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Abstract. A robust immersed boundary-lattice Boltzmann method (IB-LBM) is pro-
posed to simulate fluid-structure interaction (FSI) problems in this work. Compared
with the conventional IB-LBM, the current method employs the fractional step tech-
nique to solve the lattice Boltzmann equation (LBE) with a forcing term. Consequently,
the non-physical oscillation of body force calculation, which is frequently encountered
in the traditional IB-LBM, is suppressed greatly. It is of importance for the simulation
of FSI problems. In the meanwhile, the no-slip boundary condition is strictly satisfied
by using the velocity correction scheme. Moreover, based on the relationship between
the velocity correction and forcing term, the boundary force can be calculated accu-
rately and easily. A few test cases are first performed to validate the current method.
Subsequently, a series of FSI problems, including the vortex-induced vibration of a cir-
cular cylinder, an elastic filament flapping in the wake of a fixed cylinder and sedimen-
tation of particles, are simulated. Based on the good agreement between the current
results and those in the literature, it is demonstrated that the proposed IB-LBM has the
capability to handle various FSI problems effectively.

PACS: 47.11.-j, 47.15.-x, 47.85.-g

Key words: Immersed boundary-lattice Boltzmann method, fractional step, suppression of force
non-physical oscillation, fluid-structure interaction.

1 Introduction

Fluid-structure interaction (FSI) problems are constantly observed in both nature and
engineering applications. Some examples are flapping motion of flags in the wind, de-
formation of red blood cells, transportation of solid particles, and so on. Many of these
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applications involve unsteady flows together with complex configurations, and their fun-
damental understanding is of critical importance. To numerically solve such problems,
common approaches are to use either body-fitted meshes or fixed meshes. For the for-
mer approaches [1–3], the major difficulty is that a frequent mesh regeneration process
is required that consequently increases the computational cost, particularly as complex
and/or three-dimensional geometries are considered. In contrast, the latter approaches
can avoid such difficulty due to the use of a regular fixed mesh for discretization of flow
field. In these approaches, the effect of the embedded body on the surrounding fluid is
taken into account in the form of an additional body force. Owing to such simplicity, they
are very popular for FSI problems with arbitrary geometries. Thereinto, the immersed
boundary method (IBM) is a famous example.

The IBM was originally developed by Peskin [4] for the purpose of simulating the
blood flow in the human heart. Its basic idea is that the boundary of body can be rep-
resented by a set of Lagrangian points, and the body forces acting on the Lagrangian
points that represent the effect of boundary can be distributed into the surrounding flow
field. Subsequently, the whole flow field is discretized and solved on a regular Carte-
sian mesh. Therefore, a key issue of IBM is the treatment of body force. Hitherto, there
are two implementations developed. One is the ‘discrete forcing scheme’ wherein the
body force is either explicitly or implicitly applied to the discrete governing equations
of flow field [5–7]. This scheme possesses the precise satisfaction of the boundary con-
dition at the body surface by maintaining a sharp interface representation. However, its
implementation for complex geometries may suffer some challenges because it needs to
identify the mesh point where the body force is located. The other is the ‘continuous
forcing scheme’ wherein a continuous forcing function, such as a discrete delta function,
around the boundary is added to the governing equations [8–10]. This scheme can be
directly implemented in any solver with relative ease, and the body interface might be
diffused because of the introduction of interpolation.

From the methodological point of view, the IBM can be regarded as a technique for
boundary treatment. Meanwhile, the flow field solution can be obtained by either solv-
ing the traditional Navier-Stokes (N-S) equations or using other approaches. One choice
is the lattice Boltzmann method (LBM) that is an alternative to N-S solver with high sim-
plicity and parallelism, and it has already been successfully applied to simulate various
flow problems [11]. The coupling of IBM with LBM (i.e., IB-LBM) was first performed by
Feng and Michaelides [12, 13], and then it was used to simulate particulate flows. There-
after, this method has been refined continually and utilized to handle a variety of FSI
problems [14–23]. Currently, there are two ways to treat the body force in the IB-LBM,
i.e., explicit and implicit. In the explicit treatment that has been popularly employed, the
body force is calculated in advance by using the penalty method [12, 15, 16, 19], direct
forcing method [13] or momentum exchange method [14, 22]. As a consequence, the no-
slip boundary condition is only approximately satisfied, which may induce some flow
penetration to body. In the implicit treatment, on the other hand, the body force is first
set as unknown and then is obtained by solving a formed matrix directly [17, 21] or ap-
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plying the iteration procedure [18, 20, 23]. During this process, it is noted that the no-slip
boundary has been incorporated.

For the FSI problems, the existing IB-LBM may suffer from the non-physical oscilla-
tion of body force calculation more or less. To overcome this deficiency, some attempt
has been made. For example, Yang et al. [24] proposed a smoothened 4-point piecewise
function to replace the traditional discrete delta function in IBM. Recently, Shu et al. [25]
introduced the fractional step technique into the N-S equations. They found that the cal-
culation of body force could converge to a steady state solution very fast. This feature
is very attractive for the simulation of FSI problems because it can suppress the force
oscillation and also can improve the stability and accuracy of numerical simulation. To
the best of our knowledge, however, the fractional step technique has not yet been ap-
plied into the IB-LBM. In this study, a robust IB-LBM is presented in which the lattice
Boltzmann equation (LBE) is solved with the help of the fractional step technique. Mean-
while, the body force is calculated implicitly. As a result, the present IB-LBM can not only
satisfy the boundary condition strictly but also compute the body force with suppressed
oscillation.

The paper is organized as follows. The robust IB-LBM is introduced in Section 2.
It is followed by some validation tests. Section 4 presents the detailed simulations of
different FSI problems, including the vortex-induced vibration of a circular cylinder, an
elastic filament flapping in the wake of a fixed cylinder and sedimentation of particles.
Finally, concluding remarks are presented in Section 5.

2 A robust immerse boundary-lattice Boltzmann method

For a two-dimensional viscous incompressible flow over an immersed object, the gov-
erning equations for the fluid flow in the IBM framework can be written as

ρ f

(

∂u

∂t
+u·∇u

)

+∇p=µ∆u+f, (2.1)

∇·u=0, (2.2)

where ρ f , u and p are the fluid density, velocity and pressure, respectively. f is the body
force applied to satisfy the no-slip boundary condition on the immersed object. The for-
mulation of f will be provided later. When the fluid field is alternatively resolved by
using LBM, the corresponding equation can be expressed as

fα (x+eαδt,t+δt)− fα (x,t)=− 1

τ

(

fα (x,t)− f
eq
α (x,t)

)

+Fαδt, (2.3)

Fα=

(

1− 1

2τ

)

wα

(

eα−u

c2
s

+
eα ·u

c4
s

eα

)

· f̃, (2.4)

where fα is the distribution function, and f
eq
α is its corresponding equilibrium state; τ is

the single relaxation parameter; δt is the time step; eα is the lattice velocity; wα and cs
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respectively represent coefficients and sound speed that are related to the lattice velocity
model used. f̃ is a force density related to the body force.

In the conventional IB-LBM, the body force is explicitly calculated [12–16,19,22]. The
major limitation of these methods is that the velocity at the boundary point obtained
from the flow field cannot be strictly equal to the boundary velocity required. It im-
plies that the no-slip boundary condition is approximately satisfied. To overcome this
problem, Shu et al. [25] proposed a velocity correction scheme to enforce the boundary
condition. Later, this idea was applied by Wu et al. [17, 26–28] to simulate various sta-
tionary and moving boundary problems. Different from the work of Shu et al. [25], the
body force could be directly computed from the velocity correction in the work of Wu
et al. [17, 26–28]. However, the non-physical oscillation of body force computation is ob-
served, which is similar to the conventional IB-LBM. As indicated by Shu et al. [25], to
solve the governing equations (2.1) and (2.2) by using the fractional step technique, the
computation of body force could converge to a steady state solution very fast. This fea-
ture is appealing for the FSI problems and it can improve the stability and accuracy of
numerical simulation.

Inspired by the work of Shu et al. [25], the governing equation of IB-LBM is also
solved by using the fractional step technique in this study. As a result, Eq. (2.3) can be
rewritten as

f̄α(x+eαδt,t+δt)− fα(x,t)=− 1

τ

(

fα(x,t)− f
eq
α (x,t)

)

, (2.5a)

fα(x,t+δt)= f̄α(x,t)+Fαδt, (2.5b)

where f̄α is the intermediate distribution function. By first solving Eq. (2.5a), the inter-
mediate velocity can be obtained. That is

u∗=
1

ρ f
∑
α

eα f̄α, ρ f =∑
α

f̄α. (2.6)

As shown in the work of Wu and Shu [17], the velocity at the boundary point interpolated
from the intermediate velocity does not satisfy the boundary condition. Therefore, the
velocity correction technique should be employed to enforce the boundary condition.
Same as the work of Wu and Shu [17], an unknown fluid velocity correction vector δu is
first defined. It is determined from the boundary velocity correction vector δuB. Thus,
the final system of equations about δuB can written as,

AX=B, (2.7)
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where
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Here m is the number of the boundary points, and n is the number of the surrounding
Eulerian mesh points. δul

B (l = 1,2,··· ,m) is the unknown boundary velocity correction
vector, and δij =Dij(xij−Xl

B)∆x∆y together with δB
ij =Dij(xij−Xl

B)∆sl . Dij(xij−Xl
B) is the

discrete delta function, which is used to connect the flow field to the boundary. xij and

Xl
B are Eulerian coordinates and boundary points coordinates, respectively. In this study,

a smoothened 4-point piecewise function proposed by Yang et al. [24] is chosen. It can be
expressed as

Dij

(

xij−Xl
B

)

=
1

h2
δ

(

xij−Xl
B

h

)

δ

(

yij−Yl
B

h

)

, (2.8)
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4 + r2

8 +
|r|−2

16

√

−14+16|r|−4r2

+ 1
16 arcsin

(√
2(|r|−2)

)

, 1.5< |r|<2.5,

0, |r|>2.5.

(2.9)

In the above equations, h is the mesh spacing, ∆sl is the arc length of boundary element,
and Ul

B is the boundary velocity. By solving equation system (2.7), the boundary velocity
correction vector δuB can be obtained, and the corresponding fluid velocity correction
vector δu can be further obtained by using the piecewise function (2.8). As a consequence,
the corrected fluid velocity, i.e., u=u∗+δu, can strictly satisfy the boundary condition.
In addition, it is noted the corrected fluid velocity is related to the force density [17], i.e.,
ρ f u= ρ f u∗+ f̃δt/2. Thus, the fluid velocity correction and force density has a following
relationship

f̃=2ρ f δu/δt. (2.10)

After obtaining the force density f̃, the distribution function is updated by using Eq. (2.5b).
Subsequently, other macroscopic variables can be calculated by using the following rela-
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tionships,
ρ f =∑

α

fα, P= c2
s ρ f . (2.11)

In fact, it is found the density calculated from the updated distribution in Eq. (2.11) is the
same as that in Eq. (2.6). On the other hand, applying the Chapman-Enskog expansion
[11] to Eqs. (2.5a) and (2.5b), the following equations can be obtained

ρ f

(

∂u

∂t
+u·∇u

)

=−∇p+µ∆u, (2.12a)

ρ f
∂u

∂t
=

(

1− 1

2τ

)

f̃= f. (2.12b)

It is noted that Eqs. (2.12a) and (2.12b) are the results by applying the fractional step
technique to Eq. (2.1). Substituting Eq. (2.10) into Eq. (2.12b), the body force in the current
method is calculated by

f=

(

1− 1

2τ

)

f̃=

(

2− 1

τ

)

ρ f δu/δt. (2.13)

Similarly, the calculation of boundary force FB can be expressed as

FB =

(

2− 1

τ

)

ρ f δuB/δt. (2.14)

This determines the force exerted on the fluid that is balanced by the hydrodynamic force
F f exerted on the boundary, i.e., F f =−∑l F

l
B∆sl . Compared with the conventional IB-

LBM, the current method can exactly satisfy the no-slip boundary condition. Moreover,
it also can more stably calculate the force acting on the immersed boundary compared
with the previous IB-LBM [17]. Thus, the present IB-LBM can be applied to accurately
and efficiently deal with both stationary and moving boundary problems.

In summary, the numerical implementation of the present IB-LBM can be outlined
below

• Step 1: Generate computational mesh and set initial values;

• Step 2: Compute the matrix A and get its inverse matrix A−1;

• Step 3: Use Eq. (2.5a) to obtain the distribution function and use Eq. (2.6) to compute
the intermediate velocity;

• Step 4: Solve Eq. (2.7) to get the boundary velocity correction and subsequently
compute the corrected fluid velocity;

• Step 5: Obtain the force density using Eq. (2.10) and solve Eq. (2.5b) to update the
distribution function;

• Step 6: Solve Eq. (2.14) to obtain the boundary force and get the corresponding
hydrodynamic force;

• Step 7: Repeat Step 2 to 6 until convergence is reached.
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3 Numerical validation

Since the proposed IB-LBM can be used to deal with both stationary and moving bound-
ary problems, the flows over a fixed circular cylinder and a transversely oscillating circu-
lar cylinder are simulated to perform the validation.

3.1 Flow over a fixed circular cylinder

The flow over a fixed circular cylinder has been studied for a long time and now it is
always used to validate the developed numerical method. Depending on the Reynolds
number, which is generally defined by using the diameter of cylinder D and freestream
velocity U∞, different flow patterns (i.e., steady flow and unsteady flow) can be observed.
For the steady flow (i.e., Re<49), a pair of steady separation bubbles behind the cylinder
can be observed. For the unsteady flow, a well-known periodic Karman vortex street
occurs. In the current simulation, four Reynolds numbers, namely Re=20, 40 and 100 and
200 are selected. The computational domain size is 50D×40D. A non-uniform mesh is
used, in which the mesh for the region around the cylinder (the region size is 1.2D×1.2D)
is uniform and its mesh spacing is denoted as h. The equilibrium distribution functions
are used to implement the far field boundary conditions.

To measure the flow characteristics, three parameters can be used. They are drag and
lift coefficients and Strouhal number, which are respectively defined as

Cd=2FD
f /
(

ρ∞U2
∞D
)

, Cl =2FL
f /
(

ρ∞U2
∞D
)

, (3.1a)

St=FD/U∞ (3.1b)

where FD
f and FL

f are the drag and lift forces acting on the cylinder respectively, which

can be computed based on Eq. (2.14); f is the vortex shedding frequency for the unsteady
flow; ρ∞ is the freestream density.

Table 1 lists the time-averaged drag coefficient, lift coefficient and Strouhal number
for all the Reynolds numbers considered. In addition, to perform the convergence vali-
dation, the current results with different values of uniform mesh spacing h are presented.
From the results shown in this table, it is evident that the current results compare well
with the data in the literature [22, 23, 29, 30]. Moreover, it is known accurate results can
be obtained when the mesh spacing of uniform mesh is h=D/80.

Since the no-slip boundary condition is strictly satisfied in the present IB-LBM, the
flow penetration to body should not occur. Fig. 1 shows the streamlines obtained by
using the current method for the cases of Re = 20 and 40 when the flows reach their
steady states. It can be found from the figure that the streamlines are clearly separated
by the cylinder surface. As a consequence, the streamlines outside the cylinder can safely
pass through the cylinder without penetration, and the streamlines inside the cylinder
are well enclosed.

To demonstrate the fast convergence feature of body force calculation of the present
IB-LBM, Fig. 2 plots the time evolution of the drag coefficient at Re=20, where the time
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Table 1: Comparison of the time-average drag coefficient C̄d, lift coefficient Cl and Strouhal number St for the
flow over a fixed circular cylinder.

Re

20 40 100 200

Refs. C̄d C̄d C̄d Cl St C̄d Cl St

Yuan et al. [22] 2.07 1.56 1.40 0.34 0.160 1.40 0.67 0.190

Hu et al. [23] 2.21 1.66 1.42 0.37 0.166 1.39 0.71 0.195

Xu and Wang [29] 2.23 1.66 1.42 0.34 0.171 1.42 0.66 0.202

Gao et al. [30] 2.09 1.58 1.39 - 0.169 1.39 - 0.204

h=D/60 2.12 1.63 1.42 0.28 0.171 1.46 0.67 0.201

Present h=D/80 2.08 1.58 1.39 0.32 0.167 1.42 0.63 0.198

h=D/100 2.07 1.56 1.37 0.31 0.166 1.42 0.62 0.196

Figure 1: Streamlines of present IB-LBM for the flow over a fixed circular cylinder at Re=20 and 40.
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Fig. 2 Comparison of time evolution of drag coefficient for the flow over a Figure 2: Comparison of time evolution of drag coefficient for the flow over a fixed circular cylinder at Re=20.
The previous IB-LBM in Ref. [17] is used.
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is nondimensionalized by D and U∞. From the results shown in this figure, it is clear that
the current method can converge faster to the steady solution than the previous IB-LBM
in [17] thanks to the fractional step technique, which is helpful for the suppression of
force oscillation.

3.2 Flow over a transversely oscillating circular cylinder

To further validate the proposed IB-LBM, the flow over a transversely oscillating circular
cylinder is simulated. This problem has been investigated experimentally and numer-
ically and some interesting phenomena have been reported. For example, the vortex
shedding frequency can synchronize with the oscillation frequency, which is now known
as the lock-in of the vortex shedding. In the current simulation, the Reynolds number
is fixed at Re= 185. The motion of the cylinder is imposed as y(t) = Asin(2π fet), with
y(t) the transverse displacement of the cylinder, A the amplitude of the oscillation, and
fe the oscillation frequency. For comparison, the parameters used in this study are the
same as those of Yang and Stern [31], i.e., A= 0.2D and fe/ f0 = 0.8, 1.0, 1.1, 1.2, with f0

the natural vortex shedding frequency for a fixed circular cylinder (The corresponding
Strouhal number based on the current method is St0=0.195). The computational domain
size is 50D×40D. A non-uniform mesh is used, in which the mesh for the region around
the cylinder (the region size is 1.2D×1.6D) is uniform with the mesh spacing of h=D/80.

Fig. 3 illustrates the instantaneous vorticity contours as the cylinder reaches the mid-
point position in the process of downstroke. With the increase of fe, the distance of shed
vortices along the streamwise direction decreases gradually, and the strength of vortices

Figure 3: Instantaneous vorticity contours for the flow over a transversely oscillating circular cylinder at Re=185
with different oscillation frequencies.
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in the work of Yang and Stern [31].
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Fig. 4 Time evolution of drag and lift coefficients for the flow over a Figure 4: Time evolution of drag and lift coefficients for the flow over a transversely oscillating circular cylinder
at Re=185 with different oscillation frequencies. The results of Yang and Stern [31] are included.

in the near wake is enhanced. Similar flow patterns can be found in the work of Yang
and Stern [31].

Fig. 4 shows the time evolution of drag and lift coefficients with different oscillation
frequencies. To make comparison, the results of Yang and Stern [31] are included. At
fe/ f0 =0.8 and 1.0, the single harmonic variation of Cd and Cl can be observed, which is
similar to the fixed cylinder case. At fe/ f0=1.1 and 1.2, however, Cd and Cl vary period-
ically with multiple harmonics. In general, the current results have good agreement with
those in [31].

To further display the effective suppression of body force, Fig. 5 compares the phase
diagram of the drag coefficient and transverse cylinder displacement calculated by the
present IB-LBM and previous IB-LBM [17] at fe/ f0 =0.8. Meanwhile, the results of Yang
et al. [24] and Schneiders et al. [32] are also included. From the figure, it can be seen that
the previous IB-LBM may produce the clear force oscillation and such oscillation can be
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Figure 5: Phase diagram of the drag coefficient and transverse cylinder displacement at fe/ f0 = 0.8. The
previous IB-LBM in Ref. [17] is used.

greatly suppressed by the present IB-LBM. Thus, the current result compares well with
the data from other numerical studies [24, 32].

Based on the obtained results in this section, it is inferred that the present IB-LBM is
suitable for the simulation of both stationary and moving boundary problems. It can not
only accurately satisfy the no-slip boundary condition but also effectively suppress the
oscillation of body force calculation.

4 Simulations of FSI problems

After numerical validations with fixed boundary and imposed-motion moving boundary
problems, the present IB-LBM is applied to handle different FSI problems. In this work,
the vortex-induced-vibration of a circular cylinder, an elastic filament flapping in the
wake of a fixed cylinder and sedimentation of particles are simulated.

4.1 Vortex-induced-vibration of a circular cylinder

When the fluid passes through a cylindrical structure, the resultant oscillatory forces may
induce the structure to vibrate if it is elastically mounted. This behavior is well known
as the vortex-induced vibration (VIV). Engineering problems associated with the VIV
of cylindrical structures have been investigated in a wide range. Under some specific
conditions, these structures are possibly damaged or even broken down.
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For an elastically mounted circular cylinder with one degree of freedom (1-DOF)
along the vertical direction, its motion is governed by the following equation

mc
d2y

dt2
+b

dy

dt
+ky=FL

f , (4.1)

where y is the vertical displacement of the cylinder; mc is the mass of the cylinder; b is the
damping coefficient; k is the spring stiffness. For the purpose of stimulating oscillation,
the damping coefficient is set as b=0 in this simulation. After the nondimensionalization,
Eq. (4.1) can be rewritten as

Ÿ+

(

2π

U∗

)2

Y=
Cl

2m∗ , (4.2)

where Y=y/D; U∗=U∞/ fnD is the reduced velocity of the cylinder which determines the
response of the cylinder to fluid flow, where fn =(1/2π)

√
k/mc is the natural frequency

of the cylinder; m∗ = mc/ρ f D2 is the mass ratio of the cylinder to the fluid. To make
comparison, the mass ratio is chosen as m∗ = 2, the reduced velocity U∗ varies from 3
to 8, and the Reynolds number is Re = 150. Such sets of parameters were also used in
the previous work [33–35]. The computational domain size is 50D×40D. A non-uniform
mesh is used, in which the mesh for the region around the cylinder (the region size is
1.2D×2.2D) is uniform with the mesh spacing of h=D/80.

Fig. 6 the shows the variation of maximum displacement Ymax as a function of the
reduced velocity U∗. From this figure, it is seen that a sudden increase of Ymax occurs
at U∗= 4, and then it starts to decrease gradually as U∗ keeps increasing. Thereafter, a
sharp drop of Ymax is found at U∗=8. This variation trend, which shows good agreement
with the results in the literature [33–35], is determined by the natural frequency of the
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Fig. 6 Comparison of the maximum displacement Y for the VIV of a Figure 6: Comparison of the maximum displacement Ymax for the VIV of a circular cylinder at Re=150.
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Figure 7: Instantaneous vorticity contours for the VIV of a circular cylinder at Re=150 with different reduced
velocities.

cylinder. It has been proven that a large amplitude vibration (i.e., Ymax > 0.1) occurs if
the cylinder natural frequency (or U∗) falls within the so-called lock-in region. Within
this region (4≤U∗≤7 of this case), the vortex shedding frequency always synchronizes
with the cylinder oscillation frequency. Otherwise, the vibration amplitude is small (i.e.,
Ymax<0.1).

Fig. 7 shows some typical instantaneous vorticity contours as the cylinder reaches the
midpoint position in the process of upstroke. At U∗ = 3 and 8 that correspond to the
small vibration amplitude, a single-row vortex wake behind the cylinder is exhibited. At
U∗=5, which is within the lock-in region, a double-row vortex wake is formed. At U∗=
7, however, the wake configuration returns to the single-row vortex structure although
the vibration amplitude is still large. Therefore, it is indicated that the change of wake
configuration is independent to the transition of lock-in region. Similar flow patterns
were also presented in the work of Bao et al. [35].

4.2 An elastic filament flapping in the wake of a fixed cylinder

In biofluid dynamics, a large number of problems include deformable elastic bodies. One
example is the fish swimming. It is documented that the fish swimming in the wake of
a fixed bluff body is able to extract the kinetic energy from the vortices generated by
the body [36]. Such problem can roughly be simplified as the interaction between an
elastic filament and a fixed cylinder, which has been numerically investigated in recent
years [19, 22].
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For a massive and inextensible filament with the length of L, its motion equation in
the Lagrangian form can be written as [19, 37]

ρs
∂2X

∂t2
− ∂

∂s

(

T
∂X

∂s

)

+
∂2

∂s2

(

Kb
∂2X

∂s2

)

=F f , (4.3)

where X is the position vector of the filament, s is the Lagrangian coordinate along the
filament length, ρs is the linear density of the filament, T is the tension force along the fil-
ament, Kb is the bending coefficient. At the fixed end of the filament, a simply supported
condition can be used,

∂2X

∂s2
=0. (4.4a)

At the free end of the filament, the condition reads

T=0,
∂2X

∂s2
=0,

∂3X

∂s3
=0. (4.4b)

To discretize Eq. (4.3), the scheme proposed by Huang et al. [37] is used in this study.
It is briefly described as follows. First, the filament is initially discretized by m nodal
points with equal arc length ∆s= L/m. For lth nodal point (l=0,1,2,··· ,m), the temporal
term is discretized as

∂2X

∂t2
=

XN+1
l −2XN

l +XN−1
l

δt
, (4.5a)

where N means the time level. For the tension force term, it is discretized as

∂

∂s

(

T
∂X

∂s

)

=

T
l+

1
2

(

XN+1
l+1 −XN+1

l

∆s

)

−T
l− 1

2

(

XN+1
l −XN+1

l−1

∆s

)

∆s
, (4.5b)

where the tension force T is determined by the constraint of inextensibility, i.e., ∂X/∂s ·
∂X/∂s=1. For the detail on how to calculate T, the reader can refer to the work of Huang
et al. [37]. For the bending force term, it is discretized as

∂2

∂s2

(

Kb
∂2X

∂s2

)

=Kb

X∗
l+2−4X∗

l+1+6X∗
l −4X∗

l−1+X∗
l−2

∆s4
, (4.5c)

where X∗= 2XN−XN−1 is used to reduce the error. After the position of the filament is
updated, the velocity of the filament is computed by UB =(XN+1−XN)/δt.

In the current simulation, the length of the filament is set as L/D=1 and 2.5; the mass
ratio of the filament to the fluid, defined as M= ρs/(ρ f L), is chosen as 0.1 and 0.2; the

rigidity of the filament, defined as Eb =Kb/(ρ f U2
∞L3), is set to be on order of 10−3. The

leading end of the filament is fixed and the trailing end is free to flap. The gap between
the center of the cylinder and the leading end of the filament G is 3D. The Reynolds
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Table 2: Comparison of the time-average drag coefficient C̄d of the cylinder, the drag ratio C̄d, f /C̄d, f0
and the

amplitude A/D and Strouhal number St f of the filament.

Refs. (L/D,M) C̄d C̄d, f /C̄d, f0
A/D St f

Single cylinder 1.44 - - 0.166

(1, 0.1) 1.42 0.47 0.73 0.161

Tian et al. [19] (1, 0.2) 1.42 0.58 0.77 0.153

(2.5, 0.1) 1.40 0.73 1.14 0.155

(2.5, 0.2) 1.39 0.87 1.18 0.153

Single cylinder 1.50 - - 0.173

(1, 0.1) 1.49 0.49 0.72 0.166

Yuan et al. [22] (1, 0.2) 1.49 0.57 0.74 0.166

(2.5, 0.1) 1.47 0.80 1.17 0.160

(2.5, 0.2) 1.46 0.92 1.18 0.159

Single cylinder 1.39 - - 0.167

(1, 0.1) 1.39 0.46 0.71 0.160

Present (1, 0.2) 1.39 0.56 0.74 0.159

(2.5, 0.1) 1.36 0.71 1.11 0.152

(2.5, 0.2) 1.34 0.84 1.16 0.149

number based on the cylinder diameter is Re=100. It is noted that the parameters used
here are the same as those in other studied [19, 22]. The computational domain size is
60D×40D. A non-uniform mesh is used, in which the meshes for the regions around the
cylinder (the region size is 1.2D×3D) and filament (the region size is (L+0.2D)×3D) are
uniform with the same mesh spacing of h=D/100.

Table 2 provides the mean coefficient C̄d of the cylinder, the drag ratio C̄d, f /C̄d, f0
and

the amplitude of the filament A/D and the Strouhal number of the filament St f . Here
C̄d, f and C̄d, f0

respectively are the mean drag coefficient of the filament in the wake of the
cylinder and mean drag coefficient of the corresponding filament in the absence of the
cylinder. Since the filament flapping motion is induced by the cylinder vortices, the flap-
ping frequency is the same as the vortex shedding frequency. It is known from the table
that the introduction of a filament can slightly reduce the drag on the cylinder. Mean-
while, a clear reduction of vortex shedding frequency can be observed. On the other
hand, the drag ratio C̄d, f /C̄d, f0

is always less than 1 for all the parameters considered. It
implies that the filament achieves a drag reduction by staying in the cylinder wake. For
a given length, the lighter filament can enjoy the more drag reduction, but the flapping
amplitude is less sensitive to the filament mass. As the filament length increases, how-
ever, both the drag ratio and flapping amplitude increase. In general, the current results
agree well with the data in the literature [19, 22].

Fig. 8 plots the typical profiles of the flapping filament in the cylinder wake and tra-
jectory of the free end of the filament. The periodic variation of the filament can be found
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Fig. 8 (a) Profiles of the flapping filament in the cylinder wake; (b) Trajectory Figure 8: (a) Profiles of the flapping filament in the cylinder wake; (b) Trajectory of the free end of the filament
for M=0.1 and 0.2 at L/D=1 and 2.5.

Figure 9: Evolution of the vorticity contours in one flapping period for M=0.2 at L/D=2.5.

in the figure. At L/D = 1, the trajectory of free end of the filament forms an arc. At
L/D= 2.5, the free end the filament draws an “eight” path. This phenomenon has also
been found in [19, 22].

Fig. 9 shows the time evolution of vorticity contours in one flapping period of the fila-
ment for M=0.1 at L/D=2.5. At the instant of t=T/4, the free end of the filament reaches
the highest position. One vortex shed from the cylinder has interacted with the fixed end
of the filament and is moving downstream along the filament. After T/4 interval, the
filament tail comes to the midpoint position. Another cylinder vortex is interacting with
the filament head. In the second half period, a similar change of vortices can be observed.
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4.3 Sedimentation of particles

The particle-fluid interaction problems have been widely encountered in nature and en-
gineering such as suspension and transport of sediment in river, cell transport in arteries
and veins and fluidized bed reactors and so on.

In this work, the geometry of a particle is modeled as a circular cylinder. Considering
a two-dimensional domain including N particles with the same size, the motion of ith
particle is governed by

Mi
dUR

dt
=Fi, (4.6a)

Ii
dΩ

dt
=Ti, (4.6b)

where Fi and Ti are the total force and torque acting on the particle; UR and Ω are the
translational and angular velocities of the particle, respectively; is the moment inertia of
the particle. The total force Fi includes the gravity/buoyancy force, hydrodynamic force
and particle collision force Fcol

i . Mathematically, it can be written as

Fi=

(

1− ρ f

ρp

)

Mig+F f +Fcol
i , (4.7a)

where Mi is the mass of the particle and ρp is the density of particle. The torque Ti can
be expressed as

Ti=−∑
l

(

Xl
B−XR

)

×Fl
B∆sl , (4.7b)

where XR is the center of mass of the particle. Moreover, the particle collision force Fcol
i is

implemented by using an artificial mechanism [14]

F
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i =
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F
p−w
i =
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(ri)
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(4.8b)

where F
p−p
i and F

p−w
i respectively denote the particle-particle and particle-wall collision

forces, ε=(
2rir j

ri+r j
)2, ri is radius of the particle, X

i,j
R = |Xi

R−X
j
R|, Xi,w

R = |Xi
R−Xw|, Xw repre-

sents the wall position and ζ is the threshold and is set to one lattice unit. Therefore, the

final particle collision force is Fcol
i =F

p−p
i +F

p−w
i .



J. Wu et al. / Commun. Comput. Phys., 20 (2016), pp. 156-178 173

scheme is used to implement the channel wall boundary conditions.
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Fig. 10 Evolution of the (a) horizontal position and (b) vertical position of Figure 10: Evolution of the (a) horizontal position and (b) vertical position of particle center for sedimentation
of two particles.

First, the sedimentation of two particles is simulated. A channel of width 2 cm and
height 8 cm is considered. The properties of fluid are µ = 0.001 g/(cm·s) and ρ f = 1.0

(g/cm3). Two particles possess the same properties. The density is ρ f =1.01 (g/cm3) and
the radius is r = 0.1cm. Using the particle radius and density ratio of particle to fluid
ρr (= ρp/ρ f ), the reference velocity can be defined as Ure f =

√

πr(ρr−1)g [38]. Initially,
both fluid and particles are at rest. The first particle (p1) is set at (−0.001cm,7.2cm) and
the other (p2) at (0cm,6.8cm). It is noted the parameters used here are the same as those
in the work of Feng and Michaelides [12]. The two particles start dropping under the
gravity force. In this simulation, a uniform mesh is used with mesh size of 201×801. The
bounce back scheme is used to implement the channel wall boundary conditions.

It is known that the two particles settled close to each other would go through draft-
ing, kissing and tumbling or DKT motion [39]. Fig. 10 depicts the time evolution of the
horizontal and vertical positions of two particle centers, together with the results of Feng
and Michaelides [12], where the time is nondimensionalized by µ, ρ f and channel width.
It can be found that these results are in good agreement until kissing and tumbling begin.
As pointed out by Fortes et al. [39], the tumbling is essentially a breakup of an unstable
configuration of the particle positions. Thus an exact agreement after kissing may not be
expected.

Then, the sedimentation of five particles in a tank of width 2cm and height 4cm is
simulated. The properties of fluid and particles are the same as those of two particles
case above. Two initial sets of particles are considered and all the particles are placed
in a line of height 3.5cm. For the first set, denoted as compact set, the horizontal po-
sitions of five particle centers are −0.5cm,−0.25cm,0cm,0.25cm and 0.5cm, respectively.
For the second set, denoted as sparse set, the corresponding horizontal positions are
−0.8cm,−0.4cm,0cm,0.4cm and 0.8cm, respectively.
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Figure 11: Evolution of the horizontal and vertical positions of particle center for sedimentation of five particles.

Fig. 11 presents the time evolution of the horizontal and vertical positions of particle
centers. For both sets, the horizontal position of the third particle is nearly a constant that
equals to 0cm. Meanwhile, the motion of the second and fourth particles as well as the
first and fifth particles is symmetric to the vertical centerline. For the compact set, the
initial particle-particle repulsive force along the horizontal direction is large. As the sed-
imentation begins, such force pushes the first and second particles to the left wall at the
early stage. Due to the large particle-wall repulsive force, the first particle then moves to-
wards the vertical centerline, and even pushes the second particle to the left wall, which
means that the first and second particles switch their positions. Before they reach the bot-
tom of the tank, they switch their positions again due to the large particle-wall repulsive
force. A similar variation process occurs synchronously for the fourth and fifth particles
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(a) Compact set

(a) Sparse set

Figure 12: Instantaneous vorticity contours at different instants for sedimentation of five particles.

and they switch their positions twice at the right half part of the tank. For the sparse set,
there is no initial particle-particle repulsive force. Therefore, the first and second parti-
cles as well as the fourth and fifth particles only fall down with small vibration along the
horizontal direction. No position switch occurs during the sedimentation.

Fig. 12 shows several instantaneous vorticity contours at the typical instants. For the
compact set, the first particle is close to the left wall at t = 1.6. It begins to switch its
position with the second particle at t = 3. Then, the second particle is interacting with
the left wall at t = 4. The second position switch occurs at t = 5.8. When t = 7, all the
particles has reached the tank bottom. For the sparse set, all the particles almost keep in
a line before t=1.4. After some vibration, they approximately forms an arc at t=6.6 and
reaches the tank bottom at t=9.

5 Conclusions

In this study, a robust immersed boundary-lattice Boltzmann method for simulation of
fluid-structure interaction problems is presented. Compared with the existing IB-LBM,
the fractional step technique, which has been employed in the N-S solver, is first intro-
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duced into the lattice Boltzmann equation with a forcing term. As a consequence, the
non-physical oscillation of body force calculation that is constantly suffered in the tradi-
tional IB-LBM can be effectively suppressed. This feature is useful for handling the FSI
problems. At the same time, the present IB-LBM can strictly satisfy the no-slip bound-
ary condition by calculating the body force implicitly, which is implemented through
the velocity correction method. In addition, the hydrodynamic force on the body can be
calculated directly through the relationship between the velocity correction and forcing
term.

The current method is first validated by simulating the flows over a fixed circular
cylinder and a transversely oscillating circular cylinder. The oscillation of body force
calculation is clearly suppressed, and no flow penetration to the body occurs owing to
the accurate satisfaction of no-slip boundary condition. Thereafter, the present IB-LBM is
employed to deal with various FSI problems, including the vortex-induced vibration of a
circular cylinder, an elastic filament flapping in the wake of a fixed cylinder and sedimen-
tation of particles. Based on the numerical results obtained, good agreement between the
current results and those in the literature is observed. Therefore, it is indicated that the
proposed IB-LBM is robust and effective for simulation of different FSI problems.
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