞
m0λ1/2

1

)2
∥u∥2.

(3.9)
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Moreover,we have

2|( f , u2)| ≤ 2| f | · |u2| ≤
3| f |2
νλ1

+
νλ1|u2|2

3
≤ 3| f |2

νλ1
+

ν∥u2∥2

3
,

and
d
dt
|u2|2 + 2ν∥u2∥2 = 2( f , u2)− 2(B(u), u2)− 2ν(Ru, u2)

≤ 2|( f , u2)|+ 2|(B(u), u2)|+ 2ν|(Ru, u2)|

≤ 3| f |2
νλ1

+
ν∥u2∥2

3
+

2ν∥u2∥2

3
+

3C|u|∥u∥3

2νλ1/2
1

+
2ν∥u2∥2

3
+

3ν

2

( |∇g|∞
m0λ1/2

1

)2
∥u∥2.

Consequently,

d
dt
|u2|2 +

ν

3
∥u2∥2 ≤3| f |2

νλ1
+

3C
2νλ1/2

1

|u|∥u∥3 +
3ν

2

( |∇g|∞
m0λ1/2

1

)2
∥u∥2

≤3| f |2
νλ1

+
3C

2νλ1/2
1

ρ0 · ρ3
1 +

3ν

2

( |∇g|∞
m0λ1/2

1

)2
ρ2

1.

Letting

m =
3C

2νλ1/2
1

ρ0 · ρ3
1 +

3ν

2

( |∇g|∞
m0λ1/2

1

)2
ρ2

1.

we have

d
dt
|u2|2 +

ν

3
∥u2∥2 ≤ 3| f |2

νλ1
+ m. (3.10)

Therefore

d
dt
|u2|2 +

νλ1

3
|u2|2 ≤ 3| f |2

νλ1
+ m. (3.11)

By the Gronwall inequality, we obtain

|u2(t)|2 ≤|u2(t0 + 1)|2e−
νλ1

3 (t−(t0+1)) +
∫ t

t0+1
e−

νλ1
3 (t−s)

(3| f |2
νλ1

+ m
)

ds

≤|u2(t0 + 1)|2e−
νλ1

3 (t−(t0+1)) +
3m
νλ1

e−
νλ1

3 (t0+1) +
∫ t

t0+1
e−

νλ1
3 (t−s) 3| f |2

νλ1
ds.

By (3.2) and Lemma 3.1, for any ϵ>0, we can take t large enough such that∫ t

t0+1
e−

νλ1
3 (t−s) 3| f |2

νλ1
ds ≤ ϵ

3
,

3m
νλ1

e−
νλ1

3 (t0+1) ≤ ϵ

3
. (3.12)

Let

t2 = t0 + 1 +
3

νλ1
ln

3ρ2
0

ϵ
.
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Then for t≥t2, we have

|u2(t0 + 1)|2e−
νλ1

3 (t−(t0+1)) ≤ ρ2
0e−

νλ1
3 (t−(t0+1)) ≤ ϵ

3
.

Hence we have
|u2(t)|2 ≤ ϵ, ∀t ≥ t2,

which indicates that the process {U(t, τ)} in Hg satisfies pullback condition (PC) in
Hg. Applying Theorems 2.10, the proof is completed. �

4 The dimension of pullback attractors in Hg

Let F : Vg × R → V
′
g be a given family of nonlinear operators such that, for all τ∈R,

and any u0∈Hg, there exists a unique function u(t)=u(t; τ, u0) satisfying

u ∈ L2(τ, T; Vg) ∩ C([τ, T]; Hg), F(u(t), t) ∈ L
′
(τ, T; V

′
g), for all T > τ, (4.1a)

du
dt

= F(u(t), τ), t > τ, (4.1b)

u(τ) = u0. (4.1c)

We define
U(t, τ)u0 = u(t; τ, u0), τ ≤ t, u0 ∈ Hg.

Let T∗∈R be fixed, we assume that there exists a family {K(t); t ≤ T∗} of non-empty
compact subsets of Hg satisfying the invariance property

U(t, τ)K(τ) = K(t), for all τ ≤ t ≤ T∗. (4.2)

We have

Lemma 4.1. ( [15]) Let us suppose that∪
τ≤T∗

K(τ) is relatively compact in Hg,

and there exist qj, j = 1, 2, · · · , such that

q̃j ≤ qj, for any j ≥ 1, (4.3a)

qn0 ≥ 0, qn0+1 < 0 for some n0 ≥ 1, (4.3b)
qj ≤ qn0 + (qn0 − qn0+1)(n0 − j), for all j = 1, 2, · · · . (4.3c)

Then

dF(K(τ)) ≤ d0 := n0 +
qn0

qn0 − qn0+1
, for all τ ≤ T∗, (4.4a)
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where

q̃j = lim sup
T→+∞

sup
τ≤T∗

sup
u0∈K(τ−T)

( 1
T

∫ τ

τ−T
Trj(F

′
(U(s, τ − T)u0, s))ds

)
, (4.4b)

F
′

: (u, t) ∈ Vg × (−∞, T∗] → F
′
(u, t) ∈ L(Vg, V

′
g). (4.4c)

Below we will give the following main result.

Theorem 4.1. Suppose that f∈L2
loc(R; V

′
g) is such that

∫ t

−∞
∥ f (s)∥2

∗ds < +∞, for all t ∈ R.

Then, the dimension of pullback attractor satisfies

dF(A(τ)) ≤ max
(

1,
c

λ1ν4m̃2 ∥ f ∥2
L∞(−∞,T∗;V ′

g )

)
, for all τ ∈ R,

where m̃ = 1 − 2|∇g|∞/m0λ1/2
1 for sufficiently small |∇g|∞.

Proof. Since problems (2.5a) and (2.5b) can be written in the form (4.1b) and (4.1c),
we let

F(u, t) = −νAu − B(u)− νRu + f (t).

For each t≤T∗, the mapping F(·, t) is Fréchet differentiable in Vg, and u, v ∈ Vg is
continuous,

F
′
(u, t)v = −νAv − B(u, v)− B(v, u)− ν(Ru, v), (4.5)

Let u0, v1
0, · · · , vj

0∈Hg, and τ≤T∗ be fixed. Let φ1(s), φ2(s), · · · , φj(s), s≥τ, be an or-

thonomal basis in Hg of the subspace spanned by v(s; τ, u0, v
′
0), · · · , v(s; τ, u0, vj

0), the
corresponding solution of (4.1b). We can assume that φi(s)∈Vg almost everywhere
s≥τ with

Trj(F
′
(U(s, τ)u0, s)) = sup

vi
0 ∈ Hg

|vi
0| ≤ 1, i ≤ j

( j

∑
i=1

(F
′
(U(s, τ)u0, s)φi, φi

)
. (4.6)

Note that

j

∑
i=1

(F
′
(U(s, τ)u0, s)φi, φi) =

j

∑
i=1

(
− νAφi − B(φi, U(s, τ)u0, ϕi)− νR(φi, φi)

)
.
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We also have

∣∣∣ j

∑
i=1

B(φi, U(s, τ)u0, φi)
∣∣∣ =∣∣∣ ∫

Ω

j

∑
i=1

2

∑
k,l=1

φikDk(U(s, τ)u0)l(x)φil(x)g(x)dx
∣∣∣

≤
∫

Ω
|grad(U(s, τ)u0)(x)ρ(x)|dx

≤∥U(s, τ)∥|ρ| (with the Schwarz inequality),

where

ρ(x) =
j

∑
i
|√gφi(x)|2.

We have the Lieb-Thirring inequality

|ρ(τ)|2 =
∫

Ω
ρ2(x, τ)g(x)dx ≤ c

j

∑
i=1

∥φi∥2, (4.7a)

∣∣∣ j

∑
i=1

ν(Rφi, φi)
∣∣∣ = ∣∣∣ j

∑
i=1

(ν

g
(∇g · ∇φi)φi

)∣∣∣ ≤ j

∑
i=1

ν|∇g|∞
m0

∥φi∥∥φi∥. (4.7b)

Consequently,

∑
j
i=1

(
F

′
(U(s, τ)u0, s)φi, φi

)
≤ −ν ∑

j
i=1 ∥φi∥2 + ∥U(s, τ)u0∥ρ + ∑

j
i=1 ν

|∇g|∞
m0

∥φi∥∥φi∥
≤ − ν

2 ∑
j
i=1 ∥φi∥2 + c

2ν∥U(s, τ)u0∥2 + ∑
j
i=1 ν

|∇g|∞
m0λ1/2

1
∥φi∥2

≤ − νλ1
2

(
1 − 2|∇g|∞

m0λ1/2
1

)
∑

j
i=1 |φi|2 + c

2ν∥U(s, τ)u0∥2

= − σ
2

(
1 − 2|∇g|∞

m0λ1/2
1

)
j + c

2ν∥U(s, τ)u0∥2;

(4.8)

where in the second step above, we have used the Schwarz inequality and (3.4).
Therefore, we have

Trj(F
′
(U(s, τ)u0, s) ≤ −σ

2

(
1 − 2|∇g|∞

m0λ1/2
1

)
j +

c
2ν

∥U(s, τ)u0∥2. (4.9)

On the other hand,

d
dt
|u|2 + 2ν∥u∥2 = 2( f , u)− 2ν

((∇g
g

· ∇
)

u, u
)

,
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which gives

d
dt
|u|2 + 2ν∥u∥2 ≤ 2( f , u)− 2ν

((∇g
g

· ∇
)

u, u
)

,

and

|U(t, τ)u0|2 + 2ν
∫ t

τ
∥U(s, τ)u0∥2ds

≤ |u0|2 + 2
∫ t

τ
( f (s), U(s, τ)u0)ds − 2ν

∫ t

τ

((∇g
g

· ∇
)

U(s, τ)u0, U(s, τ)u0

)
ds.

Since

2
∫ t

τ
( f (s), U(s, τ)u0)ds ≤ ν

∫ t

τ
∥U(s, τ)u0∥2ds +

1
ν

∫ t

τ
∥ f (s)∥2

∗ds,

we have

ν
∫ t

τ
∥U(s, τ)u0∥2ds ≤|u0|2 +

1
ν

∫ t

τ
∥ f (s)∥2

∗ds − 2ν
∫ t

τ

((∇g
g

· ∇
)

U(s, τ)u0, U(s, τ)u0

)
ds

≤|u0|2 +
1
ν

∫ t

τ
∥ f (s)∥2

∗ds +
2ν|∇g|∞
m0λ1/2

1

∫ t

τ
∥U(s, τ)u0∥2ds,

which yields(
1 − 2|∇g|∞

m0λ1/2
1

)
ν
∫ t

τ
∥U(s, τ)u0∥2ds ≤ |u0|2 +

1
ν

∫ t

τ
∥ f (s)∥2

∗ds. (4.10)

By letting

m̃ = 1 − 2|∇g|∞
m0λ1/2

1

,

we have ∫ t

τ
∥U(s, τ)u0∥2ds ≤ |u0|2

m̃ν
+

1
m̃ν2

∫ t

τ
∥ f (s)∥2

∗ds. (4.11)

Let M=∥ f ∥2
L∞(−∞,T∗;V ′

g )
. We have

q̃j = −σm̃
2

j +
c

2m̃ν3 lim sup
T→+∞

1
T

∫ τ

τ−T
∥ f (s)∥2

∗ds ≤ −σm̃
2

j +
cM

2m̃ν3 .

Hence if M<σm̃2ν3/c, we take

qj = −σm̃
2

(j − 1), j = 1, 2, · · · , and n0 = 1,

we can obtain

dF(Aσ(t)) ≤ 1, for all τ ≤ T∗. (4.12)
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If M>σm̃2ν3/c, then taking

qj = −σm̃
2

j +
cM

2m̃ν3 , j = 1, 2, · · · , n0 = 1 +
[ cM

σm̃2ν3 − 1
]
,

where [·] denotes the integer part of a real number, we can obtain by using Lemma 4.1
that

dF(Aσ(t)) ≤
cM

σm̃2ν3 = cM
[
λ1ν4

(
1 − 2|∇g|∞

m0λ1/2
1

)2]−1
, for all τ ≤ T∗. (4.13)

Since ∪
t≤T∗

A(τ) is relatively compact in Hg,

whose proof we omit as it is similar to Theorem 3.6 in [15]. we obtain from (4.12) and
(4.13) that,

dF(A(τ)) ≤ max
(

1,
c

λ1ν4m̃2 ∥ f ∥2
L∞(−∞,T∗;V′

g )

)
, for all τ ∈ R.

Then theorem is proved. �
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