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Abstract. The paper addresses the construction of a non spurious mixed spectral finite
element (FE) method to problems in the field of computational aeroacoustics. Based
on a computational scheme for the conservation equations of linear acoustics, the ex-
tension towards convected wave propagation is investigated. In aeroacoustic appli-
cations, the mean flow effects can have a significant impact on the generated sound
field even for smaller Mach numbers. For those convective terms, the initial spectral
FE discretization leads to non-physical, spurious solutions. Therefore, a regularization
procedure is proposed and qualitatively investigated by means of discrete eigenvalues
analysis of the discrete operator in space. A study of convergence and an application
of the proposed scheme to simulate the flow induced sound generation in the process
of human phonation underlines stability and validity.
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1 Introduction

Constructing a numerical scheme to compute the acoustic field in flowing media is not
an easy task. The first step is the choice of an appropriate physical model. The sim-
plest one towards aeroacoustics is Lighthill’s analogy [1], whose main drawback is that
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it does not separate flow and acoustic quantities and so the computed fluctuating pres-
sure just converges to the acoustic one for observation points far away from the turbulent
source region, where the mean flow velocity becomes zero. For acoustic propagation in
the presence of a (non-uniform) mean flow or compressible, non-isentropic media, for-
mulations based on the linearized Euler equations (LEE) [2] and acoustic perturbation
equations [3–5] seem to be the most realistic models. From the mathematical point of
view, these models present an important problem, because the involved differential op-
erators do not correspond to any classical functional space, and therefore no classical
finite element fit to its numerical solution. Actually, the use of classical finite element
approximations (in H1 or H(div)) generates substantial parasitic waves produced by nu-
merical spurious modes. The discontinuous Galerkin methods seem well adapted for the
approximation of linearized Euler equations since they do not require any regularity of
the solution. On the other hand, these methods are able to suppress parasitic waves by
the use of a dissipative jump [6]. First implemented for triangular and tetrahedral meshes
for these equations [7–9], these methods were then adapted to quadrilateral and hexahe-
dral meshes using mass-lumped spectral elements [10]. Another way to get a spurious
free solution for a continuous finite element approximation is to get a coercive operator
by adding a differential penalty term. This method, introduced by [11] for Maxwell’s
equations, was applied to the time-harmonic Galbrun’s equations [12] (which are equiv-
alent to LEE) to which a penalty term using a curl-operator was added to get coercivity.
However, this approach implies the numerical treatment of an additional operator, which
substantially increases the computational time, in particular in time domain. In this pa-
per, we present a finite element approximation in which the acoustic pressure is sought
in H1 and the irrotational part of the fluctuating velocity (acoustic particle velocity) in
(L2)d, d = 2,3. The discontinuous character of the second variable enables us to add a
jump term which, as for Maxwell’s equations [13], gets rid of spurious modes. This ap-
proach leads to a method based on continuous finite elements which is spurious free for
a small additional cost.

After a brief presentation in Section 2 of the acoustic perturbation equations we present
in Section 3 a straightforward extension of the mixed spectral FE to these equations. We
illustrate and explain why such straightforward derivation is unstable. In Section 4 we
construct and study by a discrete eigenvalue analysis a stabilization and penalization pro-
cedures to rectify the previously proposed formulation. Finally in Section 5 we present
a numerical convergence analysis and a successful extension of the proposed scheme
to three dimensional setups and spatially varying mean flows by means of a numerical
computation of the aeroacoustic sound generated in the human phonation process.

2 Acoustic Perturbation Equations

A known system of perturbation equations for aeroacoustic computations based upon
incompressible flow data is APE-1 as proposed by R. Ewert, which is a system of two
PDEs (Eq. (47)-(48) in [3]). Assuming constant temperature and small Mach number, in
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the same article, the APE-2 variant is obtained. It results in PDEs written for the acoustic
pressure p and for the acoustic particle velocity u (irrotational part of the fluctuating
velocity)

∂p

∂t
+ρ0c2

0∇·u+∇·(pu0)= f , (2.1)

∂u

∂t
+(u0 ·∇)u+

∇p

ρ0
=0, (2.2)

where f denotes the source term. In the previous equations, ρ0 and c0 are assumed con-
stant and positive, and denote the mean density and the speed of sound, respectively.
The vector u0 describes the mean flow velocity, and is assumed to be constant. Further-
more, our forthcoming analysis still holds for a space varying and divergence free mean
flow velocity or a piecewise constant mean flow velocity.

In the special case of a vanishing mean flow, i.e. u0=0, we directly obtain the conser-
vation equations of linear acoustics given in homogeneous form by

1

c2
0ρ0

∂p

∂t
+∇·u=0, (2.3)

ρ0
∂u

∂t
+∇p=0. (2.4)

This system can be transformed to obtain the acoustic wave equation. For the derivation
we differentiate (2.3) with respect to time and take the divergence of (2.4). Subtracting
both equations yields

1

c2
0

∂2 p

∂t2
−∆p=0. (2.5)

For the case of an arbitrary, non-vanishing mean-flow, this simplification cannot be
done and a computational scheme must feature stable solutions for the system (2.1)
and (2.2). In literature, most formulations for these perturbation equations are based
upon finite difference (FD) or discontinuous Galerkin (DG) schemes (see e.g. [3, 8, 14]).
Whereas FD schemes are known to be inflexible with respect to discretization, the num-
ber of degrees of freedom is highly increased within DG methods due to their element-
local definition of unknowns. A stable finite element (FE) scheme with a reduced number
of unknowns could thereby be an attractive alternative.

Even for the case of vanishing mean flow, i.e. the conservation equations (2.3) and (2.4),
it is not trivial to obtain a stable finite element formulation due to the violation of the
Ladyzhenskayaâ-Babuškaâ-Brezzi (or inf-sup) condition for an associated elliptic problem
(see [15, 16]). One possibility to obtain a stable solution is the utilization of a mixed for-
mulation in which the unknowns are defined in different Sobolev spaces [17]. A well
posed mixed formulation was introduced in [18] and has already been investigated and
extended by the authors [19, 20]. Especially regarding computational costs, this formu-
lation has significant advantages when combined with a spectral finite element method
which yields diagonal mass matrices.
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3 Mixed variational formulation of the Acoustic Perturbation

Equations

Let L2 be the space of Lebesque square integrable functions in the propagation domain
Ω, H1 the Sobolev space of functions whose first derivatives are also in L2 and H(div)
the space of functions whose divergence is in L2. There are two stable combinations
available, which fulfill the LBB condition at the continuous level in the case of vanishing
mean flow:

1. Choose p∈L2 and u∈H(div).

2. Choose p∈H1 and u∈
(

L2
)d

.

The first choice could be realized by using Raviart-Thomas elements [21]. The second
choice can be realized using spectral finite elements [18], which will be used here.

For the conservation equations of linear acoustics, the variational form is obtained
by multiplication of (2.3) by a scalar test function ϕ∈ H1 and (2.4) with a vectorial test

function ψ∈
(

L2
)d

. Integration over the computational domain Ω with boundary Γ leads
to

1

ρ0c2
0

∫

Ω

∂p

∂t
ϕ dΩ+

∫

Ω
∇ϕ·u dΩ−

∫

Γ
ϕ u·n dΓ=

∫

Ω
f ϕ dΩ, (3.1)

ρ0

∫

Ω

∂u

∂t
·ψ dΩ+

∫

Ω
∇p·ψ dΩ=0. (3.2)

To define the discrete functional spaces, we assume a domain, discretized by N quadri-
lateral or hexahedral finite elements K, Ω=∪N

j=1Kj. Furthermore, there is a bijective map-

ping Fj to transform the grid element Kj to the reference square or cubic element K̂. Then
the spaces of approximation are defined as

ph,ϕh∈Uk
h =

{

q∈H1
∣
∣
∣ q|Kj

◦Fj ∈Qk(K̂)
}

, (3.3)

uh,ψh∈Vk
h =

{

w∈
[
L2
]d

∣
∣
∣

1

|Jj|
Jj w|Kj

◦Fj ∈
[

Qk(K̂)
]d
}

. (3.4)

In (3.3) and (3.4), Jj denotes the Jacobian matrix of the element mapping Fj, |Jj| its deter-

minant and Qk(K̂) the tensor product set of Lagrange polynomials of degree k. Thereby
the acoustic particle velocity u is approximated discontinuously from element to element
which is similar to a DG formulation.

First, it is obvious that the mixed formulation reduces the number of unknowns with
respect to a DG formulation due to the continuous approximation of the pressure un-
knowns. Additionally, this formulation has the advantage, that the following relation
holds when evaluating the integral over an arbitrary element Kj

∫

Kj

∇ϕh ·ψh dKj=
∫

K̂
∇̂ϕ̂h ·ψ̂h dK̂ , (3.5)
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which provide, after using Gauss-Lobatto points for quadrature, sparse local matrices
independent of the elements geometry. This enables very efficient implementations. In
general the resulting semidiscrete system of equations takes the form

(
D 0
0 B

)(
ṗh

u̇h

)

+

(
0 −R

RT 0

)(
ph

uh

)

=

(
F
0

)

. (3.6)

Because of the utilized spectral element approximation, the matrix D is diagonal and
the matrix B is d×d block-diagonal with d= {2,3} being the dimension of the setup. As
D and B are in addition symmetric positive definite, they can be inverted easily thus
being well suited for the application of an explicit time stepping scheme. As already
indicated in (3.5), the matrix R is independent of the elements geometry and its structure
only depends on the connectivity of the elements in the computational grid and is very
sparse.

We notice that the only differences between the conservation equations (2.3) and (2.4)
and the system of perturbation equations (2.1) and (2.2), are the convective terms A and
B which are given in (3.7) and (3.8). Those terms are usually handled within finite ele-
ment methods by employing some kind of upwinding schemes such as the Streamline-
Upwind-Petrov-Galerkin (SUPG) approach as done e.g. for the Navier-Stokes equations
in [22]. These schemes alter the ansatz functions and increase the computational effort.
Therefore, motivated by the good performance properties of the mixed spectral method,
we intend to solve this system of equations using the same mixed variational ansatz as
utilized for the conservation equation of linear acoustics.

For a shorter notation we neglect the source term. The variational form of (2.3), (2.4)
for u,ψ and p,ϕ regular enough is given as

∫

Ω

∂p

∂t
ϕ dΩ−ρ0c2

0

∫

Ω
u·∇ϕ dΩ+

∫

Ω
(u0 ·∇p) ϕ dΩ

︸ ︷︷ ︸

A

=0, (3.7)

∫

Ω

∂u

∂t
·ψ dΩ+

∫

Ω
(u0 ·∇)u·ψ dΩ

︸ ︷︷ ︸

B

+
1

ρ0

∫

Ω
∇p·ψ dΩ=0, (3.8)

subjected to either Neumann boundary conditions (sound-hard wall) on ΓN and Dirich-
let boundary conditions (sound-soft wall) on ΓD (Γ = ΓD∪ΓN and ΓD∩ΓN = ∅). These
conditions read {

p=0, on ΓD,

u0 ·n=u·n=0, on ΓN .
(3.9)

Having chosen regular enough test functions (with ϕ vanishing on ΓD), the term B satis-
fies

B=∑
Ki

∫

Ki

(u0 ·∇)u·ψdK. (3.10)
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A tempting but wrong strategy to extend the discretization presented above in order to
take into account convective terms is to use relation (3.10) with (u,ψ)∈Vk

h ×Vk
h .

Written in matrix notation we compute two additional matrices, Cp and Cu, which
result from the discretization of the bilinear forms A and B.

(
D 0

0 B

)

︸ ︷︷ ︸

M

(
ṗh

u̇h

)

+

(
Cp −R

RT Cu

)

︸ ︷︷ ︸

K

(
ph

uh

)

=

(
F

0

)

. (3.11)

Two major difficulties in the mixed finite element formulation appear:

1. The choice of the discontinuous space L2 for the acoustic particle velocity is in con-
tradiction with the simplified form of B given by (3.10).

2. Even for a spatially constant but arbitrarily directed mean flow field, the additional
matrices may be asymmetric thus violating the evident skew symmetric structure
of the discrete system observed in (3.6). This may give rise to eigenvalues with
positive real part and thereby unstable solutions.

To emphasize the issues we reiterate the test given in [20] and calculate a sine pulse
propagation in a half plane with a constant mean flow of Mach 0.5 in x-direction. The do-
main is discretized with a grid consisting of distorted elements. For excitation, we choose
an initial acoustic pressure distribution, with a peak located below the center of the com-
putational domain and an initial velocity distribution equal to 0. This setup leads to a
pulse propagating through the domain which is convected due to the given mean flow
field. In addition, we choose sound hard walls on the domain boundary, i.e. u·n = 0
but stop the computation before the wave reaches the boundary of the computational
domain. The results of this direct approach are displayed in Fig. 1. It can be seen that
instabilities occur which propagate through the acoustic domain. Therefore, the straight
forward way does not feature a stable numerical scheme as expected. It should be noted,
that the same instabilities were observed on an open domain setup approximated by
choosing a very large distance to the reflecting boundaries thus indicating a minor im-
pact of the applied boundary conditions. However, it is well known that the convective
character of the above equation usually requires an upwinding scheme. In the follow-
ing, we present a stabilization procedures, and investigate the eigenvalues of the discrete
system which gives a good insight to spurious modes and their significance.

4 Eigenvalues, stabilization and spurious modes

For the investigation of spurious modes, it is always desirable to fall back to a situation
for which physical eigenvalues are analytically given. Such a situation is obtained when
assuming a plane, one-dimensional wave propagation in a channel of length L and height
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(a) t=T1 (b) t=T2 (c) t=T3

Figure 1: Wave propagation for initial value problem at different time levels using the direct mixed approach
resulting in an exponentially growing solution.

H with uniform background flow u0=(u0,x,0)t. For this case the system of perturbation
equations (2.1) and (2.2) can be rewritten as

∂2 p

∂t2
+2Mc0

∂2 p

∂x∂t
+(M2−1)c2

0

∂2 p

∂x2
=0, (4.1)

in which M = u0,x/c0 denotes the Mach number. For a plane wave one can make the
ansatz p(x,t)= p̂ej(kx−ωt) which leads to the characteristic equation

−ω2+2ωMc0k−(M2−1)c2
0k2=0. (4.2)

Solving (4.2) leads to the dispersion relation

k±(ω)=−
ω(Mc0∓c0)

(M2c2
0−c2

0)
=−

ω

(M±1)c0
. (4.3)

and the solution of (4.1) is obtained by a superposition of ω-dependent plane waves

p̂+ej
(

k+(ω)x−ωt
)

+ p̂−e−j
(

k−(ω)x−ωt
)

. (4.4)

Considering homogeneous Dirichlet boundary conditions at the extremities of the one
dimensional channel, it is possible to show that the admissible frequencies ω are defined
by

ωn=
c0πn

L
(1−M2), n≥1. (4.5)

The discrete eigenvalues for the problem under investigation can be obtained by solving
the generalized eigenvalue problem given by

λMx=Kx, (4.6)

where M and K are defined in (3.11). Homogeneous Neumann boundary conditions
on the horizontal boundaries and homogeneous Dirichlet on the vertical boundaries are
used

ΓD ={0,L}×(0,H), ΓN =(0,L)×{0,H}.
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The first smallest non zero eigenvalues should correspond with the frequencies of the
one dimensional channel, i.e. λ≃ jωn (higher values of λ correspond to eigenfunctions
oscillating in the height of the channel). We can interpret the discrete eigenvalues as
follows:

• If there are small eigenvalues λ which do not coincide with the analytical ones, we
can say that these are spurious modes.

• If the discrete eigenvalues have a positive real part, the solution becomes unstable.

• Spurious modes with a large negative real part are quickly damped and do not
disturb the solution.

So, we distinguish not only between physical and spurious modes but also between
evanescent and exponentially growing modes depending on the sign of their real part.
For the numerical evaluation of the discrete eigenvalues a long and thin channel with a
length to width ratio of 20:1 is chosen. The channel is discretized with strongly distorted
quadrilateral elements as displayed in Fig. 2.

Figure 2: Pseudo one dimensional channel of length L and height H, meshed with strongly distorted elements.

Initially the flow velocity is set to zero. So basically, the eigenvalues for the mixed
variational formulation of the conservation equations of linear acoustics are evaluated.
The result is displayed in Fig. 3. One can see the analytical eigenvalues as the solid lines
and the discrete ones indicated by the markers. All discrete eigenvalues have zero real
part and coincide with the analytical ones. In contrast to the stable computations with
zero Mach number the situation looks different when a constant mean flow of Mach 0.1
is added. As shown in Fig. 4, a lot of spurious modes are added to the system. Even more
dramatically, spurious modes with positive real part occur, which are responsible for the
unstable computations already observed. So, it is obvious that one needs to transform the
discrete system to ensure stable results. At every step during the stabilization procedure,
the discrete eigenvalues will be evaluated to directly show the effects on the numerical
scheme.

4.1 Introduction of numerical flux

It has already been pointed out, that the choice of u ∈
(

L2
)d

is in contradiction to the
convective term in (3.8), which is assumed to have a significant impact on the stability.
To cope with this issue, ideas from DG methods are adopted.
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0 500 1000 1500 2000 2500
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

4

(b) Analytical (blue lines) and absolute value of
discrete eigenvalues.

Figure 3: Discrete and analytic eigenvalues. Color coded for high negative real part (blue ∗), close to imaginary

axis with negative real part and absolute values less or equal to 10−7 (green ◦).
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Figure 4: Discrete and analytic eigenvalues for Mach 0.1. Color coded for high negative real part (blue ∗), close
to imaginary axis with negative real part and absolute values less or equal to 10−7 (green ◦) and with positive
real part (red).

Assume two elements K1 and K2 with a common boundary Γ12 as displayed in Fig. 5.
For the x-component of the vector quantity u we can define the average as

{{ux}}=
1

2
(ux,1+ux,2), (4.7)

in which ux,1 is the x-component† of the particle velocity associated with the element K1

†The same definition holds for the y-component of the vector field (or the z-component if a three dimensional
setting is considered).
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Figure 5: Two elements with common boundary and element local normal vectors as well as the unique normal
vector n12 associate to the edge Γ12.

and ux,2 the corresponding unknown associated with the element K2. Accordingly we
define the jump between the elements as

[[ux]]=ux,1n1+ux,2n2, (4.8)

where n1 and n2 denote the outward normal with respect to the element K1 and K2,
respectively.

In order to introduce a numerical flux for the convective bilinear form instead of (3.8),
we integrate over each element and integrate by part the convective terms

∫

Ki

(u0 ·∇)u·ψ dK=−
∫

Ki

u·(u0 ·∇)ψ dK−
∫

Ki

u(∇·u0)·ψdK

︸ ︷︷ ︸

=0

+
∫

∂Ki

(n·u0)u·ψ dΓ. (4.9)

Although ∇·u0 is zero due to the assumption of spatially constant flow (or divergence
free flow), it has to be noted that the formulation in general also allows element-wise
constant mean flow functions.

Due to the discontinuous choice for the unknowns and test functions, the boundary
term does not necessarily vanish between two interior elements Ki and Kj. A flux term
is then introduced on the boundary Γij. Due to the structure of the convective term it is
now possible to write the flux for each component of u individually. The flux across the
edge Γ12 can then be defined for the 2D problem as

a12(u,ψ)=
∫

Γ12

{{u0 ux}}·[[ψx ]] dΓ+
∫

Γ12

{{u0 uy}}·[[ψy ]] dΓ. (4.10)

The extension to the three dimensional case is straight forward. The bilinear form includ-
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ing numerical fluxes reads as

B=−∑
Ki

∫

Ki

u·(u0 ·∇)ψ dK+∑
Γij

aij(u,ψ) +
∫

Γ
(n·u0)u·ψ dΓ, (4.11)

this equality being now true for discontinuous functions (u,ψ)∈Vk
h ×Vk

h . Note that the
boundary term along Γ vanishes because of the boundary condition (3.9).

4.2 Skew symmetry property

Even with the introduction of the flux term, the stiffness matrix is not obviously skew
symmetric, which is desirable due to energy conservation and stability issues as pointed
out e.g. in [23]. In order to prove skew symmetry, we perform another integration by
parts on the right hand side of (4.11) and obtain

−∑
Ki

∫

Ki

u·(u0 ·∇)ψ dK+∑
Γij

aij(u,ψ)=∑
Ki

∫

Ki

(u0 ·∇)u·ψ dK

−∑
Γij

∫

Γij

(ni ·u0)ui ·ψi+(nj ·u0)uj ·ψjdΓ

+∑
Γij

aij(u,ψ). (4.12)

Averaging of the right hand sides of (4.11) and (4.12) yields the final bilinear form

B=
1

2 ∑
Ki

(∫

Ki

(u0 ·∇)u·ψ dK

︸ ︷︷ ︸

B1

−
∫

Ki

u·(u0 ·∇)ψ dK

︸ ︷︷ ︸

B2

)

−
1

2 ∑
Γij

(∫

Γij

(ni ·u0)ui ·ψjdΓ+
∫

Γij

(nj ·u0)uj ·ψidΓ
)

. (4.13)

Compared to (3.10), the variational terms are defined with less assumptions on the regu-
larity of the test functions and are therefore compatible with our formulation. Note also
that the matrix entries of this bilinear form are skew symmetric. This becomes apparent
when one thinks about the direction of the element normals (ni =−nj). Furthermore, it
has to be notice that computing the difference B1−B2 is simpler than computing each
terms separately. With (u,ψ)∈Vk

h ×Vk
h , we obtain

B1=∑
Ki

∫

K̂
(u0 ·J

−T
i ∇̂)

( Ji

|Ji|
û
)

·Ji ψ̂dK̂,

B2=∑
Ki

∫

K̂i

Ji û·(u0 ·J
−T

i ∇̂)
( Ji

|Ji|
ψ̂
)

dK̂ ,
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and the computation of B1−B2 results in

∑
Ki

(∫

K̂
Ji ψ̂ ·

Ji

|Ji|
(u0 ·J

−T
i ∇̂)ûdK̂−

∫

K̂i

Ji û·
Ji

|Ji|
(u0 ·J

−T
i ∇̂)ψ̂ dK̂

)

,

meaning that derivatives of the Jacobian matrices Ji need not to be computed.
Finally, we consider the convective term in (2.1) with ρ0c2

0 = 1. Its variational form
reads as

∫

Ω

∂p

∂t
ϕ dΩ+

∫

Ω
(∇·u)ϕ dΩ+

∫

Ω
(u0 ·∇p) ϕ dΩ=0. (4.14)

After applying Green’s formula, it is equivalent to
∫

Ω

∂p

∂t
ϕ dΩ−

∫

Ω
u·∇ϕ dΩ+

1

2

∫

Ω
(u0 ·∇p) ϕ dΩ

−
1

2

∫

Ω
(u0 ·∇ϕ) p dΩ−

1

2

∫

Ω
(∇·u0)p ϕ dΩ

+
1

2

∫

Γ
p ϕ u0 ·n dΓ+

∫

Γ
ϕ u·n dΓ=0. (4.15)

Assuming that constant or more generally divergence free flows are used, and applying
boundary conditions (3.9), we may rewrite (4.15) as

∫

Ω

∂p

∂t
ϕ dΩ−

∫

Ω
u·∇ϕ dΩ

+
1

2

∫

Ω
(u0 ·∇p) ϕ dΩ−

1

2

∫

Ω
(u0 ·∇ϕ) p dΩ=0, (4.16)

which proves the skew-symmetry property of Cp under the adequate boundary condi-
tions (3.9). Modifying the original variational form according to (4.16) and (4.13) guaran-
tees skew symmetry for the algebraic system of equations and thus energy conservation.

Turning back to the one-dimensional channel example the eigenvalue analysis is
started again and one obtains the discrete eigenvalues displayed in Fig. 6. Due to the
new formulation of the discrete system, the eigenvalues are now located on the imagi-
nary axis. Nevertheless, the system shows a lot of non-physical modes, which can pollute
the solution of the system. To illustrate this behaviour, we compute the wave propaga-
tion of a pulse in a uniform mean flow of Mach 0.5 as depicted for a characteristic time
step in Fig. 7. The basic wave pattern is captured and also the reflection at the lower wall
is physical. We used the same computational grid with linear finite elements as in Fig. 1
and observe non-physical waves.

To increase the convergence of the numerical scheme we follow the approach intro-
duced in [10] for a full DG scheme. It was shown, that spurious waves can be suppressed
if a penalization term between the discontinuous elements was added to the system. Ad-
ditionally, those terms can be seen as an upwinding method for DG as, e.g., used in [8]. In
the following section, we will therefore incorporate a similar term to the variational form
of the momentum conservation (see (2.2)) to increase the convergence of the method.
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(a) Eigenvalues in the complex plane. (b) Analytical (blue lines) and absolute value of
discrete eigenvalues.

Figure 6: Discrete and analytic eigenvalues for Mach 0.1. All eigenvalues have zero real part but a lot of
spurious modes arise in addition to the physical ones.

(a) t=T2 (b) t=T3

Figure 7: Contours of pulse wave propagation in homogeneous mean flow of Mach 0.5. Stable computation
but spurious waves visible.

4.3 Upwinding via penalization

Upwinding is a well known technique to stabilize the numerical solution of differential
equations. In many DG methods approximate Riemann solvers are utilized to stabilize a
convective equation with jumps [8].

Due to the different structure of the convective terms in the case under investiga-
tion one can define the upwind in a more intuitive way with respect to the unique edge
normal n12. Such an upwind flux is usually defined as (written here only for the x-
component)

{{u0 ux}}u=







u0 ux,1 if u0 ·n12>0,
u0 ux,2 if u0 ·n12<0,
{{u0 ux}} if u0 ·n12=0.

(4.17)
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As stated in [24] one can alternatively introduce a penalization term between two adja-
cent elements which is equivalent to (4.17). Such a penalization was also used in [10] to
remove spurious waves in the context of a full DG formulation. Indeed, one can show
that

{{u0 ux}}u ·n12=({{u0 ux}}+α[[ux ]]) ·n12. (4.18)

Here, the parameter α denotes the upwinding parameter. By setting

α=
|u0 ·n|

2

the penalization is exactly equivalent to (4.17). The penalization is applied to the convec-
tive bilinear form which yields the transformed formulation of the initial bilinear form
as

∫

Ω
(u0 ·∇)ua ·ψ dΩ→∑

∀Ki

1

2

(∫

Ki

(u0 ·∇)u·ψ dK−
∫

Ki

u·(u0 ·∇)ψ dK

)

−∑
∀Γij

1

2

(∫

Γij

(
(u0 ·nj)ux,jψx,i+(u0 ·ni)ux,iψx,j

)
dΓ

+
∫

Γij

α[[ux]]·[[ψx ]] dΓ+···

)

. (4.19)

Turning one last time to the eigenvalues of the discrete system as depicted in Fig. 8, we
observe that all spurious modes were shifted to the negative half-plane which cause them
to decay rapidly.

(a) Eigenvalues in the complex plane. (b) Analytical (blue lines) and absolute value of
discrete eigenvalues.

Figure 8: Discrete and analytic eigenvalues for Mach 0.1. Color coded for high negative real part (blue ∗), close
to imaginary axis with negative real part and absolute value less or equal to 10−7 (green ◦).
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(a) t=T2 (b) t=T3

Figure 9: Contours of pulse wave propagation in homogeneous mean flow of Mach 0.5. No instabilities and no
spurious waves.

In fact, the benefits of the penalization term are significant as pictured in Fig. 9 show-
ing the initial two dimensional example. The instabilities of the initial formulation and
the non-physical waves are completely removed.

Even though, the complete stabilization procedure was derived for a constant mean
flow field, it also covers formulations based on all incompressible flows for which ∇·u0=
0 is fulfilled.

5 Numerical results

5.1 Convergence analysis

For a more detailed investigation of the convergence properties of the proposed stabiliza-
tion procedure, we investigate the benchmark problem depicted in Fig. 10(a). According
to [25], using as initial conditions

u(x,0)=0; p(x,y,t=0)=exp

(

ln(2)
x2+(y+75)2

25

)

,

the analytical solution for the acoustic pressure can be given as

p(t,x,y)=
1

2µ

∫ ∞

0
e
− ζ2

4µ cos(ξt)[J0(ξη)+ J0(ξζ)] ξ dξ, (5.1)

in which J0 denotes the Bessel function of first kind, along with the abbreviations

µ=
ln2

25
,

η=
√

(x−Mxt)2+(y−25)2 ,

ζ=
√

(x−Mxt)2+(y+25)2 .
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(a) Computational setup for convergence
analysis.

(b) Unit-cell of discretization.

Figure 10: Computational domain and the distorted discretization pattern.

In all computations, we have chosen a uniform flow of Mach 0.5.

The convergence is analyzed on a distorted computational grid, built from the unit-
cell depicted in Fig. 10(b). In this pattern, almost all possible deformations of a quadri-
lateral cell are covered. To obtain h refinements, the pattern is scaled by the given factor.
The solid boundary is modeled using homogeneous Neumann boundary conditions. To
cover the free field radiation, we compute the solution in a very large computational do-
main and terminate the calculation before the wave reaches the boundary. For a time
discretization we utilize a fourth order Runge Kutta scheme and compute the time-step
as one tenth of the CFL-number w.r.t. the finest grid. The analysis is conducted for three
refinement levels in h and k, resulting in 12 computations. A limiting factor was the accu-
racy of evaluating the indefinite integral in (5.1) in each integration point for the reference
solution. This has been done using an adaptive integration procedure provided by the
boost library for C++. The numerical errors for the pressure are computed in the L2 and
H1 norm, and are displayed in Fig. 11. Thereby, the computations have been performed
for a single time-step at the end of the simulation run and integrated over the computa-
tional domain. For all computations, we observe convergence with the expected order.
The rates are explicitly given for the H1-norm in Table 1 and show expected values.

Table 1: Convergence rates in the H1 norm.

p \ h h→h/2 h/2→h/4 h/4→h/8 Average

1 0.2916 0.6146 1.0094 0.8126

2 1.2489 2.3958 2.3516 1.8632

3 2.5485 3.2970 2.7920 2.8791
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(a) Convergence in the L2 norm. (b) Convergence in the H1 norm.

Figure 11: Convergence of computational scheme h and k refinement.
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(a) L2 error for varying alpha.
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(b) H1 error for varying alpha.

Figure 12: Computational error for different values of α for second h refinement level and second order elements.

For all computations we utilized a penalization factor α=α0|u0 ·n| with α0 =0.5. In a
second step, we investigate the behavior of the computational scheme for different values
of α0, and obtained the results as depicted in Fig. 12. We observe the smallest numerical
error for the proposed value of α0=0.5. Choosing higher or lower values leads to higher
numerical errors or even instabilities in the solutions (certainly due to the violation of the
time step restriction).

Those results hold also for higher element orders. By using the adaptive visualiza-
tion capabilities of the software gmsh [26], it is possible to display the result of a seventh
order computation as displayed in Fig. 13. Given in the solid black lines is the compu-
tational grid. It can be seen, that this initial discretization resolves the pulse with just
two elements which is compensated by increasing the element order. Due to convection
the wave form is displaced from the center, it is not distorted and no spurious waves are
visible.
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Figure 13: Contours of acoustic pressure at the end of the simulation run for coarsest grid, 7th order elements
and utilization of adaptive visualization in gmsh.

5.2 Aeroacoustic computation of human phonation process

The numerical simulation of the human phonation process is a complex task involving
the accurate computation of the flow field interacting with the mechanics of the vocal
folds and the induced acoustic field. Fortunately, the fully coupled scheme does not need
to be computed and some simplifications can be made. First of all, one can safely assume
an incompressible flow due to the low flow velocity inside the larynx thus reducing com-
plexity and motivating a hybrid approach towards the aeroacoustic components of the
sound field. Secondly, vibroacoustic components are of minor importance which was
shown in [27]. Therefore the paper in hand focuses on the aeroacoustic field computa-
tion.

The basic setup under investigation is depicted in Fig. 14 including the flow and
acoustic grid. For the acoustic grid an average element edge length of he ≈ 0.5mm is
chosen. Thereby the acoustic solution is computed on only 20000 second order elements.
The resulting computational grid is capable to resolve frequencies up to 100kHz with ap-
proximately 6 elements per wavelength and is thereby more than sufficient to resolve the
frequency range of interest (10−5000Hz). A time step size of ∆t=1ms is chosen for the
fourth order Runge Kutta time stepping scheme. At the boundaries of the acoustic do-
main, we model an infinitely long channel by an application of a time domain perfectly
matched layer (PML) as given in [28].

The flow domain is discretized using 2.3 million wedge shaped cells. No-slip bound-
ary conditions are imposed on the walls of the channel as well as on the surface of the
vocal folds. At the left hand side of the channel, a pressure inlet at 300Pa is chosen which
results in an maximum mean flow velocity of 44m/s as depicted in Fig. 15. It is visible,
that the field varies significantly through the domain, which is why we include all terms
of the perturbation equation in our computation. Additionally, the highest flow veloc-
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Figure 14: Computational setup for the three dimensional case including the location of the monitoring point.
Magnification of CFD and CAA grids inside the glottis. Remark: The PML are purely acoustic PML (the mean
flow vanishes at their boundary, see Fig. 15).

Figure 15: Streamlines of mean flow velocity. Asymmetric structure and large scale vortex.

ities are observed inside the glottis. On the right hand side a pressure outlet boundary
condition is chosen, setting the fluid pressure to zero.

To avoid the full three dimensional fluid structure interaction, the vocal folds are set
in motion by a prescribed periodic displacement. By this boundary condition, the glottis,
i.e. the region between the vocal folds, is opened and closed with a frequency of 100Hz.
These cycles induce a modulatin of the flow passing through the glottis thus inducing
sound generating sources. Therefore, the prescribed frequency of motion is also expected
to appear in the recorded acoustic pressure signals. For a detailed discussion on the flow
computation, we refer to [29].

For the analysis, the transient start-up phase is ignored and only the last 1900 time
steps are used. Based on these timesteps the mean flow field is computed as displayed
in Fig. 15. The behaviour is due to the tendency of the flow in the supra-glottal region to
attach to one side of the trachea more often than to the other. Also visible in the steam-
lines is a vortex in the mean flow field at the top of the domain.



20 A. Hüppe et al. / Commun. Comput. Phys., 20 (2016), pp. 1-22

Figure 16: SPL spectrum recorded at the end of simulation domain.

Depicted in Fig. 16 are the results for the sound pressure level (SPL) at the end of
the simulation domain for a characteristic monitoring point. Most significant is the tonal
component at 100Hz which corresponds to the frequency of the prescribed vocal fold
movement as expected. The higher harmonic peaks are observed to have lower ampli-
tudes and starting from 800Hz no tonal component can be observed.

It has to be noted that the computed acoustic field considering a spatially varying
mean flow field shows no instability. Additionally, the computational grid used in the
acoustic field computation was generated by the extrusion of a free quadrilateral surface
mesh. The resulting volume discretization was thereby irregular and not aligned with
the mean flow field. This gives good confidence in the robustness of the scheme and its
applicability to simulate flow induced sound in the presence of a solenoidal mean flow
field.

6 Conclusion

Within this paper, we presented a stabilized finite element method for hyperbolic systems
of partial differential equations including convective effects. The only assumption on the
mean flow field made during the derivation was the zero divergence property which
holds true in many applications, e.g. in computational aeroacoustics at low Mach num-
bers. The detailed derivation of the stabilization procedure should give a good insight
to the properties of the method in the special context of a mixed finite element method.
We could thereby demonstrate that our discrete scheme ensures skew symmetry in the
global equation system, eliminates exponentially growing solutions and the penalization
term suppresses spurious modes. Thereby, it is possible to compute systems of partial
differential equations including convective terms in a stable and consistent manner. Fur-
thermore, it was possible to show, that the order of convergence is not reduced due to
the stabilization process and we observe the expected rates for the spectral finite element
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method. Also, the diagonal mass matrices enable the utilization of explicit time stepping
schemes which makes the overall method attractive for optimized implementations. Al-
ternatively, it should be possible to include the method in existing finite element codes
with only a minor additional effort. Except for the discontinuous mapping of equation
numbers for the velocity unknowns and the evaluation of element fluxes, all terms can
be evaluated using standard FE procedures. The final example of an investigation of the
process of human phonation shows the applicability of the method to aeroacoustic com-
putations in three space dimensions without any additional restrictions regarding the
numerical scheme itself.
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