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Abstract. In this paper, we study a new two-step iteration scheme of mixed type for
two total asymptotically nonexpansive self mappings and two total asymptotically
nonexpansive non-self mappings and establish some weak convergence theorems in
the framework of uniformly convex Banach spaces. Our results extend and generalize
several results from the current existing literature.
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1 Introduction and preliminaries

Let C be a nonempty subset of a real Banach space E and T : C→C a nonlinear mapping.
F(T) denotes the set of fixed points of the mapping T, that is, F(T) = {x ∈ C : Tx = x},
F=F(S1)∩F(S2)∩F(T1)∩F(T2) denotes the set of common fixed points of the mappings
S1, S2, T1 and T2 and N denotes the set of all positive integers.

Definition 1.1. A mapping T is said to be total asymptotically nonexpansive [1] if

‖Tn(x)−Tn(y)‖≤ ‖x−y‖+µnψ(‖x−y‖)+νn , (1.1)

for all x,y∈C and n∈N, where {µn} and {νn} are nonnegative real sequences such that
µn→0 and νn→0 as n→∞ and a strictly increasing continuous function ψ : [0,∞)→ [0,∞)
with ψ(0)=0.
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From the definition, we see that the class of total asymptotically nonexpansive map-
pings include the class of asymptotically nonexpansive mappings as a special case; see
also [4] for more details.

Remark 1.1. From the above definition, it is clear that each asymptotically nonexpansive
mapping is a total asymptotically nonexpansive mapping with νn = 0, µn = kn−1 for all
n≥1, ψ(t)= t, t≥0.

Definition 1.2. A subset C of a Banach space E is said to be a retract of E if there exists a
continuous mapping P : E→C (called a retraction) such that P(x)= x for all x∈C. If, in
addition P is nonexpansive, then P is said to be a nonexpansive retract of E.

If P : E→C is a retraction, then P2=P. A retract of a Hausdorff space must be a closed
subset. Every closed convex subset of a uniformly convex Banach space is a retract.

Definition 1.3. Let C be a nonempty closed convex subset of a Banach space E. A non-
self mapping T : C→E is said to be total asymptotically nonexpansive [18] if there exist
sequences {µn} and {νn} in [0,∞) with µn→0 and νn→0 as n→∞ and a strictly increasing
continuous function ψ : [0,∞)→ [0,∞) with ψ(0)=0 such that

‖T(PT)n−1(x)−T(PT)n−1(y)‖≤‖x−y‖+µnψ(‖x−y‖)+νn , (1.2)

for all x,y∈C and n∈N.

For the sake of convenience, we restate the following concepts and results.

Let E be a Banach space with its dimension greater than or equal to 2. The modulus
of convexity of E is the function δE(ε) : (0,2]→ [0,1] defined by

δE(ε)= inf
{

1−‖
1

2
(x+y)‖ :‖x‖=1,‖y‖=1, ε=‖x−y‖

}

.

A Banach space E is uniformly convex if and only if δE(ε)>0 for all ε∈ (0,2].

Definition 1.4. Let S= {x∈E : ‖x‖= 1} and let E∗ be the dual of E, that is, the space of
all continuous linear functionals f on E. The space E has:

(i) Gâteaux differentiable norm if

lim
t→0

‖x+ty‖−‖x‖

t

exists for each x and y in S .
(ii) Fréchet differentiable norm [14] if for each x in S , the above limit exists and is

attained uniformly for y in S and in this case, it is also well-known that

〈h, J(x)〉+
1

2
‖x‖2≤

1

2
‖x+h‖2 ≤〈h, J(x)〉+

1

2
‖x‖2+b(‖x‖) (∗)
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for all x,h ∈ E, where J is the Fréchet derivative of the functional 1
2‖.‖2 at x ∈ E, 〈..〉 is

the pairing between E and E∗, and b is an increasing function defined on [0,∞) such that

limt→0
b(t)

t =0.
(iii) Opial condition [8] if for any sequence {xn} in E, xn converges to x weakly it

follows that limsupn→∞‖xn−x‖< limsupn→∞‖xn−y‖ for all y∈E with y 6= x. Examples
of Banach spaces satisfying Opial condition are Hilbert spaces and all spaces lp(1<p<∞).
On the other hand, Lp[0,2π] with 1< p 6=2 fails to satisfy Opial condition.

Definition 1.5. A mapping T : C→C is said to be demiclosed at zero, if for any sequence
{xn} in C, the condition xn converges weakly to x ∈C and Txn converges strongly to 0
imply Tx=0.

Definition 1.6. A Banach space E has the Kadec-Klee property [13] if for every sequence
{xn} in E, xn → x weakly and ‖xn‖→‖x‖ it follows that ‖xn−x‖→0.

In 2003, Chidume et al. [2] studied the following iteration process for non-self asymp-
totically nonexpansive mappings:

x1= x∈C,

xn+1=P((1−αn)xn+αnT(PT)n−1xn), n≥1, (1.3)

where {αn} is a sequence in (0,1) and proved some strong and weak convergence theo-
rems in the framework of uniformly convex Banach spaces.

In 2004, Chidume et al. [3] studied the following iteration scheme:

x1= x∈C,

xn+1=P((1−αn)xn+αnT(PT)n−1xn), n≥1, (1.4)

where {αn} is a sequence in (0,1), and C is a nonempty closed convex subset of a real uni-
formly convex Banach space E, P is a nonexpansive retraction of E onto C, and proved
some strong and weak convergence theorems for asymptotically nonexpansive non-self
mappings in the intermediate sense in the framework of uniformly convex Banach spaces.

In 2006, Wang [16] generalized the iteration process (1.4) as follows:

x1= x∈C,

xn+1=P((1−αn)xn+αnT1(PT1)
n−1yn),

yn =P((1−βn)xn+βnT2(PT2)
n−1xn), n≥1, (1.5)

where T1, T2 : C→E are two asymptotically nonexpansive non-self mappings and {αn},
{βn} are real sequences in [0,1), and proved some strong and weak convergence theo-
rems for asymptotically nonexpansive non-self mappings.

Recently, Guo et al. [7] generalized the iteration process (1.5) as follows:

x1= x∈C,

xn+1=P((1−αn)S
n
1 xn+αnT1(PT1)

n−1yn),

yn =P((1−βn)S
n
2 xn+βnT2(PT2)

n−1xn), n≥1, (1.6)
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where S1,S2 : C→C are two asymptotically nonexpansive self mappings and T1, T2 : C→E
are two asymptotically nonexpansive non-self mappings and {αn}, {βn} are real se-
quences in [0,1), and proved some strong and weak convergence theorems for mixed
type asymptotically nonexpansive mappings.

Now, we define the mixed type iteration scheme.

Let E be a uniformly convex Banach space, C be a nonempty closed convex subset
of E and P : E → C is a nonexpansive retraction of E onto C. Let S1,S2 : C → C be two
total asymptotically nonexpansive self mappings and T1, T2 : C→E are two total asymp-
totically nonexpansive non-self mappings. Then the mixed type iteration scheme for the
mentioned mappings is as follows:

x1= x∈C,

xn+1=P((1−αn)S
n
1 xn+αnT1(PT1)

n−1yn),

yn =P((1−βn)S
n
2 xn+βnT2(PT2)

n−1xn), n≥1, (1.7)

where {αn} and {βn} are real sequences in [0,1).
Next we state the following useful lemmas to prove our main results.

Lemma 1.1. ([15]) Let {αn}∞
n=1, {βn}∞

n=1 and {rn}∞
n=1 be sequences of nonnegative numbers

satisfying the inequality

αn+1≤ (1+βn)αn+rn, ∀n≥1.

If ∑
∞
n=1 βn <∞ and ∑

∞
n=1rn <∞, then

(i) limn→∞ αn exists.

(ii) In particular, if {αn}∞
n=1 has a subsequence which converges strongly to zero, then

lim
n→∞

αn =0.

Lemma 1.2. ([12]) Let E be a uniformly convex Banach space and 0<α≤tn≤β<1 for all n∈N.
Suppose further that {xn} and {yn} are sequences of E such that

limsup
n→∞

‖xn‖≤ a, limsup
n→∞

‖yn‖≤ a, lim
n→∞

‖tnxn+(1−tn)yn‖= a

hold for some a≥0. Then

lim
n→∞

‖xn−yn‖=0.

Lemma 1.3. ([13]) Let E be a real reflexive Banach space with its dual E∗ has the Kadec-Klee
property. Let {xn} be a bounded sequence in E and p,q ∈ ww(xn) (where ww(xn) denotes the
set of all weak subsequential limits of {xn}). Suppose limn→∞‖txn+(1−t)p−q‖ exists for all
t∈ [0,1]. Then p=q.
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Lemma 1.4. ([13]) Let K be a nonempty convex subset of a uniformly convex Banach space
E. Then there exists a strictly increasing continuous convex function φ : [0,∞)→ [0,∞) with
φ(0)=0 such that for each Lipschitzian mapping T : C→C with the Lipschitz constant L,

‖tTx+(1−t)Ty−T(tx+(1−t)y)‖≤ Lφ−1
(

‖x−y‖−
1

L
‖Tx−Ty‖

)

for all x,y∈K and all t∈ [0,1].

The purpose of this paper is to study newly define mixed type iteration scheme (1.7)
and establish some weak convergence theorems in the setting of uniformly convex Ba-
nach spaces.

2 Main results

In this section, we prove some weak convergence theorems of iteration scheme (1.7) for
two total asymptotically nonexpansive self mappings and two total asymptotically non-
expansive non-self mappings in the framework of uniformly convex Banach spaces. First,
we shall need the following lemmas.

Lemma 2.1. Let E be a uniformly convex Banach space, C be a nonempty closed convex subset
of E. Let S1,S2 : C→C be two total asymptotically nonexpansive self mappings with sequences
{µn′

1
},{µn′′

1
},{νn′

1
},{νn′′

1
}∈ [0,∞) with µn′

1
,µn′′

1
,νn′

1
,νn′′

1
→0 as n→∞ and T1, T2 : C→E are two

total asymptotically nonexpansive non-self mappings with sequences {µn′},{µn′′},{νn′},{νn′′}∈
[0,∞) with µn′ ,µn′′ ,νn′ ,νn′′ →0 as n→∞ and

F=F(S1)
⋂

F(S2)
⋂

F(T1)
⋂

F(T2) 6=∅.

Let {xn} be the sequence defined by (1.7), where {αn} and {βn} are real sequences in [0,1) and
the following conditions are satisfied:

(i) ∑
∞
n=1µn′

1
<∞, ∑

∞
n=1µn′′

1
<∞, ∑

∞
n=1µn′ <∞, ∑

∞
n=1µn′′ <∞, ∑

∞
n=1νn′

1
<∞, ∑

∞
n=1νn′′

1
<∞,

∑
∞
n=1νn′ <∞, ∑

∞
n=1νn′′ <∞;

(ii) there exists a constant M>0 such that ψ(t)≤Mt, t≥0.

Then limn→∞‖xn−q‖ and limn→∞ d(xn,F) both exist for all q∈F.

Proof. Let q∈ F and let µn1
=max{µn′

1
,µn′′

1
}, µn =max{µn′ ,µn′′}, νn1

=max{νn′
1
,νn′′

1
}, νn =

max{νn′ ,νn′′} with ∑
∞
n=1µn1

<∞, ∑
∞
n=1µn <∞, ∑

∞
n=1νn1

<∞ and ∑
∞
n=1νn <∞. Again let

hn =max{µn1
,µn} and mn=max{νn1

,νn} for all n∈N with ∑
∞
n=1hn <∞ and ∑

∞
n=1mn<∞.
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From (1.7), we have

‖yn−q‖=‖P((1−βn)S
n
2 xn+βnT2(PT2)

n−1xn)−P(q)‖

≤ ‖(1−βn)S
n
2 xn+βnT2(PT2)

n−1xn−q‖

= ‖(1−βn)(S
n
2 xn−q)+βn(T2(PT2)

n−1xn−q)‖

≤ (1−βn)‖Sn
2 xn−q‖+βn‖T2(PT2)

n−1xn−q‖ (2.1)

≤ (1−βn)[‖xn−q‖+µn1
ψ(‖xn−q‖)+νn1

]+βn[‖xn−q‖+µnψ(‖xn−q‖)+νn ]

≤ (1−βn)[‖xn−q‖+hn M‖xn−q‖+mn]+βn[‖xn−q‖+hn M‖xn−q‖+mn]

≤ (1−βn)[(1+hn M)‖xn−q‖+mn]+βn[(1+hn M)‖xn−q‖+mn]

≤ (1+hn M)‖xn−q‖+mn. (2.2)

Again using (1.7), we have

‖xn+1−q‖=‖P((1−αn)S
n
1 xn+αnT1(PT1)

n−1yn)−P(q)‖

≤ ‖(1−αn)S
n
1 xn+αnT1(PT1)

n−1yn−q‖

= ‖(1−αn)(S
n
1 xn−q)+αn(T1(PT1)

n−1yn−q)‖

≤ (1−αn)‖Sn
1 xn−q‖+αn‖T1(PT1)

n−1yn−q‖

≤ (1−αn)[‖xn−q‖+µn1
ψ(‖xn−q‖)+νn1

]+αn[‖yn−q‖+µnψ(‖yn−q‖)+νn ]

≤ (1−αn)[‖xn−q‖+hn M‖xn−q‖+mn]+αn[‖yn−q‖+hn M‖yn−q‖+mn]

= (1−αn)[(1+hn M)‖xn−q‖+mn]+αn[(1+hn M)×‖yn−q‖+mn]

= (1−αn)(1+hn M)‖xn−q‖+αn(1+hn M)‖yn−q‖+mn. (2.3)

Using equation (2.2) in (2.3), we obtain

‖xn+1−q‖≤ (1−αn)(1+hn M)‖xn−q‖+αn(1+hn M)[(1+hn M)‖xn−q‖+mn]+mn

≤ (1+hn M)2‖xn−q‖+(2+hn M)mn

= (1+tn)‖xn−q‖+sn, (2.4)

where tn = 2hn M+h2
n M2 and sn = (2+hn M)mn. Since ∑

∞
n=1hn < ∞ and ∑

∞
n=1mn < ∞, it

follows that ∑
∞
n=1tn <∞ and ∑

∞
n=1sn <∞. Hence from Lemma 1.1 that limn→∞‖xn−q‖

exists.
Now, taking the infimum over all q∈F in (2.4), we have

d(xn+1,F)≤ (1+tn)d(xn,F)+sn (2.5)

for all n∈N, it follows from ∑
∞
n=1tn<∞, ∑

∞
n=1sn<∞ and Lemma 1.1 that limn→∞ d(xn,F)

exists. This completes the proof.

Lemma 2.2. Let E be a uniformly convex Banach space, C be a nonempty closed convex subset
of E. Let S1,S2 : C→C be two total asymptotically nonexpansive self mappings with sequences
{µn′

1
},{µn′′

1
},{νn′

1
},{νn′′

1
}∈ [0,∞) with µn′

1
,µn′′

1
,νn′

1
,νn′′

1
→0 as n→∞ and T1, T2 : C→E be two
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total asymptotically nonexpansive non-self mappings with sequences {µn′},{µn′′},{νn′},{νn′′}∈
[0,∞) with µn′ ,µn′′ ,νn′ ,νn′′ →0 as n→∞ and

F=F(S1)
⋂

F(S2)
⋂

F(T1)
⋂

F(T2) 6=∅.

Let {xn} be the sequence defined by (1.7). If the following conditions hold:
(i) {αn} and {βn} are real sequences in [a,b] for all n∈N and for some a,b∈ (0,1);
(ii) µn1

= max{µn′
1
,µn′′

1
}, µn = max{µn′ ,µn′′}, νn1

= max{νn′
1
,νn′′

1
}, νn = max{νn′ ,νn′′}

with ∑
∞
n=1µn1

< ∞, ∑
∞
n=1µn < ∞, ∑

∞
n=1νn1

< ∞ and ∑
∞
n=1νn < ∞, hn = max{µn1

,µn} and
mn =max{νn1

,νn} for all n∈N with ∑
∞
n=1hn <∞ and ∑

∞
n=1mn <∞;

(iii) For all x,y∈C, ‖x−T1(PT1)
n−1y‖≤‖Sn

1 x−T1(PT1)
n−1y‖ and ‖x−T2(PT2)n−1x‖≤

‖Sn
2 x−T2(PT2)n−1x‖;
(iv) there exists a constant M>0 such that ψ(t)≤Mt, t≥0.
Then

lim
n→∞

‖xn−Sixn‖= lim
n→∞

‖xn−Tixn‖=0 f or i=1,2.

Proof. By Lemma 2.1, limn→∞‖xn−q‖ exists for all q∈ F and therefore {xn} is bounded.

Thus there exists a real number ε>0 such that {xn}⊆C′=Bε(0)∩C, so that C′ is a closed
convex subset of C. Let limn→∞‖xn−q‖= r. Then r > 0 otherwise there is nothing to
prove.

Now (2.2) implies that

limsup
n→∞

‖yn−q‖≤ r. (2.6)

Also, we have

‖Sn
2 xn−q‖≤ (1+hn M)‖xn−q‖+mn, ∀n∈N,

‖T2(PT2)
n−1xn−q‖≤ (1+hn M)‖xn−q‖+mn, ∀n∈N,

‖Sn
1 xn−q‖≤ (1+hn M)‖xn−q‖+mn, ∀n∈N.

Hence

limsup
n→∞

‖Sn
2 xn−q‖≤ r, (2.7)

limsup
n→∞

‖T2(PT2)
n−1xn−q‖≤ r, (2.8)

limsup
n→∞

‖Sn
1 xn−q‖≤ r. (2.9)

Next,

‖T1(PT1)
n−1yn−q‖≤ (1+hn M)‖yn−q‖+mn

gives by virtue of (2.6) that

limsup
n→∞

‖T1(PT1)
n−1yn−q‖≤ r. (2.10)
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Also, it follows from

r= lim
n→∞

‖xn+1−q‖

= lim
n→∞

‖(1−αn)S
n
1 xn+αnT1(PT1)

n−1yn−q‖

= lim
n→∞

‖(1−αn)[S
n
1 xn−q]+αn[T1(PT1)

n−1yn−q]‖

and Lemma 1.2 that

lim
n→∞

‖Sn
1 xn−T1(PT1)

n−1yn‖=0. (2.11)

By condition (iv), it follows that

‖xn−T1(PT1)
n−1yn‖≤ ‖Sn

1 xn−T1(PT1)
n−1yn‖

and so, from (2.11), we have

lim
n→∞

‖xn−T1(PT1)
n−1yn‖=0. (2.12)

From (1.7) and (2.11), we have

‖xn+1−Sn
1 xn‖≤αn‖Sn

1 xn−T1(PT1)
n−1yn‖

≤ b‖Sn
1 xn−T1(PT1)

n−1yn‖→ 0 as n→∞. (2.13)

Hence from (2.11) and (2.13), we have

‖xn+1−T1(PT1)
n−1yn‖

≤ ‖xn+1−Sn
1 xn‖+‖Sn

1 xn−T1(PT1)
n−1yn‖→ 0 as n→∞. (2.14)

Now

‖xn+1−q‖≤ ‖xn+1−T1(PT1)
n−1yn‖+‖T1(PT1)

n−1yn−q‖

≤ ‖xn+1−T1(PT1)
n−1yn‖+(1+hn M)‖yn−q‖+mn, (2.15)

which gives from (2.14) that

r≤ liminf
n→∞

‖yn−q‖. (2.16)

From (2.6) and (2.16), we obtain

r=‖yn−q‖=‖(1−βn)(S
n
2 xn−q)+βn(T2(PT2)

n−1xn−q)‖. (2.17)

It follows from Lemma 1.2 that

lim
n→∞

‖Sn
2 xn−T2(PT2)

n−1xn‖=0. (2.18)
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By condition (iv), it follows that

‖xn−T2(PT2)
n−1xn‖≤ ‖Sn

2 xn−T2(PT2)
n−1xn‖

and so, from (2.18), we have

lim
n→∞

‖xn−T2(PT2)
n−1xn‖=0. (2.19)

Again note that

‖yn−xn‖= ‖P((1−βn)S
n
2 xn+βnT2(PT2)

n−1xn)−P(xn)‖

≤ ‖(1−βn)S
n
2 xn+βnT2(PT2)

n−1xn−xn‖

= βn‖T2(PT2)
n−1xn−Sn

2 xn‖

≤ b‖T2(PT2)
n−1xn−Sn

2 xn‖.

Hence from (2.18), we obtain

lim
n→∞

‖yn−xn‖=0. (2.20)

Now, note that

‖Sn
1 xn−xn‖≤ ‖Sn

1 xn−T1(PT1)
n−1yn‖+‖T1(PT1)

n−1yn−xn‖.

Hence from (2.11) and (2.12), we obtain

lim
n→∞

‖Sn
1 xn−xn‖=0. (2.21)

Also note that

‖xn+1−xn‖=‖P((1−αn)S
n
1 xn+αnT1(PT1)

n−1yn)−P(xn)‖

≤ ‖(1−αn)S
n
1 xn+αnT1(PT1)

n−1yn−xn‖

= ‖(Sn
1 xn−xn)+αn(S

n
1 xn−T1(PT1)

n−1yn)‖

≤ ‖Sn
1 xn−xn‖+αn‖Sn

1 xn−T1(PT1)
n−1yn‖

≤ ‖Sn
1 xn−xn‖+b‖Sn

1 xn−T1(PT1)
n−1yn‖→ 0 as n→∞, (2.22)

so that

‖xn+1−yn‖≤ ‖xn+1−xn‖+‖xn−yn‖→ 0 as n→∞. (2.23)

Since ‖xn−T1(PT1)
n−1yn‖≤‖Sn

1 xn−T1(PT1)
n−1yn‖ by condition (iv) and

‖Sn
1 xn−T1(PT1)

n−1xn‖

≤ ‖Sn
1 xn−T1(PT1)

n−1yn‖+‖T1(PT1)
n−1yn−T1(PT1)

n−1xn‖

≤ ‖Sn
1 xn−T1(PT1)

n−1yn‖+(1+hn M)‖yn−xn‖+mn.



384 G. S. Saluja / J. Math. Study, 50 (2017), pp. 375-390

Using (2.11), (2.20) and mn →0 as n→∞, we have

lim
n→∞

‖Sn
1 xn−T1(PT1)

n−1xn‖=0. (2.24)

Now, we have

‖xn−T1(PT1)
n−1xn‖≤ ‖xn−Sn

1 xn‖+‖Sn
1 xn−T1(PT1)

n−1xn‖.

Hence from (2.21) and (2.24), we obtain

lim
n→∞

‖xn−T1(PT1)
n−1xn‖=0. (2.25)

In addition, we have

‖xn+1−T1(PT1)
n−1yn‖≤ ‖xn+1−Sn

1 xn‖+‖Sn
1 xn−T1(PT1)

n−1yn‖.

Using (2.11) and (2.13), we have

lim
n→∞

‖xn+1−T1(PT1)
n−1yn‖=0. (2.26)

It follows from (2.19), (2.21) and the inequality

‖Sn
1 xn−T2(PT2)

n−1xn‖≤ ‖Sn
1 xn−xn‖+‖xn−T2(PT2)

n−1xn‖

that

lim
n→∞

‖Sn
1 xn−T2(PT2)

n−1xn‖=0. (2.27)

Since

‖xn+1−T2(PT2)
n−1yn‖

≤ ‖xn+1−Sn
1 xn‖+‖Sn

1 xn−T2(PT2)
n−1xn‖+‖T2(PT2)

n−1xn−T2(PT2)
n−1yn‖

≤ ‖xn+1−Sn
1 xn‖+‖Sn

1 xn−T2(PT2)
n−1xn‖+(1+hn M)‖xn−yn‖+mn,

from (2.13), (2.20), (2.27) and mn →0 as n→∞, it follows that

lim
n→∞

‖xn+1−T2(PT2)
n−1yn‖=0. (2.28)

Since Ti for i=1,2 is continuous and P is nonexpansive retraction, it follows from (2.27)
that

‖Ti(PTi)
n−1yn−1−Tixn‖

= ‖Ti[(PTi)(PT)n−2)yn−1]−Ti(Pxn)‖→ 0 as n→∞, (2.29)
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for i=1,2. In addition, we have

‖xn−T1xn‖≤ ‖xn−T1(PT1)
n−1xn‖+‖T1(PT1)

n−1xn−T1(PT1)
n−1yn−1‖

+‖T1(PT1)
n−1yn−1−T1xn‖

≤ ‖xn−T1(PT1)
n−1xn‖+(1+hn M)‖xn−yn−1‖+mn

+‖T1(PT1)
n−1yn−1−T1xn‖.

Thus, it follows from (2.23), (2.25), (2.29) and mn →0 as n→∞, that

lim
n→∞

‖xn−T1xn‖=0. (2.30)

Similarly, we can prove that

lim
n→∞

‖xn−T2xn‖=0. (2.31)

Finally, by using cond. (iv), we have

‖xn−S1xn‖≤ ‖xn−T1(PT1)
n−1xn‖+‖S1xn−T1(PT1)

n−1xn‖

≤ ‖xn−T1(PT1)
n−1xn‖+‖Sn

1 xn−T1(PT1)
n−1xn‖.

Thus, it follows from (2.24) and (2.25) that

lim
n→∞

‖xn−S1xn‖=0. (2.32)

Similarly, we can prove that

lim
n→∞

‖xn−S2xn‖=0. (2.33)

This completes the proof.

Lemma 2.3. Under the assumptions of Lemma 2.1, for all p1, p2 ∈ F= F(S1)∩F(S2)∩F(T1)∩
F(T2), the limit

lim
n→∞

‖txn+(1−t)p1−p2‖

exists for all t∈ [0,1], where {xn} is the sequence defined by (1.7).

Proof. By Lemma 2.1, limn→∞‖xn−z‖ exists for all z∈ F and therefore {xn} is bounded.
Let

an(t)=‖txn+(1−t)p1−p2‖

for all t ∈ [0,1]. Then limn→∞ an(0) = ‖p1−p2‖ and limn→∞ an(1) = ‖xn−p2‖ exists by
Lemma 2.1. It, therefore, remains to prove the Lemma 2.3 for t∈ (0,1). For all x∈C, we
define the mapping Wn : C→C by:

Rn(x)=P((1−βn)S
n
2 x+βnT2(PT2)

n−1x),

Wn(x)=P((1−αn)S
n
1 x+αnT1(PT1)

n−1Rn(x)).
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Then it follows that xn+1=Wnxn, Wn p=p for all p∈F. Now from (2.2) and (2.4) of Lemma
2.1, we see that

‖Rn(x)−Rn(y)‖≤ (1+hn M)‖x−y‖+mn ,

‖Wn(x)−Wn(y)‖≤ [1+tn ]‖x−y‖+sn = fn‖x−y‖+sn , (2.34)

where tn = 2hn M+h2
n M2 and sn = (2+hn M)mn with ∑

∞
n=1 tn < ∞ and ∑

∞
n=1sn < ∞ and

fn =1+tn. Since ∑
∞
n=1tn <∞, it follows that fn →1 as n→∞. Set

Sn,m=Wn+m−1Wn+m−2 . . .Wn, m∈N (2.35)

bn,m=‖Sn,m(txn+(1−t)p1)−(tSn,mxn+(1−t)Sn,m p2)‖.

From (2.34) and (2.35), we have

‖Sn,m(x)−Sn,m(y)‖

= ‖Wn+m−1Wn+m−2 . . .Wn(x)−Wn+m−1Wn+m−2 . . .Wn(y)‖+sn+m−1

≤ fn+m−1 fn+m−2‖Wn+m−3 . . .Wn(x)−Wn+m−3 . . .Wn(y)‖+sn+m−1+sn+m−2

...

≤
(n+m−1

∏
i=n

fi

)

‖x−y‖+
n+m−1

∑
i=n

si

= Gn‖x−y‖+
n+m−1

∑
i=n

si (2.36)

for all x,y∈C, where Gn =∏
n+m−1
i=n fi and Sn,mxn = xn+m and Sn,mp= p for all p∈F. Thus

an+m(t)=‖txn+m+(1−t)p1−p2‖

≤ bn,m+‖Sn,m(txn+(1−t)p1)−p2‖

≤ bn,m+Gnan(t)+
n+m−1

∑
i=n

si. (2.37)

By using Theorem 2.3 in [5], we have

bn,m≤ ϕ−1(‖xn−u‖−‖Sn,mxn−Sn,mu‖)

≤ ϕ−1(‖xn−u‖−‖xn+m−u+u−Sn,mu‖)

≤ ϕ−1(‖xn−u‖−(‖xn+m−u‖−‖Sn,mu−u‖))

and so the sequence {bn,m} converges uniformly to 0, i.e., bn,m → 0 as n → ∞. Since
limn→∞ Gn=1 and limn→∞ sn =0, therefore from (2.37), we have

limsup
n→∞

an(t)≤ lim
n,m→∞

bn,m+liminf
n→∞

an(t)= liminf
n→∞

an(t).

This shows that limn→∞ an(t) exists, that is, limn→∞‖txn+(1−t)p1−p2‖ exists for all t∈
[0,1]. This completes the proof.
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Lemma 2.4. Under the assumptions of Lemma 2.1, if E has a Frěchet differentiable norm, then
for all p1, p2∈F=F(S1)∩F(S2)∩F(T1)∩F(T2), the limit

lim
n→∞

〈xn, J(p1−p2)〉

exists, where {xn} is the sequence defined by (1.7), if Ww({xn}) denotes the set of all weak sub-
sequential limits of {xn}, then

〈q1−q2, J(p1−p2)〉=0

for all p1, p2∈F and q1,q2∈Ww({xn}).

Proof. Suppose that x= p1−p2 with p1 6= p2 and h= t(xn−p1) in inequality (∗). Then, we
get

〈xn−p1, J(p1−p2)〉+
1

2
‖p1−p2‖

2

≤
1

2
‖txn+(1−t)p1−p2‖

2

≤ t〈xn−p1, J(p1−p2)〉+
1

2
‖p1−p2‖

2+b(t‖xn−p1‖).

Since supn≥1‖xn−p1‖≤K∗ for some K∗
>0, we have

limsup
n→∞

〈xn−p1, J(p1−p2)〉+
1

2
‖p1−p2‖

2

≤
1

2
lim
n→∞

‖txn+(1−t)p1−p2‖
2

≤ t liminf
n→∞

〈xn−p1, J(p1−p2)〉+
1

2
‖p1−p2‖

2+b(tK∗).

That is,

limsup
n→∞

〈xn−p1, J(p1−p2)〉

≤ liminf
n→∞

〈xn−p1, J(p1−p2)〉+
b(tK∗)

tK∗
K∗.

If t → 0, then limn→∞〈xn−p1, J(p1−p2)〉 exists for all p1, p2 ∈ F; in particular, we have
〈q1−q2, J(p1−p2)〉=0 for all q1,q2∈Ww({xn}). This completes the proof.

Theorem 2.1. Under the assumptions of Lemma 2.2, if E has Frěchet differentiable norm, then
the sequence {xn} defined by (1.7) converges weakly to a common fixed point of S1, S2, T1 and T2.

Proof. By Lemma 2.4, 〈q1−q2, J(p1−p2)〉=0 for all q1,q2∈Ww({xn}). Therefore

‖q∗−p∗‖2= 〈q∗−p∗, J(q∗−p∗)〉=0

implies q∗= p∗. Consequently, {xn} converges weakly to a common fixed point in F=
F(S1)∩F(S2)∩F(T1)∩F(T2). This completes the proof.
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Theorem 2.2. Under the assumptions of Lemma 2.2, if the dual space E∗ of E has the Kadec-
Klee (KK) property and the mappings I−Si and I−Ti for i = 1,2, where I denotes the identity
mapping, are demiclosed at zero, then the sequence {xn} defined by (1.7) converges weakly to a
common fixed point of S1, S2, T1 and T2.

Proof. By Lemma 2.1, {xn} is bounded and since E is reflexive, there exists a subsequence
{xnk

} of {xn} which converges weakly to some q∗∈C. By Lemma 2.2, we have

lim
k→∞

‖xnk
−Sixnk

=0‖and lim
k→∞

‖xnk
−Tixnk

‖=0

for i= 1,2. Since by hypothesis the mappings I−Si and I−Ti for i= 1,2 are demiclosed
at zero, therefore Siq∗= q∗ and Tiq∗= q∗ for i=1,2, which means q∗∈ F= F(S1)∩F(S2)∩
F(T1)∩F(T2). Now, we show that {xn} converges weakly to q∗. Suppose {xnj

} is another
subsequence of {xn} converges weakly to some p∗∈C. By the same method as above, we
have p∗∈F and q∗, p∗∈Ww({xn}). By Lemma 2.3, the limit

lim
n→∞

‖txn+(1−t)q∗−p∗‖

exists for all t∈ [0,1] and so q∗= p∗ by Lemma 1.3. Thus, the sequence {xn} converges
weakly to q∗∈F. This completes the proof.

Theorem 2.3. Under the assumptions of Lemma 2.2, if E satisfies Opial’s condition and the
mappings I−Si and I−Ti for i = 1,2, where I denotes the identity mapping, are demiclosed at
zero, then the sequence {xn} defined by (1.7) converges weakly to a common fixed point of S1, S2,
T1 and T2.

Proof. Let u∗ ∈ F, from Lemma 2.1 the sequence {‖xn−u∗‖} is convergent and hence
bounded. Since E is uniformly convex, every bounded subset of E is weakly compact.
Thus there exists a subsequence {xnk

}⊂{xn} such that {xnk
} converges weakly to f ∗∈C.

From Lemma 2.2, we have

lim
k→∞

‖xnk
−Sixnk

‖=0and lim
k→∞

‖xnk
−Tixnk

‖=0

for i=1,2. Since the mappings I−Si and I−Ti for i=1,2 are demiclosed at zero, therefore
Si f ∗ = f ∗ and Ti f ∗ = f ∗ for i = 1,2, which means f ∗ ∈ F. Finally, let us prove that {xn}
converges weakly to f ∗. Suppose on contrary that there is a subsequence {xnj

}⊂ {xn}
such that {xnj

} converges weakly to g∗ ∈ C and f ∗ 6= g∗. Then by the same method as
given above, we can also prove that g∗∈F. From Lemma 2.1 the limits limn→∞‖xn− f ∗‖
and limn→∞‖xn−g∗‖ exist. By virtue of the Opial condition of E, we obtain

lim
n→∞

‖xn− f ∗‖= lim
nk→∞

‖xnk
− f ∗‖< lim

nk→∞
‖xnk

−g∗‖

= lim
n→∞

‖xn−g∗‖= lim
nj→∞

‖xnj
−g∗‖

< lim
nj→∞

‖xnj
− f ∗‖= lim

n→∞
‖xn− f ∗‖

which is a contradiction, so f ∗ = g∗. Thus {xn} converges weakly to a common fixed
point of S1, S2, T1 and T2. This completes the proof.
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3 Concluding remarks

In this paper, we study mixed type iteration scheme for two total asymptotically non-
expansive self mappings and two total asymptotically nonexpansive non-self mappings
and establish some weak convergence theorems using the following conditions: (a) the
space E has a Frěchet differentiable norm (b) dual space E∗ of E has the Kadec-Klee (KK)
property (c) the space E satisfies Opial’s condition. Our results extend and generalize
the corresponding results of [2, 6, 7, 9–12, 15–17] and many others.
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