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Abstract. Scale similarity is found in many natural phenomena in the universe, from
fluid dynamics to astrophysics. In large eddy simulations of turbulent flows, some
sub-grid scale (SGS) models are based on scale similarity. The earliest scale similarity
SGS model was developed by Bardina et al., which produced SGS stresses with good
correlation to the true stresses. In the present study, we perform a mathematical anal-
ysis of scale similarity. The analysis has revealed that the ratio of the resolved stress
to the SGS stress is γ2, where γ is the ratio of the second filter width to the first filter
width, under the assumption of small filter width. The implications of this analysis are
discussed in the context of large eddy simulation.
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1 Introduction

After decades of development, large eddy simulations (LES) [5, 14, 19] are being used in
the design process to predict vortex dominated, highly separated turbulent flows found
in many important applications in aerospace, mechanical and chemical engineering. One
important challenge in LES is the determination of the sub-grid scale (SGS) stress resulted
from the filtering of the nonlinear governing Navier-Stokes equations. Various models
have been developed to compute the SGS stress from the resolved field variables. Popular
models comprise the Smagorinsky model (SM) and its many variants including the static
[19] and dynamic SM [8], the scale similarity model (SSM) [1], the mixed model of SSM
and SM [1], and monotone integrated LES [2] or implicit LES [9], in which no explicit SGS
model is used. There is an extensive literature on each model with many applications.

Since the pioneering work by Bardina et al. on the SSM [1] for incompressible flow,
there has been an extensive effort in evaluating its performance by comparing with other
SGS models [7, 12, 16]. Furthermore the SSM has been extended to other flow problems
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including compressible flow [6] and combustion [11]. Direct numerical simulations and
experimental measurements [15, 16, 18] have demonstrated scale similarity in turbulent
flows. Many a priori tests using experimental or DNS data have shown a high correlation
between the true stress and the modeled SGS stress based on the SSM [15]. In Bardina’s
original SSM, the second filter or test filter has the same width as the first one. It was
proven by Speziale [20] that the Bardina constant must be 1 to satisfy Galilean invariance.
The present analysis to be shown later confirms this result. Other researchers suggested
using a different filter width for the second filter, e.g., in [15], and many approaches were
suggested to determine the Bardina constant [4, 18].

In a recent effort to understand the performance of these SGS models in the context of
discontinuous high order methods such as the discontinuous Galerkin method [3] or the
flux reconstruction (FR)/correction procedure via reconstruction method (CPR) [10, 21],
we performed a priori and a posteriori studies using the 1D Burgers’ equation [13]

∂u

∂t
+u

∂u

∂x
=ν

∂2u

∂x2
, x∈ [−1,1], (1.1)

where u is the state variable, ν is a constant viscosity, chosen to be 8×10−5 in the present
study to mimic high Reynolds number flow problems. The LES governing equation is
then obtained by filtering (1.1) with a low pass filter G∆(x,ξ) satisfying the following
conservative property

+∞∫

−∞

G∆(x,ξ)dξ=1, (1.2)

where ∆ denotes the filter width. Typical filters include the top hat filter defined as

G∆(x,ξ)=

{
1/∆, |x−ξ|6∆/2,
0, otherwise,

(1.3)

and the Gaussian filter

G∆(x,ξ)=

√
6

π∆2
e
− 6(x−ξ)2

∆2 . (1.4)

The filtering process is defined mathematically in the physical space as a convolution
operator. The filtered variable φ̂(x,t) of a space-time variable φ(x,t) in 1D is defined as

φ̂(x, t)=

+∞∫

−∞

G∆(x,ξ)φ(ξ,t)dξ. (1.5)

The filtering process is linear, i.e, φ̂+ϕ= φ̂+ ϕ̂. If the filter width is constant, the differ-

ential and the filter operators commute, i.e.,
∂̂φ
∂x =

∂φ̂
∂x . Applying a low-pass spatial filter to

Eq. (1.1), we obtain the following filtered equation

∂û

∂t
+û

∂û

∂x
=ν

∂2û

∂x2
− 1

2

∂τ

∂x
, (1.6)
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Figure 1: The initial energy spectrum.

where τ is the SGS stress
τ= ûu−ûû. (1.7)

To evaluate the performance of various models, a DNS was performed first, assuming an
initial turbulent energy spectrum of E0(k)∼ k−5/3, as shown in Fig. 1. One realization of
the initial condition is displayed in Fig. 2a, with randomly generated phase angles and
mean velocity of 1. A filtered solution of is shown in Fig. 2b. Note that high frequency
modes are removed by the filter.

A DNS simulation is performed until t=0.5 on a fine mesh with mesh size h=1/4,096
using a third order CPR method, and the solution and the spectrum at the final time is
shown in Fig. 3. It was verified that the DNS data is mesh independent. Note that the
solution is heavily dissipated near the high frequency regime. The top hat filter with
a filter width of 16h was then used to produce the filtered solution. In addition, the
“true” SGS stress (or τtrue) with the same filter width is computed from the DNS data.
The filtered solution was also used in various models to produce the “modeled” stress.
One of the SGS models we tested was the SSM of Bardina [1]. In our implementation,
the second filter with filter width of ∆2 = 2∆ was used to produce the SGS stress at the
resolved scale, i.e.,

L=
(
˜̂uû−˜̂u˜̂u

)
, (1.8)

where ∼ indicates filtering with width ∆2. In the a priori test, the SGS stress computed
with the SSM showed nearly perfect correlation (correlation coefficient > 0.99) with the
true stress, as shown in Fig. 4. Furthermore, we discovered that they are related by a
factor of 4, i.e.,

L

τtrue
=4. (1.9)
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Figure 2: One realization of the initial condition and the filtered solution.
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Figure 3: The solution and its spectrum of the DNS solution at t=0.5.

2 Analysis of scale similarity with a single Fourier mode

For the sake of simplicity without loss of generality, we consider periodic data u(x) at
a given time on domain [−π,π]. The solution can be decomposed into the following
Fourier modes

u(x)=
∞

∑
n=0

aneinx, (2.1)
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Figure 4: Comparison of the true stress and the modeled stress based on the SSM of Bardina When we first
saw the relation (1.9), we suspected that this was a bug. After we tested different initial conditions, we were
convinced that it was not a bug. The fact that (1.9) is true for arbitrarily-generated random initial conditions
prompted us to look for a deeper reason resulting in the following analysis.

where i=
√
−1, and n is the wave number. To illustrate the basic idea, we first consider a

single Fourier mode, i.e., u(x)= einx and the top hat filter. The filtered solution is then

û(x)=
1

∆

x+ ∆
2∫

x− ∆
2

einξdξ= sinc

(
n∆

2

)
·einx, (2.2)

where sinc(n∆/2) = sin(n∆/2)
n∆/2 . Obviously the filter only changes the magnitude of the

solution, but not the phase. In addition, we have

ûu(x)=
1

∆

x+ ∆
2∫

x− ∆
2

ei2nξdξ= sinc(n∆)·ei2nx. (2.3)

The SGS stress is then

τ=ûu−ûû= sinc(n∆)·ei2nx−sinc2

(
n∆

2

)
·ei2nx

=

[
sinc(n∆)−sinc2

(
n∆

2

)]
ei2nx. (2.4)
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Next we apply a second filter with a width of ∆2=γ∆ to the resolved variable to obtain

˜̂u(x)=
1

γ∆

x+ γ∆
2∫

x− γ∆
2

û(ξ)dξ= sinc

(
n∆

2

)
sinc

(
γn∆

2

)
einx, (2.5)

and

˜̂uû(x)=
1

γ∆

x+ γ∆
2∫

x− γ∆
2

û(ξ) û(ξ)dξ= sinc2

(
n∆

2

)
sinc(γn∆)ei2nx. (2.6)

The SGS stress of the resolved scale is then

L= ˜̂uû−˜̂u˜̂u= sinc2

(
n∆

2

)(
sinc(γn∆)−sinc2

(
γn∆

2

))
ei2nx. (2.7)

From (2.4) and (2.7), we obtain

L

τ
=

sinc2
(

n∆
2

)[
sinc(γn∆)−sinc2

(
γn∆

2

)]

sinc(n∆)−sinc2
(

n∆
2

) . (2.8)

In the limit of small n∆, we have

sinc(n∆)=1− (n∆)2

6
+O(n∆)4. (2.9)

Therefore, we obtain

L

τ
=

[
1− (n∆)

12

2
+O(n∆)4

][
− (γn∆)

6

2
+ (γn∆)

12

2
+O(n∆)4

]

− (n∆)
6

2
+ (n∆)

12

2
+O(n∆)4

=γ2+O(n∆)2. (2.10)

Note that the error term is quadratic. In the special case of γ=2, L=4τ. As it turns out
this result is also true for the Gaussian filter. The filtered solution with a Gaussian filter
is

û(x)=

∞∫

−∞

√
6

π∆2
e
− 6(x−ξ)2

∆2 einξdξ=

√
6

π∆2

∞∫

−∞

e
− 6(x−ξ)2

∆2 einξdξ. (2.11)

Set X=
√

6(x−ξ)/∆, so that ξ= x−(∆/
√

6)X, dξ=−(∆/
√

6)dX. Thus, we have

û(x)=

√
6

π∆2
· ∆√

6

∞∫

−∞

e
−X2+in

(
x− ∆√

6
X
)
dX=

√
1

π
einx

∞∫

−∞

e
−X2−in ∆√

6
X

dX= einxe−
(n∆)2

24 . (2.12)
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Similarly we can derive the following result

ûu(x)=

∞∫

−∞

√
6

π∆2
e
− 6(x−ξ)2

∆2 ei2nxdξ=

√
1

π
·ei2nx

∞∫

−∞

e
−X2−i2n ∆√

6
X

dX= ei2nxe−
(n∆)2

6 . (2.13)

The SGS stress is then

τ= ûu−ûû= ei2nxe−
(n∆)2

6 −ei2nxe−
(n∆)2

12 = ei2nxe−
(n∆)2

6

[
1−e

(n∆)2

12

]
. (2.14)

Again we apply a second filter with a width of ∆2 =γ∆ to the resolved field to obtain

˜̂u(x)= e−
(n∆)2

24 ũ(x)= e−
(n∆)2

24 e−
(γn∆)2

24 einx (2.15)

and

˜̂uû(x)= e−
(n∆)2

12 ûu(x)= e−
(n∆)2

12 e−
(γn∆)2

6 ei2nx. (2.16)

The SGS stress of the resolved scale is

L= ˜̂uû−˜̂u˜̂u= ei2nxe−
(1+2γ2)(n∆)2

12

[
1−e

(γn∆)2

12

]
. (2.17)

From (2.14) and (2.17), we obtain

L

τ
= e

(1−2γ2)(n∆)2

12
1−e

(γn∆)2

12

1−e
(n∆)2

12

. (2.18)

In the limit of small n∆, we have

L

τ
=
(

1+O(n∆)2
) 1−1− (γn∆)2

12 +O(n∆)4

1−1− (n∆)2

12 +O(n∆)4
=γ2+O(n∆)2. (2.19)

3 Analysis of scale similarity with all Fourier modes

Next we consider a solution with all the Fourier modes, i.e.,

u(x)=
∞

∑
n=0

aneinx. (3.1)

With the top hat filter, we obtain the following filtered solution

û(x)=
∞

∑
n=0

ansinc

(
n∆

2

)
·einx. (3.2)
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In addition, we have

ûu(x)=
∞

∑
n=0

∞

∑
m=0

anamsinc
(n+m)∆

2
ei(n+m)x. (3.3)

The SGS stress is then

τ= ûu−ûû=
∞

∑
n=0

∞

∑
m=0

anam

[
sinc

(n+m)∆

2
−sinc

(
n∆

2

)
sinc

(
m∆

2

)]
ei(n+m)x. (3.4)

Next we apply a second filter with a width of to the resolved variable

˜̂u(x)=
∞

∑
n=0

ansinc

(
n∆

2

)
sinc

(
γn∆

2

)
einx, (3.5)

and

˜̂uû(x)=
∞

∑
n=0

∞

∑
m=0

anamsinc

(
n∆

2

)
sinc

(
m∆

2

)
sinc

γ(n+m)∆

2
ei(n+m)x (3.6)

The SGS stress of the resolved scale is then

L=˜̂uû−˜̂u˜̂u

=
∞

∑
n=0

∞

∑
m=0

anamsinc

(
n∆

2

)
sinc

(
m∆

2

)

×
(

sinc
γ(n+m)∆

2
−sinc

(
γn∆

2

)
sinc

(
γm∆

2

))
ei(n+m)x. (3.7)

Now let’s consider each term in (3.4) and (3.7). It is obvious that

Lnm

τnm
=

sinc
(

n∆
2

)
sinc

(
m∆
2

)(
sinc

γ(n+m)∆
2 −sinc

(
γn∆

2

)
sinc

(
γm∆

2

))

sinc (n+m)∆
2 −sinc

(
n∆
2

)
sinc

(
m∆
2

) . (3.8)

In the limit of small (n+m)∆, we have

Lnm

τnm
=

− nm
12 γ2∆2+O[(n+m)∆]4

− nm
12 ∆2+O[(n+m)∆]4

=γ2+O[(n+m)∆]2. (3.9)

Therefore, we have
L

τ
=γ2+O[(n+m)∆]2 (3.10)

in the same limit. The analysis with the Gaussian filter is similar and is not repeated here.
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4 Analysis of scale similarity in 2D

In two dimensions, we only perform a single mode analysis with the top hat filter. Con-
sider the following two dimensional velocity field

u(x,y)= einxeimy, v(x,y)= eipxeiqy. (4.1)

The filtered solution is then

û(x,y)=
1

∆2

x+ ∆
2∫

x− ∆
2

y+ ∆
2∫

y− ∆
2

einξeimηdηdξ= einxeimy ·sinc

(
n∆

2

)
sinc

(
m∆

2

)
, (4.2)

v̂(x,y)=
1

∆2

x+ ∆
2∫

x− ∆
2

y+ ∆
2∫

y− ∆
2

eipξeiqηdηdξ= eipxeiqy ·sinc

(
p∆

2

)
sinc

(
q∆

2

)
. (4.3)

In addition, we have

ûv=
1

∆2

x+ ∆
2∫

x− ∆
2

y+ ∆
2∫

y− ∆
2

ei(n+p)ξei(m+q)ηdηdξ

=ei(n+p)xei(m+q)y ·sinc

(
(n+p)∆

2

)
sinc

(
(m+q)∆

2

)
. (4.4)

The SGS stress is then

τ=ûv−ûv̂

=ei(n+p)xei(m+q)y

[
sinc

(
(n+p)∆

2

)
sinc

(
(m+q)∆

2

)

−sinc

(
n∆

2

)
sinc

(
m∆

2

)
sinc

(
p∆

2

)
sinc

(
q∆

2

)]
. (4.5)

Applying a second filter ∼ with a width γ∆ to the resolved variable, we obtain

˜̂u= einxeimysinc

(
n∆

2

)
sinc

(
m∆

2

)
sinc

(
γn∆

2

)
sinc

(
γm∆

2

)
, (4.6)

and

˜̂v= eipxeiqysinc

(
p∆

2

)
sinc

(
q∆

2

)
sinc

(
γp∆

2

)
sinc

(
γq∆

2

)
. (4.7)

Denote α= sinc(n∆/2)sinc(m∆/2)sinc(p∆/2)sinc(q∆/2). Then we have

˜̂uv̂=αũv, ˜̂u˜̂v=αũṽ. (4.8)
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The SGS stress of the resolved scale is then

L=˜̂uv̂−˜̂u˜̂v=α(ũv−ũṽ)

=αei(n+p)xei(m+q)y

[
sinc

(
γ(n+p)∆

2

)
sinc

(
γ(m+q)∆

2

)

−sinc

(
γn∆

2

)
sinc

(
γm∆

2

)
sinc

(
γp∆

2

)
sinc

(
γq∆

2

)]
. (4.9)

From (4.5) and (4.9), we obtain

L

τ
=α

sinc
(

γ(n+p)∆
2

)
sinc

(
γ(m+q)∆

2

)
−sinc

(
γn∆

2

)
sinc

(
γm∆

2

)
sinc

(
γp∆

2

)
sinc

(
γq∆

2

)

sinc
(
(n+p)∆

2

)
sinc

(
(m+q)∆

2

)
−sinc

(
n∆
2

)
sinc

(
m∆
2

)
sinc

(
p∆

2

)
sinc

(
q∆

2

) .

In the limit of small (n+m+p+q)∆, we have α≈1, and

sinc(A+B)·sinc(C+D)−sincA·sincB·sincC ·sincD=−AB+CD

3
+HOT. (4.10)

Finally, we derive the following result using (4.10)

L

τ
≈γ2. (4.11)

5 Implications for Large Eddy Simulation

The present analysis shows that perfect scale similarity exists for arbitrary (periodic) data
including turbulence under the assumption that the spectrum contains relatively low frequency
contents with respect to the filter width, regardless of amplitude and phase angle of each
mode. Obviously for an arbitrary spectrum including both high and low frequency con-
tents, the present analysis is not valid. This is easily seen in Fig. 5, which displays the
modeled and true SGS stress based on the full spectrum shown in Fig. 1, using the same
filter width employed in Fig. 4. The correlation between the modeled and true stresses is
quite low.

Next let’s examine whether (4.11) is true in an actual LES. The promise of the SSM is
that the SGS stress is highly correlated with the stress computed based on the resolved
scale, taken to be û. Take the top hat filter for example. Modes of smaller wavelength than
D corresponding to the cutoff wavenumber k∆ are filtered out. In LES, it is believed that
the SGS stress from higher modes close to the cutoff wave number k∆ plays an important
role. In the next test, we therefore include modes between k∆ and 2k∆ using a filter width
D/2 to filter the spectrum shown in Fig. 1. The filtered solution is then treated as DNS data,
which is used to obtain the true stress. This true stress is also compared with the stresses
computed using the SSM based on the resolved scale, i.e., û. Two test filter widths are
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Figure 5: The true stress and the modeled stress for the full spectrum given in Fig. 1.
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modelled stresses computed using û.

used corresponding to γ=1 and 2. The results are displayed in Fig. 6. Note that there is
a reasonably high level of correlation between the stresses.
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Table 1: Correlation coefficients and ratio of averaged stresses from 10 realizations.

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

Correlation γ=1 0.85 0.88 0.87 0.90 0.85 0.87 0.85 0.86 0.88 0.88
coefficient γ=2 0.70 0.71 0.69 0.66 0.68 0.72 0.71 0.69 0.70 0.68

L1(L)
L1(τ)

γ=1 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51
γ=2 1.48 1.48 1.48 1.48 1.48 1.48 1.48 1.48 1.48 1.48

The ratio between the true and modeled stresses are computed using simple averages

L

τ
≈ 〈L〉

〈τ〉 . (5.1)

The correlation coefficients and the average stress ratios from 10 realizations are summa-
rized in Table 1. The table confirms that the true stress shows a quite high correlation
with the modeled stress, with an average correlation coefficients of 0.88 and 0.69 for γ=1
and γ= 2, respectively. In addition, γ= 1 demonstrates consistently higher correlation
coefficients than γ=2. This may indicate that one should use the same filter width for the
second filter in an SSM implementation. Furthermore, the ratio of the averaged stresses
remains a constant with different realizations, indicating that this ratio is only dependent
on the spectrum. However, the ratio is much smaller than γ2. This result appears to agree
well with others in the literature [4, 15].

6 Conclusions

The present analysis shows that perfect scale similarity exists for arbitrary (periodic) data
including turbulence under the assumption that the spectrum contains relatively low
frequency contents with respect to the filter width, regardless of amplitude and phase
angle of each mode. In an actual large eddy simulation, in which both large and sub-
grid scales exist, the present result on the ratio of the resolved scale stress and the SGS
stress may be the upper limit. Test results with data including higher modes near the grid
cutoff demonstrate that there is a high level of correlation between the modelled and SGS
stresses. Furthermore, γ=1 demonstrates consistently higher correlation coefficients than
γ=2. This may indicate that γ=1 is preferred in a SSM implementation.
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